LinearTruncations : Index
-
compMax -- takes componentwise minimum or maximum of a list of lists
-
compMax(List) -- takes componentwise minimum or maximum of a list of lists
-
compMax(List,List) -- takes componentwise minimum or maximum of a list of lists
-
compMin -- takes componentwise minimum or maximum of a list of lists
-
compMin(List) -- takes componentwise minimum or maximum of a list of lists
-
compMin(List,List) -- takes componentwise minimum or maximum of a list of lists
-
diagonalMultidegrees -- t-tuples of non-negative integers with sum equal to d
-
diagonalMultidegrees(ZZ,List) -- t-tuples of non-negative integers with sum equal to d
-
diagonalMultidegrees(ZZ,ZZ) -- t-tuples of non-negative integers with sum equal to d
-
findMins -- calculates the minimal elements of a subset of ZZ^r
-
findMins(Ideal) -- calculates the minimal elements of a subset of ZZ^r
-
findMins(List) -- calculates the minimal elements of a subset of ZZ^r
-
findRegion -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
-
findRegion(List,Ideal,Function) -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
-
findRegion(List,Module,Function) -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
-
Inner -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
-
IrrelevantIdeal -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
-
irrelevantIdeal -- gives the irrelevant ideal of the coordinate ring of a product of projective spaces
-
irrelevantIdeal(Ring) -- gives the irrelevant ideal of the coordinate ring of a product of projective spaces
-
isLinearComplex -- tests whether a complex of graded modules is linear
-
isLinearComplex(ChainComplex) -- tests whether a complex of graded modules is linear
-
isQuasiLinear -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
-
isQuasiLinear(...,IrrelevantIdeal=>...) -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
-
isQuasiLinear(BettiTally) -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
-
isQuasiLinear(ChainComplex) -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
-
isQuasiLinear(List,Module) -- checks whether degrees in the resolution of a truncation are at most those of the irrelevant ideal
-
LinearTruncations -- truncations of a multigraded module that give linear resolutions
-
linearTruncations -- finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
-
linearTruncations(List,Module) -- finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
-
linearTruncations(Module) -- finds minimal multidegree(s) in a given range where the resolution of a truncated module is linear
-
linearTruncationsBound -- bounds the region where truncations of a module have linear resolutions
-
linearTruncationsBound(Module) -- bounds the region where truncations of a module have linear resolutions
-
multigradedPolynomialRing -- produces polynomial rings with standard multigradings
-
multigradedPolynomialRing(...,CoefficientField=>...) -- produces polynomial rings with standard multigradings
-
multigradedPolynomialRing(...,Standard=>...) -- produces polynomial rings with standard multigradings
-
multigradedPolynomialRing(...,Variables=>...) -- produces polynomial rings with standard multigradings
-
multigradedPolynomialRing(List) -- produces polynomial rings with standard multigradings
-
multigradedPolynomialRing(ZZ) -- produces polynomial rings with standard multigradings
-
Outer -- finds minimal multidegree(s) in a given region where an ideal or module satisfies a Boolean function
-
partialRegularities -- calculates Castelnuovo-Mumford regularity in each component of a multigrading
-
partialRegularities(ChainComplex) -- calculates Castelnuovo-Mumford regularity in each component of a multigrading
-
partialRegularities(Module) -- calculates Castelnuovo-Mumford regularity in each component of a multigrading
-
regularityBound -- bounds the multigraded regularity of a module
-
regularityBound(Module) -- bounds the multigraded regularity of a module
-
supportOfTor -- computes multidegrees in the support of Tor_i(M,k), where k is the residue field
-
supportOfTor(ChainComplex) -- computes multidegrees in the support of Tor_i(M,k), where k is the residue field
-
supportOfTor(Module) -- computes multidegrees in the support of Tor_i(M,k), where k is the residue field