
Computations with the GAP
Character Table Library

(Version 1.3.7 of CTblLib)

Thomas Breuer

Thomas Breuer Email: sam@math.rwth-aachen.de
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

mailto://sam@math.rwth-aachen.de
https://www.math.rwth-aachen.de/~Thomas.Breuer

Computations with the GAP Character Table Library 2

Copyright
© 2013–2024 by Thomas Breuer

This manuscript may be distributed under the terms and conditions of the GNU Public License Version 3
or later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

1 Maintenance Issues for the GAP Character Table Library 10
1.1 Disproving Possible Character Tables (November 2006) 10

1.1.1 A Perfect Pseudo Character Table (November 2006) 10
1.1.2 An Error in the Character Table of E6(2) (March 2016) 13
1.1.3 An Error in a Power Map of the Character Table of 2.F4(2).2 (November 2015) 14
1.1.4 A Character Table with a Wrong Name (May 2017) 15

1.2 Some finite factor groups of perfect space groups (February 2014) 16
1.2.1 Constructing the space groups in question 16
1.2.2 Constructing the factor groups in question 17
1.2.3 Examples with point group A5 . 18
1.2.4 Examples with point group L3(2) . 19
1.2.5 Example with point group SL2(7) . 21
1.2.6 Example with point group 23.L3(2) . 22
1.2.7 Examples with point group A6 . 23
1.2.8 Examples with point group L2(8) . 25
1.2.9 Example with point group M11 . 26
1.2.10 Example with point group U3(3) . 27
1.2.11 Examples with point group U4(2) . 28
1.2.12 A remark on one of the example groups . 29

1.3 Generality problems (December 2004/October 2015) 29
1.3.1 Listing possible generality problems . 29
1.3.2 A generality problem concerning the group J3 (April 2015) 38
1.3.3 A generality problem concerning the group HN (August 2022) 40

1.4 Brauer Tables that can be derived from Known Tables 42
1.4.1 Brauer Tables via Construction Information 42
1.4.2 Liftable Brauer Characters (May 2017) . 43

1.5 Information about certain subgroups of the Monster group 44
1.5.1 The Monster group does not contain subgroups of the type 2.U4(2) (August

2023) . 44
1.5.2 Perfect central extensions of L3(4) (August 2023) 45
1.5.3 The character table of (2×O+

8 (3)).S4 ≤ 2.B (October 2023) 47

2 Using Table Automorphisms for Constructing Character Tables in GAP 50
2.1 Overview . 50
2.2 Theoretical Background . 50

2.2.1 Character Table Automorphisms . 50

3

Computations with the GAP Character Table Library 4

2.2.2 Permutation Equivalence of Character Tables 51
2.2.3 Class Fusions . 52
2.2.4 Constructing Character Tables of Certain Isoclinic Groups 52
2.2.5 Character Tables of Isoclinic Groups of the Structure p.G.p (October 2016) . 53
2.2.6 Isoclinic Double Covers of Almost Simple Groups 54
2.2.7 Characters of Normal Subgroups . 56

2.3 The Constructions . 56
2.3.1 Character Tables of Groups of the Structure M.G.A 56
2.3.2 Character Tables of Groups of the Structure G.S3 57
2.3.3 Character Tables of Groups of the Structure G.22 59
2.3.4 Character Tables of Groups of the Structure 22.G (August 2005) 60
2.3.5 p-Modular Tables of Extensions by p-singular Automorphisms 62
2.3.6 Character Tables of Subdirect Products of Index Two (July 2007) 63

2.4 Examples for the Type M.G.A . 64
2.4.1 Character Tables of Dihedral Groups . 64
2.4.2 An M.G.A Type Example with M noncentral in M.G (May 2004) 66
2.4.3 Atlas Tables of the Type M.G.A . 67
2.4.4 More Atlas Tables of the Type M.G.A . 72
2.4.5 The Character Tables of 42.L3(4).23 and 122.L3(4).23 75
2.4.6 The Character Tables of 121.U4(3).2′2 and 122.U4(3).2′3 (December 2015) . . 77
2.4.7 Groups of the Structures 3.U3(8).31 and 3.U3(8).6 (February 2017) 78
2.4.8 The Character Table of (22×F4(2)) : 2 < B (March 2003) 80
2.4.9 The Character Table of 2.(S3×Fi22.2)< 2.B (March 2003) 82
2.4.10 The Character Table of (2×2.Fi22) : 2 < Fi24 (November 2008) 85
2.4.11 The Character Table of S3×2.U4(3).22 ≤ 2.Fi22 (September 2002) 86
2.4.12 The Character Table of 4.HS.2≤ HN.2 (May 2002) 87
2.4.13 The Character Tables of 4.A6.23, 12.A6.23, and 4.L2(25).23 90
2.4.14 The Character Table of 4.L2(49).23 (December 2020) 96
2.4.15 The Character Table of 4.L2(81).23 (December 2020) 98
2.4.16 The Character Table of 9.U3(8).33 (March 2017) 99
2.4.17 Pseudo Character Tables of the Type M.G.A (May 2004) 104
2.4.18 Some Extra-ordinary p-Modular Tables of the Type M.G.A (September 2005) 107

2.5 Examples for the Type G.S3 . 110
2.5.1 Small Examples . 110
2.5.2 Atlas Tables of the Type G.S3 . 111

2.6 Examples for the Type G.22 . 115
2.6.1 The Character Table of A6.22 . 115
2.6.2 Atlas Tables of the Type G.22 – Easy Cases 116
2.6.3 The Character Table of S4(9).22 (September 2011) 121
2.6.4 The Character Tables of Groups of the Type 2.L3(4).22 (June 2010) 122
2.6.5 The Character Tables of Groups of the Type 6.L3(4).22 (October 2011) . . . 126
2.6.6 The Character Tables of Groups of the Type 2.U4(3).22 (February 2012) . . . 130
2.6.7 The Character Tables of Groups of the Type 41.L3(4).22 (October 2011) . . . 133
2.6.8 The Character Tables of Groups of the Type 42.L3(4).22 (October 2011) . . . 137
2.6.9 The Character Table of Aut(L2(81)) . 141
2.6.10 The Character Table of O+

8 (3).2
2
111 . 142

Computations with the GAP Character Table Library 5

2.7 Examples for the Type 22.G . 143
2.7.1 The Character Table of 22.Sz(8) . 144
2.7.2 Atlas Tables of the Type 22.G (September 2005) 146
2.7.3 The Character Table of 22.O+

8 (3) (March 2009) 150
2.7.4 The Character Table of the Schur Cover of L3(4) (September 2005) 151

2.8 Examples of Extensions by p-singular Automorphisms 153
2.8.1 Some p-Modular Tables of Groups of the Type M.G.A 153
2.8.2 Some p-Modular Tables of Groups of the Type G.S3 154
2.8.3 2-Modular Tables of Groups of the Type G.22 155
2.8.4 The 3-Modular Table of U3(8).32 . 156

2.9 Examples of Subdirect Products of Index Two . 157
2.9.1 Certain Dihedral Groups as Subdirect Products of Index Two 157
2.9.2 The Character Table of (D10×HN).2 < M (June 2008) 158
2.9.3 A Counterexample (August 2015) . 159

3 Constructing Character Tables of Central Extensions in GAP 161
3.1 Coprime Central Extensions . 161

3.1.1 The Character Table Head . 161
3.1.2 The Irreducible Characters . 162
3.1.3 Ordering of Conjugacy Classes . 163
3.1.4 Compatibility with Smaller Factor Groups 164

3.2 Examples . 165
3.2.1 Central Extensions of Simple Atlas Groups 165
3.2.2 Central Extensions of Other Atlas Groups 167
3.2.3 Compatible Central Extensions of Maximal Subgroups 168
3.2.4 The 2B Centralizer in 3.Fi′24 (January 2004) 169

4 GAP Computations Concerning Hamiltonian Cycles in the Generating Graphs of Finite
Groups 171
4.1 Overview . 172
4.2 Theoretical Background . 172

4.2.1 Character-Theoretic Lower Bounds for Vertex Degrees 173
4.2.2 Checking the Criteria . 174

4.3 GAP Functions for the Computations . 175
4.3.1 Computing Vertex Degrees from the Group 175
4.3.2 Computing Lower Bounds for Vertex Degrees 177
4.3.3 Evaluating the (Lower Bounds for the) Vertex Degrees 179

4.4 Character-Theoretic Computations . 181
4.4.1 Sporadic Simple Groups, except the Monster 182
4.4.2 The Monster . 182
4.4.3 Nonsimple Automorphism Groups of Sporadic Simple Groups 186
4.4.4 Alternating and Symmetric Groups An, Sn, for 5≤ n≤ 13 186

4.5 Computations With Groups . 187
4.5.1 Nonabelian Simple Groups of Order up to 107 188
4.5.2 Nonsimple Groups with Nonsolvable Socle of Order at most 106 189

4.6 The Groups PSL(2,q) . 192

Computations with the GAP Character Table Library 6

5 GAP Computations with O+
8 (5).S3 and O+

8 (2).S3 196
5.1 Overview . 196
5.2 Constructing Representations of M.2 and S.2 . 197

5.2.1 A Matrix Representation of the Weyl Group of Type E8 197
5.2.2 Embedding the Weyl group of Type E8 into GO+(8,5) 197
5.2.3 Compatible Generators of M, M.2, S, and S.2 198

5.3 Constructing Representations of M.3 and S.3 . 199
5.3.1 The Action of M.3 on M . 199
5.3.2 The Action of S.3 on S . 200

5.4 Constructing Compatible Generators of H and G 202
5.5 Application: Regular Orbits of H on G/H . 202
5.6 Appendix: The Permutation Character (1G

H)H . 203
5.7 Appendix: The Data File . 206

6 Solvable Subgroups of Maximal Order in Sporadic Simple Groups 208
6.1 The Result . 208
6.2 The Approach . 212

6.2.1 Use the Table of Marks . 212
6.2.2 Use Information from the Character Table Library 213

6.3 Cases where the Table of Marks is available in GAP 214
6.4 Cases where the Table of Marks is not available in GAP 216

6.4.1 G = Ru . 216
6.4.2 G = Suz . 217
6.4.3 G = ON . 218
6.4.4 G =Co2 . 218
6.4.5 G = Fi22 . 219
6.4.6 G = HN . 220
6.4.7 G = Ly . 220
6.4.8 G = T h . 221
6.4.9 G = Fi23 . 221
6.4.10 G =Co1 . 222
6.4.11 G = J4 . 222
6.4.12 G = Fi′24 . 223
6.4.13 G = B . 224
6.4.14 G = M . 228

6.5 Proof of the Corollary . 233

7 Large Nilpotent Subgroups of Sporadic Simple Groups 234
7.1 The Result . 234
7.2 The Proof . 236
7.3 Alternative: Use GAP’s Tables of Marks . 239

