next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
HyperplaneArrangements :: rank(Flat)

rank(Flat) -- compute the rank of a flat

Synopsis

Description

The rank of a flat $F$ is the codimension of the intersection of the hyperplanes containing $F$ (i.e. whose indices are in $F$).

i1 : A3 = typeA 3

o1 = {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
       1    2   1    3   1    4   2    3   2    4   3    4

o1 : Hyperplane Arrangement 
i2 : F = flat(A3, {3,4,5})

o2 = {3, 4, 5}

o2 : Flat of {x  - x , x  - x , x  - x , x  - x , x  - x , x  - x }
               1    2   1    3   1    4   2    3   2    4   3    4
i3 : assert(rank F == 2)

See also

Ways to use this method: