next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000100121 seconds elapsed
 -- 0.000732725 seconds elapsed
 -- 0.000255402 seconds elapsed
 -- 0.00009424 seconds elapsed
 -- 0.000652244 seconds elapsed
 -- 0.000236962 seconds elapsed
 -- 0.00005336 seconds elapsed
 -- 0.000053681 seconds elapsed
 -- 0.000158561 seconds elapsed
 -- 0.000094561 seconds elapsed
 -- 0.000641565 seconds elapsed
 -- 0.000202042 seconds elapsed
 -- 0.00009188 seconds elapsed
 -- 0.000602764 seconds elapsed
 -- 0.000195201 seconds elapsed
 -- 0.000096121 seconds elapsed
 -- 0.000608085 seconds elapsed
 -- 0.000215802 seconds elapsed
 -- 0.000103721 seconds elapsed
 -- 0.000688845 seconds elapsed
 -- 0.000253642 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000101241 seconds elapsed
 -- 0.000703165 seconds elapsed
 -- 0.000206761 seconds elapsed
 -- 0.000091801 seconds elapsed
 -- 0.000637685 seconds elapsed
 -- 0.000198162 seconds elapsed
 -- 0.000131161 seconds elapsed
 -- 0.000607445 seconds elapsed
 -- 0.000228642 seconds elapsed
 -- 0.00009912 seconds elapsed
 -- 0.000624844 seconds elapsed
 -- 0.000212001 seconds elapsed
 -- 0.000100521 seconds elapsed
 -- 0.000595124 seconds elapsed
 -- 0.000215481 seconds elapsed
 -- 0.000089441 seconds elapsed
 -- 0.000656365 seconds elapsed
 -- 0.000225002 seconds elapsed
 -- 0.000108961 seconds elapsed
 -- 0.000696365 seconds elapsed
 -- 0.000241562 seconds elapsed
 -- 0.000117681 seconds elapsed
 -- 0.000653965 seconds elapsed
 -- 0.000254962 seconds elapsed
 -- 0.000094921 seconds elapsed
 -- 0.000605564 seconds elapsed
 -- 0.000248682 seconds elapsed
 -- 0.00009464 seconds elapsed
 -- 0.000594525 seconds elapsed
 -- 0.000238362 seconds elapsed
 -- 0.000092761 seconds elapsed
 -- 0.000592085 seconds elapsed
 -- 0.000234402 seconds elapsed
 -- 0.000092761 seconds elapsed
 -- 0.000645005 seconds elapsed
 -- 0.000222081 seconds elapsed
 -- 0.000106001 seconds elapsed
 -- 0.000896127 seconds elapsed
 -- 0.000320882 seconds elapsed
 -- 0.000110481 seconds elapsed
 -- 0.000929407 seconds elapsed
 -- 0.000333282 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.