8 Permutation Characters in GAP 242
8.1 Some Computations with M24 . 242
8.2 All Possible Permutation Characters of M11 . 245
8.3 The Action of U6(2) on the Cosets of M22 . 247
8.4 Degree 20736 Permutation Characters of U6(2) . 249

Computations with the GAP Character Table Library 7

8.5 Degree 57572775 Permutation Characters of O+
8 (3) 250

8.6 The Action of O7(3).2 on the Cosets of 27.S7 . 251
8.7 The Action of O+

8 (3).21 on the Cosets of 27.A8 . 253
8.8 The Action of S4(4).4 on the Cosets of 52.[25] . 256
8.9 The Action of Co1 on the Cosets of Involution Centralizers 256
8.10 The Multiplicity Free Permutation Characters of G2(3) 259
8.11 Degree 11200 Permutation Characters of O+

8 (2) . 260
8.12 A Proof of Nonexistence of a Certain Subgroup . 261
8.13 A Permutation Character of the Lyons group . 263
8.14 Identifying two subgroups of Aut(U3(5)) (October 2001) 265
8.15 A Permutation Character of Aut(O+

8 (2)) (October 2001) 267
8.16 Four Primitive Permutation Characters of the Monster Group 268

8.16.1 The Subgroup 22.211.222.(S3×M24) (June 2009) 269
8.16.2 The Subgroup 23.26.212.218.(L3(2)×3.S6) (September 2009) 272
8.16.3 The Subgroup 25.210.220.(S3×L5(2)) (October 2009) 276
8.16.4 The Subgroup 210+16.O+

10(2) (November 2009) 281
8.17 A permutation character of the Baby Monster (June 2012) 287
8.18 A permutation character of 2.B (October 2017) . 289
8.19 Generation of sporadic simple groups by π- and π ′-subgroups (December 2021) . . . 292

9 Ambiguous Class Fusions in the GAP Character Table Library 302
9.1 Some GAP Utilities . 302
9.2 Fusions Determined by Factorization through Intermediate Subgroups 303

9.2.1 Co3N5→Co3 (September 2002) . 303
9.2.2 31 : 15→ B (March 2003) . 304
9.2.3 SuzN3→ Suz (September 2002) . 305
9.2.4 F3+N5→ F3+ (March 2002) . 306

9.3 Fusions Determined Using Commutative Diagrams Involving Smaller Subgroups . . 307
9.3.1 BN7→ B (March 2002) . 307
9.3.2 (A4×O+

8 (2).3).2→ Fi′24 (November 2002) 308
9.3.3 A6×L2(8).3→ Fi′24 (November 2002) . 309
9.3.4 (32 : D8×U4(3).22).2→ B (June 2007) . 310
9.3.5 71+4 : (3×2.S7)→M (May 2009) . 312
9.3.6 37.O7(3) : 2→ Fi24 (November 2010) . 313
9.3.7 2E6(2)N3C→ 2E6(2) (January 2019) . 315

9.4 Fusions Determined Using Commutative Diagrams Involving Factor Groups 318
9.4.1 3.A7→ 3.Suz (December 2010) . 318
9.4.2 S6→U4(2) (September 2011) . 319

9.5 Fusions Determined Using Commutative Diagrams Involving Automorphic Extensions 320
9.5.1 U3(8).31→ 2E6(2) (December 2010) . 320
9.5.2 L3(4).21→U6(2) (December 2010) . 322

9.6 Conditions Imposed by Brauer Tables . 324
9.6.1 L2(16).4→ J3.2 (January 2004) . 324
9.6.2 L2(17)→ S8(2) (July 2004) . 325
9.6.3 L2(19)→ J3 (April 2003) . 326

9.7 Fusions Determined by Information about the Groups 328
9.7.1 U3(3).2→ Fi′24 (November 2002) . 329

Computations with the GAP Character Table Library 8

9.7.2 L2(13).2→ Fi′24 (September 2002) . 330
9.7.3 M11→ B (April 2009) . 332
9.7.4 L2(11) : 2→ B (April 2009) . 333
9.7.5 L3(3)→ B (April 2009) . 334
9.7.6 L2(17).2→ B (March 2004) . 334
9.7.7 L2(49).23→ B (June 2006) . 335
9.7.8 23.L3(2)→ G2(5) (January 2004) . 337
9.7.9 51+4.21+4.A5.4→ B (April 2009) . 338
9.7.10 The fusion from the character table of 72 : 2L2(7).2 into the table of marks

(January 2004) . 339
9.7.11 3×U4(2)→ 31.U4(3) (March 2010) . 342
9.7.12 2.34.23.S4→ 2.A12 (September 2011) . 344
9.7.13 127 : 7→ L7(2) (January 2012) . 346
9.7.14 L2(59)→M (May 2009) . 347
9.7.15 L2(71)→M (May 2009) . 348
9.7.16 L2(41)→M (April 2012) . 349

10 GAP computations needed in the proof of [DNT13, Theorem 6.1 (ii)] 351
10.1 G/N ∼= Sz(8) and |N|= 212 . 351
10.2 G/N ∼= M22 and |N|= 210 . 353
10.3 G/N ∼= J2 and |N|= 212 . 356
10.4 G/N ∼= J2 and |N|= 514 . 357
10.5 G/N ∼= J2 and |N|= 228 . 360
10.6 G/N ∼= 3D4(2) and |N|= 226 . 361
10.7 G/N ∼= 3D4(2) and |N|= 325 . 364

11 GAP Computations Concerning Probabilistic Generation of Finite Simple Groups 365
11.1 Overview . 365
11.2 Prerequisites . 369

11.2.1 Theoretical Background . 369
11.2.2 Computational Criteria . 370

11.3 GAP Functions for the Computations . 371
11.3.1 General Utilities . 371
11.3.2 Character-Theoretic Computations . 373
11.3.3 Computations with Groups . 378

11.4 Character-Theoretic Computations . 386
11.4.1 Sporadic Simple Groups . 386
11.4.2 Automorphism Groups of Sporadic Simple Groups 388
11.4.3 Other Simple Groups – Easy Cases . 395
11.4.4 Automorphism Groups of other Simple Groups – Easy Cases 399
11.4.5 O−8 (3) . 402
11.4.6 O+

10(2) . 402
11.4.7 O−10(2) . 403
11.4.8 O+

12(2) . 404
11.4.9 O−12(2) . 406
11.4.10 S6(4) . 407
11.4.11 ∗ S6(5) . 409

Computations with the GAP Character Table Library 9

11.4.12 S8(3) . 410
11.4.13 U4(4) . 411
11.4.14 U6(2) . 411

11.5 Computations using Groups . 413
11.5.1 A2m+1, 2≤ m≤ 11 . 413
11.5.2 A5 . 415
11.5.3 A6 . 416
11.5.4 A7 . 420
11.5.5 Ld(q) . 423
11.5.6 ∗ Ld(q) with prime d . 425
11.5.7 Automorphic Extensions of Ld(q) . 427
11.5.8 L3(2) . 434
11.5.9 M11 . 437
11.5.10 M12 . 439
11.5.11 O7(3) . 441
11.5.12 O+

8 (2) . 446
11.5.13 O+

8 (3) . 452
11.5.14 O+

8 (4) . 465
11.5.15 ∗ O9(3) . 468
11.5.16 O−10(3) . 470
11.5.17 O−14(2) . 472
11.5.18 O+

12(3) . 474
11.5.19 ∗ S4(8) . 476
11.5.20 S6(2) . 478
11.5.21 S8(2) . 481
11.5.22 ∗ S10(2) . 482
11.5.23 U4(2) . 483
11.5.24 U4(3) . 486
11.5.25 U6(3) . 489
11.5.26 U8(2) . 490

References 496

Index 497

Chapter 1

Maintenance Issues for the GAP
Character Table Library

This chapter collects examples of computations that arose in the context of maintaining the GAP
Character Table Library. The sections have been added when the issues in question arose; the dates of
the additions are shown in the section titles.

1.1 Disproving Possible Character Tables (November 2006)

I do not know a necessary and sufficient criterion for checking whether a given matrix together with
a list of power maps describes the character table of a finite group. Examples of pseudo character
tables (tables which satisfy certain necessary conditions but for which actually no group exists) have
been given in [Gag86]. Another such example is described in Section 2.4.17. The tables in the GAP
Character Table Library satisfy the usual tests. However, there are table candidates for which these
tests are not good enough. Another question would be whether a given character table belongs to the
group for which it is claimed to belong, see Section 1.1.4 for an example.

1.1.1 A Perfect Pseudo Character Table (November 2006)

(This example arose from a discussion with Jack Schmidt.)
Up to version 1.1.3 of the GAP Character Table Library, the table with identifier

"P41/G1/L1/V4/ext2" was not correct. The problem occurs already in the microfiches that are
attached to [HP89].

In the following, we show that this table is not the character table of a finite group, using the GAP
library of perfect groups. Currently we do not know how to prove this inconsistency alone from the
table.

We start with the construction of the inconsistent table; apart from a little editing, the following
input equals the data formerly stored in the file data/ctoholpl.tbl of the GAP Character Table
Library.

Example
gap> tbl:= rec(
> Identifier:= "P41/G1/L1/V4/ext2",
> InfoText:= Concatenation([
> "origin: Hanrath library,\n",
> "structure is 2^7.L2(8),\n",

10

Computations with the GAP Character Table Library 11

> "characters sorted with permutation (12,14,15,13)(19,20)"]),
> UnderlyingCharacteristic:= 0,
> SizesCentralizers:= [64512,1024,1024,64512,64,64,64,64,128,128,64,
> 64,128,128,18,18,14,14,14,14,14,14,18,18,18,18,18,18],
> ComputedPowerMaps:= [,[1,1,1,1,2,3,3,2,3,2,2,1,3,2,16,16,20,20,22,
> 22,18,18,26,26,27,27,23,23],[1,2,3,4,5,6,7,8,9,10,11,12,13,14,4,
> 1,21,22,17,18,19,20,16,15,15,16,16,15],,,,[1,2,3,4,5,6,7,8,9,10,
> 11,12,13,14,15,16,4,1,4,1,4,1,26,25,28,27,23,24]],
> Irr:= 0,
> AutomorphismsOfTable:= Group([(23,26,27)(24,25,28),(9,13)(10,14),
> (17,19,21)(18,20,22)]),
> ConstructionInfoCharacterTable:= ["ConstructClifford",[[[1,2,3,4,
> 5,6,7,8,9],[1,7,8,3,9,2],[1,4,5,6,2],[1,2,2,2,2,2,2,2]],
> [["L2(8)"],["Dihedral",18],["Dihedral",14],["2^3"]],[[[1,2,3,4],
> [1,1,1,1],["elab",4,25]],[[1,2,3,4,4,4,4,4,4,4],[2,6,5,2,3,4,5,
> 6,7,8],["elab",10,17]],[[1,2],[3,4],[[1,1],[-1,1]]],[[1,3],[4,
> 2],[[1,1],[-1,1]]],[[1,3],[5,3],[[1,1],[-1,1]]],[[1,3],[6,4],
> [[1,1],[-1,1]]],[[1,2],[7,2],[[1,1],[1,-1]]],[[1,2],[8,3],[[1,
> 1],[-1,1]]],[[1,2],[9,5],[[1,1],[1,-1]]]]]],
>);;
gap> ConstructClifford(tbl, tbl.ConstructionInfoCharacterTable[2]);
gap> ConvertToLibraryCharacterTableNC(tbl);;

Suppose that there is a group G, say, with this table. Then G is perfect since the table has only one
linear character.

