next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00009437 seconds elapsed
 -- 0.000874262 seconds elapsed
 -- 0.00023449 seconds elapsed
 -- 0.000115982 seconds elapsed
 -- 0.000781544 seconds elapsed
 -- 0.000261059 seconds elapsed
 -- 0.000063222 seconds elapsed
 -- 0.000063031 seconds elapsed
 -- 0.000161461 seconds elapsed
 -- 0.000087474 seconds elapsed
 -- 0.000751557 seconds elapsed
 -- 0.00021881 seconds elapsed
 -- 0.00008897 seconds elapsed
 -- 0.000945907 seconds elapsed
 -- 0.000286866 seconds elapsed
 -- 0.000257792 seconds elapsed
 -- 0.00095381 seconds elapsed
 -- 0.000263169 seconds elapsed
 -- 0.000095115 seconds elapsed
 -- 0.000757186 seconds elapsed
 -- 0.000218438 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000151966 seconds elapsed
 -- 0.00131406 seconds elapsed
 -- 0.000322494 seconds elapsed
 -- 0.000142641 seconds elapsed
 -- 0.00123956 seconds elapsed
 -- 0.000333151 seconds elapsed
 -- 0.00019747 seconds elapsed
 -- 0.00128061 seconds elapsed
 -- 0.00042885 seconds elapsed
 -- 0.00020068 seconds elapsed
 -- 0.00119522 seconds elapsed
 -- 0.000347914 seconds elapsed
 -- 0.000202524 seconds elapsed
 -- 0.00118743 seconds elapsed
 -- 0.000351097 seconds elapsed
 -- 0.000184833 seconds elapsed
 -- 0.00126933 seconds elapsed
 -- 0.000346643 seconds elapsed
 -- 0.000191174 seconds elapsed
 -- 0.00143557 seconds elapsed
 -- 0.000375879 seconds elapsed
 -- 0.000190424 seconds elapsed
 -- 0.00094547 seconds elapsed
 -- 0.000227853 seconds elapsed
 -- 0.000093247 seconds elapsed
 -- 0.000699373 seconds elapsed
 -- 0.000251868 seconds elapsed
 -- 0.000091129 seconds elapsed
 -- 0.000717239 seconds elapsed
 -- 0.000218776 seconds elapsed
 -- 0.00009036 seconds elapsed
 -- 0.000817136 seconds elapsed
 -- 0.000240584 seconds elapsed
 -- 0.000089814 seconds elapsed
 -- 0.000752392 seconds elapsed
 -- 0.000220089 seconds elapsed
 -- 0.00014879 seconds elapsed
 -- 0.00113156 seconds elapsed
 -- 0.000341332 seconds elapsed
 -- 0.000094008 seconds elapsed
 -- 0.0014852 seconds elapsed
 -- 0.000541097 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.