Example
gap> Length(LinearCharacters(tbl));
1
gap> IsPerfectCharacterTable(tbl);
true

The table satisfies the orthogonality relations, the structure constants are nonnegative integers,
and symmetrizations of the irreducibles decompose into the irreducibles, with nonnegative integral
coefficients.

Example
gap> IsInternallyConsistent(tbl);
true
gap> irr:= Irr(tbl);;
gap> test:= Concatenation(List([2 .. 7],
> n -> Symmetrizations(tbl, irr, n)));;
gap> Append(test, Set(Tensored(irr, irr)));
gap> fail in Decomposition(irr, test, "nonnegative");
false
gap> if ForAny(Tuples([1 .. NrConjugacyClasses(tbl)], 3),
> t -> not ClassMultiplicationCoefficient(tbl, t[1], t[2], t[3])
> in NonnegativeIntegers) then
> Error("contradiction");
> fi;

The GAP Library of Perfect Groups contains representatives of the four isomorphism types of
perfect groups of order |G|= 64512.

Computations with the GAP Character Table Library 12

Example
gap> n:= Size(tbl);
64512
gap> NumberPerfectGroups(n);
4
gap> grps:= List([1 .. 4], i -> PerfectGroup(IsPermGroup, n, i));
[L2(8) 2^6 E 2^1, L2(8) N 2^6 E 2^1 I, L2(8) N 2^6 E 2^1 II,

L2(8) N 2^6 E 2^1 III]

If we believe that the classification of perfect groups of order |G| is correct then all we have to do
is to show that none of the character tables of these four groups is equivalent to the given table.

Example
gap> tbls:= List(grps, CharacterTable);;
gap> List(tbls,
> x -> TransformingPermutationsCharacterTables(x, tbl));
[fail, fail, fail, fail]

In fact, already the matrices of irreducible characters of the four groups do not fit to the given
table.

Example
gap> List(tbls,
> t -> TransformingPermutations(Irr(t), Irr(tbl)));
[fail, fail, fail, fail]

Let us look closer at the tables in question. Each character table of a perfect group of order 64512
has exactly one irreducible character of degree 63 that takes exactly the values −1, 0, 7, and 63;
moreover, the value 7 occurs in exactly two classes.

Example
gap> testchars:= List(tbls,
> t -> Filtered(Irr(t),
> x -> x[1] = 63 and Set(x) = [-1, 0, 7, 63]));;
gap> List(testchars, Length);
[1, 1, 1, 1]
gap> List(testchars, l -> Number(l[1], x -> x = 7));
[2, 2, 2, 2]

(Another way to state this is that in each of the four tables t in question, there are ten preimage
classes of the involution class in the simple factor group L2(8), there are eight preimage classes of this
class in the factor group 26.L2(8), and that the unique class in which an irreducible degree 63 character
of this factor group takes the value 7 splits in t.)

In the erroneous table, however, there is only one class with the value 7 in this character.
Example

gap> testchars:= List([tbl],
> t -> Filtered(Irr(t),
> x -> x[1] = 63 and Set(x) = [-1, 0, 7, 63]));;
gap> List(testchars, Length);
[1]
gap> List(testchars, l -> Number(l[1], x -> x = 7));
[1]

Computations with the GAP Character Table Library 13

This property can be checked easily for the displayed table stored in fiche 2, row 4, column 7
of [HP89], with the name 6L1<>Z^7<>L2(8); V4; MOD 2, and it turns out that this table is not
correct.

Note that these microfiches contain two tables of order 64512, and there were three tables of
groups of that order in the GAP Character Table Library that contain origin: Hanrath library
in their InfoText (Reference: InfoText) value. Besides the incorrect table, these library tables are
the character tables of the groups PerfectGroup(64512, 1) and PerfectGroup(64512, 3),
respectively. (The matrices of irreducible characters of these tables are equivalent.)

Example
gap> Filtered([1 .. 4], i ->
> TransformingPermutationsCharacterTables(tbls[i],
> CharacterTable("P41/G1/L1/V1/ext2")) <> fail);
[1]
gap> Filtered([1 .. 4], i ->
> TransformingPermutationsCharacterTables(tbls[i],
> CharacterTable("P41/G1/L1/V2/ext2")) <> fail);
[3]
gap> TransformingPermutations(Irr(tbls[1]), Irr(tbls[3])) <> fail;
true

Since version 1.2 of the GAP Character Table Library, the character table with the Identifier
(Reference: Identifier for tables of marks) value "P41/G1/L1/V4/ext2" corresponds to the group
PerfectGroup(64512, 4). The choice of this group was somewhat arbitrary since the vector
system V4 seems to be not defined in [HP89]; anyhow, this group and the remaining perfect group,
PerfectGroup(64512, 2), have equivalent matrices of irreducibles.

Example
gap> Filtered([1 .. 4], i ->
> TransformingPermutationsCharacterTables(tbls[i],
> CharacterTable("P41/G1/L1/V4/ext2")) <> fail);
[4]
gap> TransformingPermutations(Irr(tbls[2]), Irr(tbls[4])) <> fail;
true

1.1.2 An Error in the Character Table of E6(2) (March 2016)

In March 2016, Bill Unger computed the character table of the simple group E6(2) with Magma (see
[CP96]) and compared it with the table that was contained in the GAP Character Table Library since
2000. It turned out that the two tables did not coincide.

The differences concern irrational character values on classes of element order 91 and power map
values on these classes. (The character values and power maps fit to each other in both tables; thus it
may be that the assumption of a wrong power has implied the wrong character values, or vice versa.)
Specifically, the 11th power map in the GAP table fixed all elements of order 91. Using the smallest
matrix representation of E6(2) over the field with two elements, one can easily find an element g of
order 91, and show that the characteristic polynomials of g and g11 differ. Hence these two elements
cannot be conjugate in E6(2). In other words, the GAP table was wrong.

Example
gap> g:= AtlasGroup("E6(2)");;
gap> repeat x:= PseudoRandom(g); until Order(x) = 91;

Computations with the GAP Character Table Library 14

gap> CharacteristicPolynomial(x) = CharacteristicPolynomial(x^11);
false

The wrong GAP table has been corrected in version 1.3.0 of the GAP Character Table Library.
Example

gap> t:= CharacterTable("E6(2)");;
gap> ord91:= Positions(OrdersClassRepresentatives(t), 91);
[163, 164, 165, 166, 167, 168]
gap> PowerMap(t, 11){ ord91 };
[167, 168, 163, 164, 165, 166]

1.1.3 An Error in a Power Map of the Character Table of 2.F4(2).2 (November 2015)

As a part of the computations for [BMO17], the character table of the group 2.F4(2).2 was computed
automatically from a representation of the group, using Magma (see [CP96]). It turned out that the
2-nd power map that had been stored on the library character table of 2.F4(2).2 had been wrong.

In fact, this was the one and only case of a power map for an Atlas group which was not determined
by the character table, and the InfoText (Reference: InfoText) value of the character table had
mentioned the two alternatives.

Note that the ambiguity is not present in the table of the factor group F4(2).2, and only four faithful
irreducible characters of 2.F4(2).2 distinguish the four relevant conjugacy classes.

Example
gap> t:= CharacterTable("2.F4(2).2");;
gap> f:= CharacterTable("F4(2).2");;
gap> map:= PowerMap(t, 2);
[1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 11, 11, 3, 3, 3, 5, 5, 5, 3, 6, 6, 5,

5, 7, 7, 5, 8, 7, 29, 29, 9, 9, 9, 9, 11, 11, 9, 9, 9, 9, 11, 11,
43, 43, 20, 20, 20, 14, 14, 13, 13, 20, 21, 24, 28, 28, 57, 57, 29,
29, 29, 29, 33, 33, 35, 37, 37, 37, 37, 33, 33, 37, 37, 35, 41, 41,
42, 42, 79, 79, 43, 43, 83, 83, 45, 45, 47, 47, 53, 53, 91, 91, 57,
57, 61, 61, 61, 98, 98, 70, 70, 63, 63, 81, 81, 83, 83, 1, 6, 7,
11, 16, 17, 24, 24, 21, 27, 27, 25, 26, 29, 41, 53, 53, 53, 46, 56,
56, 56, 56, 62, 75, 75, 78, 78, 77, 77, 79, 79, 86, 86, 85, 85, 88,
88, 88, 88, 95, 95, 96, 96]

gap> PositionSublist(map, [86, 86, 85, 85]);
140
gap> OrdersClassRepresentatives(t){ [140 .. 143] };
[32, 32, 32, 32]
gap> SizesCentralizers(t){ [140 .. 143] };
[64, 64, 64, 64]
gap> GetFusionMap(t, f){ [140 ..143] };
[86, 86, 87, 87]
gap> PowerMap(f, 2){ [86, 87] };
[50, 50]
gap> pos:= PositionsProperty(Irr(t),
> x -> x[1] <> x[2] and Length(Set(x{ [140 .. 143] })) > 1);
[144, 145, 146, 147]
gap> List(pos, i -> Irr(t)[i]{ [140 .. 143] });
[[2*E(16)-2*E(16)^7, -2*E(16)+2*E(16)^7, 2*E(16)^3-2*E(16)^5,

-2*E(16)^3+2*E(16)^5],

Computations with the GAP Character Table Library 15

[-2*E(16)+2*E(16)^7, 2*E(16)-2*E(16)^7, -2*E(16)^3+2*E(16)^5,
2*E(16)^3-2*E(16)^5],

[-2*E(16)^3+2*E(16)^5, 2*E(16)^3-2*E(16)^5, 2*E(16)-2*E(16)^7,
-2*E(16)+2*E(16)^7],

[2*E(16)^3-2*E(16)^5, -2*E(16)^3+2*E(16)^5, -2*E(16)+2*E(16)^7,
2*E(16)-2*E(16)^7]]

I had not found a suitable subgroup of 2.F4(2).2 whose character table could be used to decide the
question which of the two alternatives is the correct one.

1.1.4 A Character Table with a Wrong Name (May 2017)

(This example is much older.)
The character table that is shown in [Ost86, p. 126 f.] is claimed to be the table of a Sylow 2

subgroup P of the sporadic simple Lyons group Ly. This table had been contained in the character
table library of the CAS system (see [NPP84]), which was one of the predecessors of GAP.

It is easy to see that no subgroup of Ly can have this character table. Namely, the group of that
table contains elements of order eight with centralizer order 26, and this does not occur in Ly.

Example
gap> tbl:= CharacterTable("Ly");;
gap> orders:= OrdersClassRepresentatives(tbl);;
gap> order8:= Filtered([1 .. Length(orders)], x -> orders[x] = 8);
[12, 13]
gap> SizesCentralizers(tbl){ order8 } / 2^6;
[15/2, 3/2]

The table of P has been computed in [Bre91] with character theoretic methods. Nowadays it would
be no problem to take a permutation representation of Ly, to compute its Sylow 2 subgroup, and use
this group to compute its character table. However, the task is even easier if we assume that Ly has a
subgroup of the structure 3.McL.2. This subgroup is of odd index, hence it contains a conjugate of P.
Clearly the Sylow 2 subgroups in the factor group McL.2 are isomorphic with P. Thus we can start
with a rather small permutation representation.

Example
gap> g:= AtlasGroup("McL.2");;
gap> NrMovedPoints(g);
275
gap> syl:= SylowSubgroup(g, 2);;
gap> pc:= Image(IsomorphismPcGroup(syl));;
gap> t:= CharacterTable(pc);;

The character table coincides with the one which is stored in the Character Table Library.
Example

gap> IsRecord(TransformingPermutationsCharacterTables(t,
> CharacterTable("LyN2")));
true

Computations with the GAP Character Table Library 16

1.2 Some finite factor groups of perfect space groups (February 2014)

If one wants to find a group to which a given character table from the GAP Character Table Library
belongs, one can try the function GroupInfoForCharacterTable (CTblLib: GroupInfoForChar-
acterTable). For a long time, this was not successful in the case of 16 character tables that had
been computed by W. Hanrath (see Section “Ordinary and Brauer Tables in the GAP Character Table
Library” in the CTblLib manual).

Using the information from [HP89], it is straightforward to construct such groups as
factor groups of infinite groups. Since version 1.3.0 of the CTblLib package, calling
GroupInfoForCharacterTable (CTblLib: GroupInfoForCharacterTable) for the 16 library ta-
bles in question yields nonempty lists and thus allows one to access the results of these constructions,
via the function CTblLib.FactorGroupOfPerfectSpaceGroup. This is an undocumented auxil-
iary function that becomes available automatically when GroupInfoForCharacterTable (CTblLib:
GroupInfoForCharacterTable) has been called for the first time.

Example
gap> GroupInfoForCharacterTable("A5");;
gap> IsBound(CTblLib.FactorGroupOfPerfectSpaceGroup);
true

Below we list the 16 group constructions. In each case, an epimorphism from the
space group in question is defined by mapping the generators returned by by the func-
tion generatorsOfPerfectSpaceGroup defined below to the generators stored in the at-
tribute GeneratorsOfGroup (Reference: GeneratorsOfGroup) of the group returned by
CTblLib.FactorGroupOfPerfectSpaceGroup.

1.2.1 Constructing the space groups in question

In [HP89], a space group S is described as a subgroup {M(g, t);g ∈ P, t ∈ T} of GL(d +1,Z), where

M(g, t) =
[

g 0
V (g)+ t 1

]
,

the point group P of S is a finite subgroup of GL(d,Z), the translation lattice T of S is a sublattice
of Zd , and the vector system V of S is a map from P to Zd . Note that V maps the identity matrix I ∈
GL(d,Z) to the zero vector, and M(T) := {M(I, t); t ∈ T} is a normal subgroup of S that is isomorphic
with T . More generally, M(nT) is a normal subgroup of S, for any positive integer n.

Specifically, P is given by generators g1,g2, . . . ,gk, T is given by a Z-basis B = {b1,b2, . . . ,bd} of
T , and V is given by the vectors V (g1),V (g2), . . . ,V (gk).

In the examples below, the matrix representation of P is irreducible, so we need just the following
k+1 elements to generate S:[

g1 0
V (g1) 1

]
,

[
g2 0

V (g2) 1

]
, . . . ,

[
gk 0

V (gk) 1

]
,

[
I 0

b1 1

]
.

These generators are returned by the function generatorsOfPerfectSpaceGroup, when the in-
puts are [g1,g2, . . . ,gk], [V (g1),V (g2), . . . ,V (gk)], and b1.

Computations with the GAP Character Table Library 17

Example
gap> generatorsOfPerfectSpaceGroup:= function(Pgens, V, t)
> local d, result, i, m;
> d:= Length(Pgens[1]);
> result:= [];
> for i in [1 .. Length(Pgens)] do
> m:= IdentityMat(d+1);
> m{ [1 .. d] }{ [1 .. d] }:= Pgens[i];
> m[d+1]{ [1 .. d] }:= V[i];
> result[i]:= m;
> od;
> m:= IdentityMat(d+1);
> m[d+1]{ [1 .. d] }:= t;
> Add(result, m);
> return result;
> end;;

1.2.2 Constructing the factor groups in question

The space group S acts on Zd , via v ·M(g, t) = vg+V (g)+t. A (not necessarily faithful) representation
of S/M(nT) can be obtained from the corresponding action of S on Zd/(nZd), that is, by reducing
the vectors modulo n. For the GAP computations, we work instead with vectors of length d + 1,
extending each vector in Zd by 1 in the last position, and acting on these vectors by right multiplicaton
with elements of S. Multiplication followed by reduction modulo n is implemented by the action
function returned by multiplicationModulo when this is called with argument n.

Example
gap> multiplicationModulo:= n -> function(v, g)
> return List(v * g, x -> x mod n); end;;

In some of the examples, the representation of P given in [HP89] is the action on the fac-
tor of a permutation module modulo its trivial submodule. For that, we provide the function
deletedPermutationMat, cf. [HP89, p. 269].

Example
gap> deletedPermutationMat:= function(pi, n)
> local mat, j, i;
> mat:= PermutationMat(pi, n);
> mat:= mat{ [1 .. n-1] }{ [1 .. n-1] };
> j:= n ^ pi;
> if j <> n then
> for i in [1 .. n-1] do
> mat[i][j]:= -1;
> od;
> fi;
> return mat;
> end;;

After constructing permutation generators for the example groups, we verify that the groups fit to
the character tables from the GAP Character Table Library and to the permutation generators stored
for the construction of the group via CTblLib.FactorGroupOfPerfectSpaceGroup.

Computations with the GAP Character Table Library 18

Example
gap> verifyFactorGroup:= function(gens, id)
> local sm, act, stored, hom;
> sm:= SmallerDegreePermutationRepresentation(Group(gens));
> gens:= List(gens, x -> x^sm);
> act:= Images(sm);
> if not IsRecord(TransformingPermutationsCharacterTables(
> CharacterTable(act),
> CharacterTable(id))) then
> return "wrong character table";
> fi;
> GroupInfoForCharacterTable(id);
> stored:= CTblLib.FactorGroupOfPerfectSpaceGroup(id);
> hom:= GroupHomomorphismByImages(stored, act,
> GeneratorsOfGroup(stored), gens);
> if hom = fail or not IsBijective(hom) then
> return "wrong group";
> fi;
> return true;
> end;;

1.2.3 Examples with point group A5

There are two examples with d = 5. The generators of the point group are as follows (see [HP89, p.
272]).

Example
gap> a:= deletedPermutationMat((1,3)(2,4), 6);;
gap> b:= deletedPermutationMat((1,2,3)(4,5,6), 6);;

In both cases, the vector system is V2.
Example

gap> v:= [[2, 2, 0, 0, 1], 0 * b[1]];;

In the first example, the translation lattice is the sublattice L = 2L1 of the full lattice L1 = Zd .
Example

gap> t:= [2, 0, 0, 0, 0];;

The library character table with identifier "P1/G2/L1/V2/ext4" belongs to the factor group of S
modulo the normal subgroup M(4L), so we compute the action on an orbit modulo 8.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(8);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P1/G2/L1/V2/ext4");
true

Computations with the GAP Character Table Library 19

In the second example, the translation lattice is the sublattice 2L2 of Zd where L2 has the following
basis.

Example
gap> bas:= [[-1,-1, 1, 1, 1],
> [-1, 1,-1, 1, 1],
> [1, 1, 1,-1,-1],
> [1, 1,-1,-1, 1],
> [-1, 1, 1,-1, 1]];;

For the sake of simplicity, we rewrite the action of the point group to one on L2, and we adjust also
the vector system.

Example
gap> B:= Basis(Rationals^Length(bas), bas);;
gap> abas:= List(bas, x -> Coefficients(B, x * a));;
gap> bbas:= List(bas, x -> Coefficients(B, x * b));;
gap> vbas:= List(v, x -> Coefficients(B, x));
[[3/2, 1, 2, 3/2, -1], [0, 0, 0, 0, 0]]

In order to work with integral matrices (which is necessary because multiplicationModulo uses
GAP’s mod operator), we double both the vector system and the translation lattice.

Example
gap> vbas:= vbas * 2;
[[3, 2, 4, 3, -2], [0, 0, 0, 0, 0]]
gap> t:= 2 * t;
[4, 0, 0, 0, 0]

The library character table with identifier "P1/G2/L2/V2/ext4" belongs to the factor group of S
modulo the normal subgroup M(8L2); since we have doubled the lattice, we compute the action on an
orbit modulo 16.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([abas, bbas], vbas, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(16);;
gap> orb:= Orbit(g, [0, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P1/G2/L2/V2/ext4");
true

1.2.4 Examples with point group L3(2)

There are three examples with d = 6 and one example with d = 8. The generators of the point group
for the first three examples are as follows (see [HP89, p. 290]).

Example
gap> a:= [[0, 1, 0, 1, 0, 0],
> [1, 0, 1, 1, 1, 1],
> [-1,-1,-1,-1, 0, 0],
> [0, 0,-1,-1,-1,-1],
> [1, 1, 1, 1, 0, 1],
> [0, 0, 1, 0, 1, 0]];;

Computations with the GAP Character Table Library 20

gap> b:= [[-1, 0, 0, 0, 0,-1],
> [0, 0,-1, 0,-1, 0],
> [1, 1, 1, 1, 1, 1],
> [0, 0, 1, 0, 0, 0],
> [-1,-1,-1, 0, 0, 0],
> [1, 0, 0, 0, 0, 0]];;

The first vector system is the trivial vector system V1 (that is, the space group S is a split extension
of the point group and the translation lattice), and the translation lattice is the full lattice L1 = Zd .

The library character table with identifier "P11/G1/L1/V1/ext4" belongs to the factor group of
S modulo the normal subgroup M(4L1), so we compute the action on an orbit modulo 4.

Example
gap> v:= List([1, 2], i -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(4);;
gap> seed:= [1, 0, 0, 0, 0, 0, 1];;
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G1/L1/V1/ext4");
true

The second vector system is V2, and the translation lattice is 2L1.
The library character table with identifier "P11/G1/L1/V2/ext4" belongs to the factor group of

S modulo the normal subgroup M(8L1), so we compute the action on an orbit modulo 8.
Example

gap> v:= [[1, 0, 1, 0, 0, 0], 0 * a[1]];;
gap> t:= [2, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(8);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G1/L1/V2/ext4");
true

The third vector system is V3, and the translation lattice is 2L1.
The library character table with identifier "P11/G1/L1/V3/ext4" belongs to the factor group of

S modulo the normal subgroup M(8L1), so we compute the action on an orbit modulo 8.
Example

gap> v:= [[0, 1, 0, 0, 1, 0], 0 * a[1]];;
gap> t:= [2, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(8);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G1/L1/V3/ext4");
true

Computations with the GAP Character Table Library 21

The generators of the point group for the fourth example are as follows (see [HP89, p. 293]).
Example

gap> a:= [[1, 0, 0, 1, 0,-1, 0, 1],
> [0,-1, 1, 0,-1, 0, 0, 0],
> [1, 0, 0, 1, 0,-1, 0, 0],
> [0,-1, 0,-1, 0, 1, 1,-1],
> [1, 0,-1, 1, 1,-1, 0, 0],
> [1,-1,-1, 0, 0, 0, 1, 0],
> [0,-1, 1, 0,-1, 1, 0,-1],
> [1, 0,-1, 0, 0, 0, 0, 0]];;
gap> b:= [[1, 0,-2, 0, 1,-1, 1, 0],
> [0,-1, 0, 0, 0, 0, 1,-1],
> [1, 0,-1, 0, 1,-1, 0, 0],
> [-1,-1, 1,-1,-1, 2, 0,-1],
> [0, 0, 0,-1, 0, 0, 0, 0],
> [0,-1, 0,-1,-1, 1, 1,-1],
> [1,-1, 0, 0, 0, 0, 0, 0],
> [1, 0, 0, 0, 0, 0, 0, 0]];;

The vector system is the trivial vector system V1, and the translation lattice is the full lattice
L1 = Zd .

The library character table with identifier "P11/G4/L1/V1/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L1), so we compute the action on an orbit modulo 3.

Example
gap> v:= List([1, 2], i -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(3);;
gap> seed:= [1, 0, 0, 0, 0, 0, 0, 0, 1];;
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P11/G4/L1/V1/ext3");
true

1.2.5 Example with point group SL2(7)

There is one example with d = 8. The generators of the point group are as follows (see [HP89, p.
295]).

Example
gap> a:= KroneckerProduct(IdentityMat(4), [[0, 1], [-1, 0]]);;
gap> b:= [[0,-1, 0, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0, 0],
> [-1, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0,-1, 0],
> [0, 0, 0,-1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0, 0],
> [0, 0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 1]];;

Computations with the GAP Character Table Library 22

The vector system is the trivial vector system V1, and the translation lattice is the sublattice L2 of
Zd that has the following basis, which is called B(2,8) in [HP89, p. 269].

Example
gap> bas:= [[1, 1, 0, 0, 0, 0, 0, 0],
> [0, 1, 1, 0, 0, 0, 0, 0],
> [0, 0, 1, 1, 0, 0, 0, 0],
> [0, 0, 0, 1, 1, 0, 0, 0],
> [0, 0, 0, 0, 1, 1, 0, 0],
> [0, 0, 0, 0, 0, 1, 1, 0],
> [0, 0, 0, 0, 0, 0, 1, 1],
> [0, 0, 0, 0, 0, 0,-1, 1]];;

For the sake of simplicity, we rewrite the action to one on L2.
Example

gap> B:= Basis(Rationals^Length(bas), bas);;
gap> abas:= List(bas, x -> Coefficients(B, x * a));;
gap> bbas:= List(bas, x -> Coefficients(B, x * b));;

The library character table with identifier "P12/G1/L2/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L2). The action on an orbit modulo 2 is not faithful, its kernel
contains the centre of SL(2,7). We can compute a faithful representation by acting on pairs: One
entry is the usual vector and the other entry carries the action of the point group.

Example
gap> v:= List([1, 2], i -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([abas, bbas], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(2);;
gap> funpairs:= function(pair, g)
> return [fun(pair[1], g), pair[2] * g];
> end;;
gap> seed:= [[1, 0, 0, 0, 0, 0, 0, 0, 1],
> [1, 0, 0, 0, 0, 0, 0, 0, 0]];;
gap> orb:= Orbit(g, seed, funpairs);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, funpairs));;
gap> verifyFactorGroup(permgens, "P12/G1/L2/V1/ext2");
true

1.2.6 Example with point group 23.L3(2)

There is one example with d = 7. The generators of the point group are as follows (see [HP89, p.
297]).

Example
gap> a:= PermutationMat((2,4)(5,7), 7);;
gap> b:= PermutationMat((1,3,2)(4,6,5), 7);;
gap> c:= DiagonalMat([-1, -1, 1, 1, -1, -1, 1]);;

The vector system is the trivial vector system V1, and the translation lattice is the sublattice L2 of
Zd that has the following basis, which is called B(2,7) in [HP89, p. 269].

Computations with the GAP Character Table Library 23

Example
gap> bas:= [[1, 1, 0, 0, 0, 0, 0],
> [0, 1, 1, 0, 0, 0, 0],
> [0, 0, 1, 1, 0, 0, 0],
> [0, 0, 0, 1, 1, 0, 0],
> [0, 0, 0, 0, 1, 1, 0],
> [0, 0, 0, 0, 0, 1, 1],
> [0, 0, 0, 0, 0,-1, 1]];;

For the sake of simplicity, we rewrite the action to one on L2.
Example

gap> B:= Basis(Rationals^Length(bas), bas);;
gap> abas:= List(bas, x -> Coefficients(B, x * a));;
gap> bbas:= List(bas, x -> Coefficients(B, x * b));;
gap> cbas:= List(bas, x -> Coefficients(B, x * c));;

The library character table with identifier "P13/G1/L2/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L2), so we compute the action on an orbit modulo 2.

Example
gap> v:= List([1 .. 3], i -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([abas,bbas,cbas], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(2);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 0, 0, 1], fun);;
gap> act:= Action(g, orb, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P13/G1/L2/V1/ext2");
true

1.2.7 Examples with point group A6

There are two examples with d = 10. In both cases, the generators of the point group are as follows
(see [HP89, p. 307]).

Example
gap> b:= [[0,-1, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0,-1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
> [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]];;
gap> c:= [[0, 0, 0, 0, 0, 0, 0,-1, 0, 0],
> [0, 0, 0, 0, 0, 0, 0,-1, 1,-1],
> [0, 0, 0, 0,-1, 1, 0,-1, 0, 0],
> [0,-1, 1, 0, 0, 0, 0,-1, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0,-1],

Computations with the GAP Character Table Library 24

> [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1,-1, 0, 0, 1],
> [0, 0, 1,-1, 0, 0, 0, 0, 0, 1],
> [-1, 0, 1, 0, 0,-1, 0, 0, 0, 0]];;

In both examples, the vector system is the trivial vector system V1, and the translation lattices are
the lattices L2 and L5, respectively, which have the following bases.

Example
gap> bas2:= [[0, 1,-1, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 1,-1, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 1,-1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 1,-1, 0, 0, 0],
> [0, 0, 0, 0, 0, 1, 0,-1, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 1,-1, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 1,-1],
> [0, 0, 0, 1, 0, 0, 0, 0, 0,-1],
> [0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
> [1, 0, 0, 0, 1, 0, 0, 0, 0, 0]];;
gap> bas5:= [[0,-1, 1, 1,-1, 1, 1,-1,-1, 0],
> [1, 0,-1,-1,-1, 1, 1,-1,-1, 0],
> [0, 1, 1,-1, 1, 1,-1, 0, 1, 1],
> [1, 1, 0,-1, 0,-1, 1,-1, 1,-1],
> [-1, 0,-1, 1, 1, 0,-1,-1, 1,-1],
> [0, 1,-1, 1, 1,-1, 1, 1, 0,-1],
> [-1,-1, 1, 1, 0,-1,-1,-1,-1, 0],
> [1,-1, 0,-1, 1,-1, 1, 1, 0,-1],
> [-1, 1,-1, 1,-1, 0,-1, 1, 0,-1],
> [1,-1,-1, 1, 1, 1, 0, 0,-1,-1]];;

For the sake of simplicity, we rewrite the action to actions on L2 and L5, respectively.
Example

gap> B2:= Basis(Rationals^Length(bas2), bas2);;
gap> bbas2:= List(bas2, x -> Coefficients(B2, x * b));;
gap> cbas2:= List(bas2, x -> Coefficients(B2, x * c));;
gap> B5:= Basis(Rationals^Length(bas5), bas5);;
gap> bbas5:= List(bas5, x -> Coefficients(B5, x * b));;
gap> cbas5:= List(bas5, x -> Coefficients(B5, x * c));;

The library character table with identifier "P21/G3/L2/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L2), so we compute the action on an orbit modulo 2.

Example
gap> v:= List([1, 2], i -> 0 * bbas2[1]);;
gap> t:= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0];;
gap> sgens:= generatorsOfPerfectSpaceGroup([bbas2, cbas2], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(2);;
gap> seed:= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];;
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;

Computations with the GAP Character Table Library 25

gap> verifyFactorGroup(permgens, "P21/G3/L2/V1/ext2");
true

The library character table with identifier "P21/G3/L5/V1/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L5), so we compute the action on an orbit modulo 2.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([bbas5, cbas5], v, t);;
gap> g:= Group(sgens);;
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P21/G3/L5/V1/ext2");
true

1.2.8 Examples with point group L2(8)

There are two examples with d = 7. In both cases, the generators of the point group are as follows
(see [HP89, p. 327]).

Example
gap> a:= [[0,-1, 0, 1, 0,-1, 1],
> [0, 0,-1, 0, 1,-1, 0],
> [0, 0, 0,-1, 1, 0, 0],
> [0, 0, 0,-1, 0, 0, 0],
> [0, 0, 1,-1, 0, 0, 0],
> [0,-1, 1, 0,-1, 0, 0],
> [1,-1, 0, 1, 0,-1, 0]];;
gap> b:= [[-1, 0, 1, 0,-1, 1, 0],
> [0,-1, 0, 1,-1, 0, 0],
> [0, 0,-1, 1, 0, 0, 0],
> [0, 0,-1, 0, 0, 0, 0],
> [0, 1,-1, 0, 0, 0, 0],
> [-1, 1, 0,-1, 0, 0, 0],
> [-1, 0, 1, 0,-1, 0, 1]];;

In both examples, the vector system is V2. The translation lattice in the first example is the lattice
L = 3Zd .

Example
gap> v:= [[2, 1, 0, 0, 0, 1, 4],
> [2, 0, 0, 0, 0, 0, 0]];;
gap> t:= [3, 0, 0, 0, 0, 0, 0];;

The library character table with identifier "P41/G1/L1/V3/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L), so we compute the action on an orbit modulo 9.

The orbits in this action are quite long. we choose a seed vector from the fixed space of an element
of order 7.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> aa:= sgens[1];;
gap> bb:= sgens[2];;

Computations with the GAP Character Table Library 26

gap> elm:= aa*bb;;
gap> Order(elm);
7
gap> fixed:= NullspaceMat(elm - aa^0);
[[1, 1, 1, 1, 1, 1, 1, 0], [-4, 1, 1, -5, -5, 2, 0, 1]]
gap> fun:= multiplicationModulo(9);;
gap> seed:= fun(fixed[2], aa^0);
[5, 1, 1, 4, 4, 2, 0, 1]
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P41/G1/L1/V3/ext3");
true

The translation lattice in the second example is the lattice L = 6Zd .
Example

gap> t:= [6, 0, 0, 0, 0, 0, 0];;

The library character table with identifier "P41/G1/L1/V4/ext3" belongs to the factor group of
S modulo the normal subgroup M(6L), so we compute the action on an orbit modulo 18.

Example
gap> fun:= multiplicationModulo(18);;
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> seed:= fun(fixed[2], aa^0);
[14, 1, 1, 13, 13, 2, 0, 1]
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P41/G1/L1/V4/ext3");
true

1.2.9 Example with point group M11

There is one example with d = 10. The generators of the point group are as follows (see [HP89, p.
334]).

Example
gap> a:= deletedPermutationMat((1,9)(3,5)(7,11)(8,10), 11);;
gap> b:= deletedPermutationMat((1,4,3,2)(5,8,7,6), 11);;

The vector system is V2, and the translation lattice is L = 2Zd .
Example

gap> v:= [0 * a[1],
> [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]];;
gap> t:= [2, 0, 0, 0, 0, 0, 0, 0, 0, 0];;

The library character table with identifier "P48/G1/L1/V2/ext2" belongs to the factor group of
S modulo the normal subgroup M(2L), so we compute the action on an orbit modulo 4.

Computations with the GAP Character Table Library 27

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(4);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P48/G1/L1/V2/ext2");
true

1.2.10 Example with point group U3(3)

There is one example with d = 7. The generators of the point group are as follows (see [HP89, p.
335]).

Example
gap> a:= [[0, 0,-1, 1, 0,-1, 1],
> [1, 0,-1, 1, 1,-1, 0],
> [0, 1,-1, 0, 1, 0,-1],
> [0, 1, 0,-1, 1, 0,-1],
> [-1, 1, 1,-1, 0, 1, 0],
> [-1, 0, 1,-1, 0, 0, 1],
> [0, 0, 0, 0, 0, 0, 1]];;
gap> b:= [[0, 0, 0, 0, 0, 0, 1],
> [0, 0,-1, 1, 0,-1, 1],
> [1, 0,-1, 1, 1,-1, 0],
> [0, 1,-1, 0, 1, 0,-1],
> [0, 1, 0,-1, 1, 0,-1],
> [-1, 1, 1,-1, 0, 1, 0],
> [-1, 0, 1,-1, 0, 0, 1]];;

The vector system is V2, and the translation lattice is L = 3Zd .
Example

gap> v:= [[2, 1, 0, 0, 2, 1, 0],
> 0 * b[1]];;
gap> t:= [3, 0, 0, 0, 0, 0, 0];;

The library character table with identifier "P49/G1/L1/V2/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L), so we compute the action on an orbit modulo 9.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(9);;

The orbits in this action are quite long. we choose a seed vector from the fixed space of an element
of order 12.

Example
gap> aa:= sgens[1];;
gap> bb:= sgens[2];;
gap> elm:= aa*bb^4;;
gap> Order(elm);

Computations with the GAP Character Table Library 28

12
gap> fixed:= NullspaceMat(elm - aa^0);
[[-1, -1, 1, 1, -1, -1, 1, 0], [0, -3, 1, 1, -1, -2, 0, 1]]
gap> seed:= fun(fixed[2], aa^0);
[0, 6, 1, 1, 8, 7, 0, 1]
gap> orb:= Orbit(g, seed, fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P49/G1/L1/V2/ext3");
true

1.2.11 Examples with point group U4(2)

There are two examples with d = 6. In both cases, the generators of the point group are as follows
(see [HP89, p. 336]).

Example
gap> a:= [[0, 1, 0,-1,-1, 1],
> [1, 0,-1, 0, 1, 0],
> [0, 0, 0,-1, 0, 1],
> [0, 0,-1, 0, 0, 1],
> [0, 0, 0, 0, 1, 0],
> [0, 0, 0, 0, 0, 1]];;
gap> b:= [[0,-1, 0, 1, 0,-1],
> [0, 1, 0,-1,-1, 0],
> [0, 0, 1, 1, 0,-1],
> [0, 0, 0, 0,-1, 0],
> [0, 1, 0, 0, 0, 0],
> [1, 0, 0, 0, 0, 0]];;

In both examples, the vector system is the trivial vector system V1, and the translation lattice is the
full lattice L1 = Zd .

Example
gap> v:= List([1, 2], i -> 0 * a[1]);;
gap> t:= [1, 0, 0, 0, 0, 0];;

The library character table with identifier "P50/G1/L1/V1/ext3" belongs to the factor group of
S modulo the normal subgroup M(3L1), so we compute the action on an orbit modulo 3.

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(3);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P50/G1/L1/V1/ext3");
true

The library character table with identifier "P50/G1/L1/V1/ext4" belongs to the factor group of
S modulo the normal subgroup M(4L1), so we compute the action on an orbit modulo 4.

Computations with the GAP Character Table Library 29

Example
gap> sgens:= generatorsOfPerfectSpaceGroup([a, b], v, t);;
gap> g:= Group(sgens);;
gap> fun:= multiplicationModulo(4);;
gap> orb:= Orbit(g, [1, 0, 0, 0, 0, 0, 1], fun);;
gap> permgens:= List(sgens, x -> Permutation(x, orb, fun));;
gap> verifyFactorGroup(permgens, "P50/G1/L1/V1/ext4");
true

1.2.12 A remark on one of the example groups

The (perfect) character table with identifier "P1/G2/L2/V2/ext4" has the property that its character
degrees are exactly the divisors of 60.

Example
gap> degrees:= CharacterDegrees(CharacterTable("P1/G2/L2/V2/ext4"));
[[1, 1], [2, 2], [3, 2], [4, 2], [5, 1], [6, 5],

[10, 4], [12, 4], [15, 20], [20, 2], [30, 29], [60, 8]]
gap> List(degrees, x -> x[1]) = DivisorsInt(60);
true

There are nilpotent groups with the same set of character degrees, for example the direct product
of four extraspecial groups of the orders 23, 23, 33, and 53, respectively. This phenomenon has been
described in [NR14].

1.3 Generality problems (December 2004/October 2015)

The term “generality problem” is used for problems concerning consistent choices of conjugacy
classes of Brauer tables for the same group, in different characteristics. The definition and some
examples are given in [JLPW95, p. x].

Section 1.3.1 shows how to detect generality problems and lists the known generality problems,
and Section 1.3.2 gives an example that actually arose.

1.3.1 Listing possible generality problems

We use the following idea for finding character tables which may involve generality problems. (The
functions shown in this section are based on GAP 3 code that was originally written by Jürgen Müller.)

If the p-modular Brauer table mtbl, say, of a group contributes to a generality problem then some
choice of conjugacy classes is necessary in order to write down this table, in the sense that some sym-
metry of the corresponding ordinary table tbl, say, is broken in mtbl. This situation can be detected as
follows. We assume that the class fusion from mtbl to tbl has been fixed. All possible class fusions are
obtained as the orbit of this class fusion under the actions of table automorphisms of tbl, via mapping
the images of the class fusion (with the function OnTuples (Reference: OnTuples)), and of the table
automorphisms of mtbl, via permuting the preimages. The case of broken symmetries occurs if and
only if this orbit splits into several orbits when only the action of the table automorphisms of mtbl is
considered. Equivalently, symmetries are broken if and only if the orbit under table automorphisms of
mtbl is not closed under the action of table automorphisms of tbl.

Computations with the GAP Character Table Library 30

Example
gap> BrokenSymmetries:= function(ordtbl, modtbl)
> local taut, maut, triv, fus, orb;
> taut:= AutomorphismsOfTable(ordtbl);
> maut:= AutomorphismsOfTable(modtbl);
> triv:= TrivialSubgroup(taut);
> fus:= GetFusionMap(modtbl, ordtbl);
> orb:= MakeImmutable(Set(OrbitFusions(maut, fus, triv)));
> return ForAny(GeneratorsOfGroup(taut),
> x -> ForAny(orb,
> fus -> not OnTuples(fus, x) in orb));
> end;;

Remark: (Thanks to Klaus Lux for discussions on this topic.)

• It may happen that some symmetry σm of a Brauer table does not belong to a symmetry σo of
the corresponding ordinary table, in the sense that permuting the preimage classes of a fusion f
between the two tables with σm and permuting the image classes with σo yields f .

For example, consider the group G = 2.A6.21, the double cover of the symmetric group S6 on
six points. The 2-modular Brauer table of G, which is essentially equal to that of S6, has a
table automorphism group order two, and the nonidentity element in it swaps the two classes
of element order three. The automorphism group of the ordinary character table of G, however,
fixes the two classes of element order three; note that exactly one of these classes possesses
square roots in the “outer half” G\G′.

Thus it is not sufficient to compare the orbit of the fixed class fusion under the automorphisms
of the ordinary table with the orbit of the same fusion under the automorphisms of the Brauer
table.

Example
gap> t:= CharacterTable("2.A6.2_1");;
gap> m:= t mod 2;;
gap> GetFusionMap(m, t);
[1, 4, 6, 9]
gap> AutomorphismsOfTable(t);
Group([(16,17), (14,15), (14,15)(16,17)])
gap> AutomorphismsOfTable(m);
Group([(2,3)])
gap> Display(m);
2.A6.2_1mod2

2 5 2 2 1
3 2 2 2 .
5 1 . . 1

1a 3a 3b 5a
2P 1a 3a 3b 5a
3P 1a 1a 1a 5a
5P 1a 3a 3b 1a

X.1 1 1 1 1
X.2 4 1 -2 -1

Computations with the GAP Character Table Library 31

X.3 4 -2 1 -1
X.4 16 -2 -2 1
gap> Display(t);
2.A6.2_1

2 5 5 4 2 2 2 2 3 1 1 4 4 3 2 2 2 2
3 2 2 . 2 2 2 2 . . . 1 1 . 1 1 1 1
5 1 1 1 1

1a 2a 4a 3a 6a 3b 6b 8a 5a 10a 2b 4b 8b 6c 6d 12a 12b
2P 1a 1a 2a 3a 3a 3b 3b 4a 5a 5a 1a 2a 4a 3a 3a 6b 6b
3P 1a 2a 4a 1a 2a 1a 2a 8a 5a 10a 2b 4b 8b 2b 2b 4b 4b
5P 1a 2a 4a 3a 6a 3b 6b 8a 1a 2a 2b 4b 8b 6d 6c 12b 12a

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
X.3 5 5 1 2 2 -1 -1 -1 . . 3 -1 1 . . -1 -1
X.4 5 5 1 2 2 -1 -1 -1 . . -3 1 -1 . . 1 1
X.5 5 5 1 -1 -1 2 2 -1 . . -1 3 1 -1 -1 . .
X.6 5 5 1 -1 -1 2 2 -1 . . 1 -3 -1 1 1 . .
X.7 16 16 . -2 -2 -2 -2 . 1 1
X.8 9 9 1 1 -1 -1 3 3 -1
X.9 9 9 1 1 -1 -1 -3 -3 1
X.10 10 10 -2 1 1 1 1 . . . 2 -2 . -1 -1 1 1
X.11 10 10 -2 1 1 1 1 . . . -2 2 . 1 1 -1 -1
X.12 4 -4 . -2 2 1 -1 . -1 1 B -B
X.13 4 -4 . -2 2 1 -1 . -1 1 -B B
X.14 4 -4 . 1 -1 -2 2 . -1 1 . . . A -A . .
X.15 4 -4 . 1 -1 -2 2 . -1 1 . . . -A A . .
X.16 16 -16 . -2 2 -2 2 . 1 -1
X.17 20 -20 . 2 -2 2 -2

A = E(3)-E(3)^2
= Sqrt(-3) = i3

B = -E(12)^7+E(12)^11
= Sqrt(3) = r3

When considering several characteristics in parallel, one argues as follows. The possible class
fusions from a Brauer table mtbl to its ordinary table tbl are given by the orbit of a fixed class fusion
under the action of the table automorphisms of tbl. If there are several orbits under the action of the
automorphisms of mtbl then we choose one orbit. Due to this choice, only those table automorphisms
of tbl are admissible for other characteristics that stabilize the chosen orbit. For the second charac-
teristic, we take again the set of all class fusions from the Brauer table to tbl, and split it into orbits
under the table automorphisms of the Brauer table. Now there are two possibilities. Either the action
of the admissible subgroup of automorphisms of tbl joins these orbits into one orbit or not. In the
former case, we choose again one of the orbits, replace the group of admissible automorphisms of
tbl by the stabilizer of this orbit, and proceed with the next characteristic. In the latter case, we have
found a generality problem, since we are not free to choose an arbitrary class fusion from the set of
possibilities.

The following function returns the set of primes which may be involved in generality problems
for the given ordinary character table. Note that the procedure sketched above does not tell which

Computations with the GAP Character Table Library 32

characteristics are actually involved or which classes are affected by the choices; for example, we
could argue that one is always free to choose a fusion for the first characteristics, and that only the
other ones cause problems. We return all those primes p for which broken symmetries between the
p-modular table and the ordinary table have been detected.

Example
gap> PrimesOfGeneralityProblems:= function(ordtbl)
> local consider, p, modtbl, taut, triv, admiss, fusion, maut,
> allfusions, orbits, orbit, reps;
> # Find the primes for which symmetries are broken.
> consider:= [];
> for p in Filtered(PrimeDivisors(Size(ordtbl)), IsPrimeInt) do
> modtbl:= ordtbl mod p;
> if modtbl <> fail and BrokenSymmetries(ordtbl, modtbl) then
> Add(consider, p);
> fi;
> od;
> # Compute the choices and detect generality problems.
> taut:= AutomorphismsOfTable(ordtbl);
> triv:= TrivialSubgroup(taut);
> admiss:= taut;
> for p in consider do
> modtbl:= ordtbl mod p;
> fusion:= GetFusionMap(modtbl, ordtbl);
> maut:= AutomorphismsOfTable(modtbl);
> # - We need not apply the action of ’maut’ here,
> # since ’maut’ will later be used to get representatives.
> # - We need not apply all elements in ’taut’ but only
> # representatives of left cosets of ’admiss’ in ’taut’,
> # since ’admiss’ will later be used to get representatives.
> # allfusions:= OrbitFusions(maut, fusion, taut);
> allfusions:= Set(RightTransversal(taut, admiss),
> x -> OnTuples(fusion, x^-1));
> # For computing representatives, ’RepresentativesFusions’ is not
> # suitable because ’allfusions’ is in generally not closed
> # under the actions.
> # reps:= RepresentativesFusions(maut, allfusions, admiss);
> orbits:= [];
> while not IsEmpty(allfusions) do
> orbit:= OrbitFusions(maut, allfusions[1], admiss);
> Add(orbits, orbit);
> SubtractSet(allfusions, orbit);
> od;
> reps:= List(orbits, x -> x[1]);
> if Length(reps) = 1 then
> # Reduce the symmetries that are still available.
> admiss:= Stabilizer(admiss,
> Set(OrbitFusions(maut, fusion, triv)),
> OnSetsTuples);
> else
> # We have found a generality problem.
> return consider;
> fi;

Computations with the GAP Character Table Library 33

> od;
> # There is no generality problem for this table.
> return [];
> end;;

Let us look at a small example, the 5-modular character table of the group 2.A5.2. The irreducible
characters of degree 2 have the values ±

√
−2 on the classes 8a and 8b, and the values ±

√
−3 on

the classes 6b and 6c. When we define which of the two classes of element order 8 is called 8a, this
will also define which class is called 6b. The ordinary character table does not relate the two pairs of
classes, there are table automorphisms which interchange each pair independently. This symmetry is
thus broken in the 5-modular character table.

Example
gap> t:= CharacterTable("2.A5.2");;
gap> m:= t mod 5;;
gap> Display(m);
2.A5.2mod5

2 4 4 3 2 2 2 3 3 2 2
3 1 1 . 1 1 1 . . 1 1
5 1 1

1a 2a 4a 3a 6a 2b 8a 8b 6b 6c
2P 1a 1a 2a 3a 3a 1a 4a 4a 3a 3a
3P 1a 2a 4a 1a 2a 2b 8a 8b 2b 2b
5P 1a 2a 4a 3a 6a 2b 8b 8a 6c 6b

X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 3 3 -1 . . 1 -1 -1 -2 -2
X.4 3 3 -1 . . -1 1 1 2 2
X.5 5 5 1 -1 -1 1 -1 -1 1 1
X.6 5 5 1 -1 -1 -1 1 1 -1 -1
X.7 2 -2 . -1 1 . A -A B -B
X.8 2 -2 . -1 1 . -A A -B B
X.9 4 -4 . 1 -1 . . . B -B
X.10 4 -4 . 1 -1 . . . -B B

A = E(8)+E(8)^3
= Sqrt(-2) = i2

B = E(3)-E(3)^2
= Sqrt(-3) = i3

gap> AutomorphismsOfTable(t);
Group([(11,12), (9,10)])
gap> AutomorphismsOfTable(m);
Group([(7,8)(9,10)])
gap> GetFusionMap(m, t);
[1, 2, 3, 4, 5, 8, 9, 10, 11, 12]
gap> BrokenSymmetries(t, m);
true
gap> BrokenSymmetries(t, t mod 2);
false
gap> BrokenSymmetries(t, t mod 3);

Computations with the GAP Character Table Library 34

false
gap> PrimesOfGeneralityProblems(t);
[]

Since no symmetry is broken in the 2- and 3-modular character tables of G, there is no generality
problem in this case.

For an example of a generality problem, we look at the smallest Janko group J1. As is mentioned
in [JLPW95, p. x], the unique irreducible 11-modular Brauer character of degree 7 distinguishes the
two (algebraically conjugate) classes of element order 5. Since also the unique irreducible 19-modular
Brauer character of degree 22 distinguishes these classes, we have to choose these classes consistently.

Example
gap> t:= CharacterTable("J1");;
gap> m:= t mod 11;;
gap> Display(m, rec(chars:= Filtered(Irr(m), x -> x[1] = 7)));
J1mod11

2 3 3 1 1 1 1 . 1 1
3 1 1 1 1 1 1 . . . 1 1 . . .
5 1 1 1 1 1 . . 1 1 1 1 . . .
7 1 1

11 1
19 1 1 1 1

1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
2P 1a 1a 3a 5b 5a 3a 7a 5b 5a 15b 15a 19b 19c 19a
3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 5b 5a 19b 19c 19a
5P 1a 2a 3a 1a 1a 6a 7a 2a 2a 3a 3a 19b 19c 19a
7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 15b 15a 19a 19b 19c

11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 19a 19b 19c
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 15a 15b 1a 1a 1a

Y.1 7 -1 1 A *A -1 . B *B C *C D E F

A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5

B = -E(5)-2*E(5)^2-2*E(5)^3-E(5)^4
= (3+Sqrt(5))/2 = 2+b5

C = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5

D = -E(19)-E(19)^2-E(19)^3-E(19)^5-E(19)^7-E(19)^8-E(19)^11-E(19)^12-E\
(19)^14-E(19)^16-E(19)^17-E(19)^18
E = -E(19)^2-E(19)^3-E(19)^4-E(19)^5-E(19)^6-E(19)^9-E(19)^10-E(19)^13\
-E(19)^14-E(19)^15-E(19)^16-E(19)^17
F = -E(19)-E(19)^4-E(19)^6-E(19)^7-E(19)^8-E(19)^9-E(19)^10-E(19)^11-E\
(19)^12-E(19)^13-E(19)^15-E(19)^18
gap> m:= t mod 19;;
gap> Display(m, rec(chars:= Filtered(Irr(m), x -> x[1] = 22)));
J1mod19

2 3 3 1 1 1 1 . 1 1 . . .
3 1 1 1 1 1 1 1 1

Computations with the GAP Character Table Library 35

5 1 1 1 1 1 . . 1 1 . 1 1
7 1 1

11 1 1 . .
19 1

1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b
2P 1a 1a 3a 5b 5a 3a 7a 5b 5a 11a 15b 15a
3P 1a 2a 1a 5b 5a 2a 7a 10b 10a 11a 5b 5a
5P 1a 2a 3a 1a 1a 6a 7a 2a 2a 11a 3a 3a
7P 1a 2a 3a 5b 5a 6a 1a 10b 10a 11a 15b 15a

11P 1a 2a 3a 5a 5b 6a 7a 10a 10b 1a 15a 15b
19P 1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b

Y.1 22 -2 1 A *A 1 1 -A -*A . B *B

A = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5

B = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5

Note that the degree 7 character above also distinguishes the three classes of element order 19,
and the same holds for the unique irreducible degree 31 character from characteristic 7. Thus also the
prime 7 occurs in the list of candidates for generality problems.

Example
gap> PrimesOfGeneralityProblems(t);
[7, 11, 19]

Finally, we list the candidates for generality problems from GAP’s Character Table Library.
Example

gap> list:= [];;
gap> isGeneralityProblem:= function(ordtbl)
> local res;
> res:= PrimesOfGeneralityProblems(ordtbl);
> if res = [] then
> return false;
> fi;
> Add(list, [Identifier(ordtbl), res]);
> return true;
> end;;
gap> AllCharacterTableNames(IsDuplicateTable, false,
> isGeneralityProblem, true);;
gap> PrintArray(SortedList(list));
[[(2.A4x2.G2(4)).2, [2, 5, 7, 13]],

[(2^2x3).L3(4).2_1, [5, 7]],
[(2x12).L3(4), [2, 3, 7]],
[(4^2x3).L3(4), [2, 3, 7]],
[(7:3xHe):2, [5, 7, 17]],
[(A5xA12):2, [2, 3]],
[(D10xHN).2, [2, 3, 5, 7, 11, 19]],
[(S3x2.Fi22).2, [3, 11, 13]],
[12.M22, [2, 5, 7, 11]],

Computations with the GAP Character Table Library 36

[12.M22.2, [2, 5, 7, 11]],
[12_1.L3(4).2_1, [5, 7]],
[12_2.L3(4), [2, 3, 7]],
[12_2.L3(4).2_1, [3, 5, 7]],
[12_2.L3(4).2_2, [2, 3, 7]],
[12_2.L3(4).2_3, [2, 3, 7]],
[2.(A4xG2(4)).2, [2, 5, 7, 13]],
[2.2E6(2), [13, 19]],
[2.2E6(2).2, [13, 19]],
[2.A10, [5, 7]],
[2.A11, [3, 5, 7]],
[2.A11.2, [5, 7, 11]],
[2.A12, [2, 3, 5, 7]],
[2.A12.2, [5, 7, 11]],
[2.A13, [2, 3, 5, 7, 11]],
[2.A13.2, [5, 7, 13]],
[2.Alt(14), [2, 3, 5, 7]],
[2.Alt(15), [2, 5, 7]],
[2.Alt(16), [2, 3, 5, 7]],
[2.Alt(17), [2, 3, 5, 7]],
[2.Alt(18), [2, 3, 5, 7]],
[2.B, [17, 23]],
[2.F4(2), [2, 7, 13, 17]],
[2.Fi22.2, [11, 13]],
[2.G2(4), [2, 7]],
[2.G2(4).2, [5, 7, 13]],
[2.HS, [3, 5, 7, 11]],
[2.HS.2, [3, 11]],
[2.L3(4).2_1, [5, 7]],
[2.Ru, [5, 7, 13, 29]],
[2.Suz, [2, 5, 11]],
[2.Suz.2, [3, 7, 13]],
[2.Sym(15), [3, 5, 7]],
[2.Sym(16), [3, 5, 7]],
[2.Sym(17), [3, 5, 7]],
[2.Sym(18), [5, 7]],
[2.Sz(8), [2, 5, 13]],
[2^2.2E6(2), [13, 19]],
[2^2.2E6(2).2, [13, 19]],
[2^2.Fi22.2, [3, 11, 13]],
[2^2.L3(4).2^2, [5, 7]],
[2^2.L3(4).2_1, [5, 7]],
[2^2.Sz(8), [2, 5, 13]],
[2x2.F4(2), [2, 7, 13, 17]],
[2x3.Fi22, [2, 3, 5]],
[2x6.Fi22, [2, 3, 5]],
[2x6.M22, [2, 5, 11]],
[2xFi22.2, [11, 13]],
[2xFi23, [3, 17, 23]],
[3.Fi22, [2, 3, 5]],
[3.Fi22.2, [2, 5, 11, 13]],
[3.J3, [2, 17, 19]],

Computations with the GAP Character Table Library 37

[3.J3.2, [2, 5, 17, 19]],
[3.L3(4).2_3, [2, 3, 7]],
[3.L3(4).3.2_3, [2, 3, 7]],
[3.L3(7).2, [3, 7, 19]],
[3.L3(7).S3, [3, 7, 19]],
[3.McL, [2, 5, 11]],
[3.McL.2, [2, 3, 5, 11]],
[3.ON, [3, 7, 11, 19, 31]],
[3.ON.2, [3, 5, 7, 11, 19, 31]],
[3.Suz.2, [2, 3, 13]],
[3x2.F4(2), [2, 7, 13, 17]],
[3x2.Fi22.2, [11, 13]],
[3x2.G2(4), [2, 7]],
[3xFi23, [3, 17, 23]],
[3xJ1, [7, 11, 19]],
[3xL3(7).2, [3, 7, 19]],
[4.HS.2, [5, 7, 11]],
[4.M22, [5, 7]],
[4_1.L3(4).2_1, [5, 7]],
[4_2.L3(4).2_1, [3, 5, 7]],
[6.Fi22, [2, 3, 5]],
[6.Fi22.2, [2, 5, 11, 13]],
[6.L3(4).2_1, [5, 7]],
[6.M22, [2, 5, 11]],
[6.O7(3), [3, 5, 13]],
[6.O7(3).2, [3, 5, 13]],
[6.Suz, [2, 5, 11]],
[6.Suz.2, [2, 3, 5, 7, 13]],
[6x2.F4(2), [2, 7, 13, 17]],
[A12, [2, 3]],
[A14, [2, 5, 7]],
[A17, [2, 7]],
[A18, [2, 3, 5, 7]],
[B, [13, 17, 23, 31]],
[F3+, [17, 23, 29]],
[F3+.2, [17, 23, 29]],
[Fi22.2, [11, 13]],
[Fi23, [3, 17, 23]],
[HN, [2, 3, 11, 19]],
[HN.2, [5, 7, 11, 19]],
[He, [5, 17]],
[He.2, [5, 7, 17]],
[Isoclinic(12.M22.2), [2, 5, 7, 11]],
[Isoclinic(2.A11.2), [5, 7, 11]],
[Isoclinic(2.A12.2), [5, 7, 11]],
[Isoclinic(2.A13.2), [5, 7, 13]],
[Isoclinic(2.Fi22.2), [11, 13]],
[Isoclinic(2.G2(4).2), [5, 7, 13]],
[Isoclinic(2.HS.2), [3, 11]],
[Isoclinic(2.HSx2), [3, 5, 7, 11]],
[Isoclinic(2.L3(4).2_1), [5, 7]],
[Isoclinic(2.Suz.2), [3, 7, 13]],

Computations with the GAP Character Table Library 38

[Isoclinic(4_1.L3(4).2_1), [5, 7]],
[Isoclinic(4_2.L3(4).2_1), [3, 5, 7]],
[Isoclinic(6.Fi22.2), [2, 5, 11, 13]],
[Isoclinic(6.L3(4).2_1), [5, 7]],
[Isoclinic(6.Suz.2), [2, 3, 5, 7, 13]],
[J1, [7, 11, 19]],
[J1x2, [7, 11, 19]],
[J3, [2, 17, 19]],
[J3.2, [2, 5, 17, 19]],
[L3(4).2_3, [3, 7]],
[L3(4).3.2_3, [2, 3, 7]],
[L3(7).2, [3, 7, 19]],
[L3(7).S3, [3, 7, 19]],
[L3(9).2_1, [3, 7, 13]],
[L5(2).2, [2, 7, 31]],
[Ly, [7, 37, 67]],
[M23, [2, 3, 23]],
[ON, [3, 7, 11, 19, 31]],
[ON.2, [3, 5, 7, 11, 19, 31]],
[Ru, [5, 7, 13, 29]],
[S3xFi22.2, [11, 13]],
[Suz.2, [3, 13]]]

Note that this list may become longer as new Brauer tables become available. (For example, the
prime 2 was added to the entries for extensions of F4(2) when the 2-modular table of F4(2) became
available.)

1.3.2 A generality problem concerning the group J3 (April 2015)

In March 2015, Klaus Lux reported an inconsistency in the character data of GAP:
The sporadic simple Janko group J3 has a unique 19-modular irreducible Brauer character of

degree 110. In the character table that is printed in the Atlas of Brauer characters [JLPW95, p. 219],
the Brauer character value on the class 17A is b17. The Atlas of Group Representations [WWT+]
provides a straight line program for computing class representatives of J3. If we compute the Brauer
character value in question, we do not get b17 but its algebraic conjugate, −1−b17.

Example
gap> t:= CharacterTable("J3");;
gap> m:= t mod 19;;
gap> cand:= Filtered(Irr(m), x -> x[1] = 110);;
gap> Length(cand);
1
gap> slp:= AtlasProgram("J3", "classes");;
gap> 17a:= Position(slp.outputs, "17A");
18
gap> info:= OneAtlasGeneratingSetInfo("J3", Characteristic, 19,
> Dimension, 110);;
gap> gens:= AtlasGenerators(info);;
gap> reps:= ResultOfStraightLineProgram(slp.program,
> gens.generators);;
gap> Quadratic(BrauerCharacterValue(reps[17a]));

Computations with the GAP Character Table Library 39

rec(ATLAS := "-1-b17", a := -1, b := -1, d := 2,
display := "(-1-Sqrt(17))/2", root := 17)

How shall we resolve this inconsistency, by replacing the straight line program or by swapping the
classes 17A and 17B in the character table? Before we decide this, we look at related information.

Table 1.3.2 lists the p-modular irreducible characters of J3, according to [JLPW95], that can be
used to define which of the two classes of element order 17 shall be called 17A; a + sign in the last
column of the table indicates that the representation is available in the Atlas of Group Representations.

p ϕ(1) ϕ(17A) ϕ(17B) Atlas?
2 78 1−b17 2+b17 +
2 80 3−b17 4+b17 +
2 244 b17−2 −3−b17 +
2 966 r17−3 −3− r17 +

19 110 b17 −1−b17 +
19 214 1−b17 2+b17 +
19 706 −b17 1+b17 +
19 1214 −1+b17 −2−b17 −

Table: Representations of J3 that may define 17A

Note that the irreducible Brauer characters in characteristic 3 and 5 that distinguish the two classes
17A and 17B occur in pairs of Galois conjugate characters.

The following computations show that the given straight line program is compatible with the four
characters in characteristic 2 but is not compatible with the three available characters in characteristic
19.

Example
gap> table:= [];;
gap> for pair in [[2, [78, 80, 244, 966]],
> [19, [110, 214, 706]]] do
> p:= pair[1];
> for d in pair[2] do
> info:= OneAtlasGeneratingSetInfo("J3", Characteristic, p,
> Dimension, d);
> gens:= AtlasGenerators(info);
> reps:= ResultOfStraightLineProgram(slp.program,
> gens.generators);
> val:= BrauerCharacterValue(reps[17a]);
> Add(table, [p, d, Quadratic(val).ATLAS,
> Quadratic(StarCyc(val)).ATLAS]);
> od;
> od;
gap> PrintArray(table);
[[2, 78, 1-b17, 2+b17],

[2, 80, 3-b17, 4+b17],
[2, 244, -2+b17, -3-b17],
[2, 966, -3+r17, -3-r17],
[19, 110, -1-b17, b17],
[19, 214, 2+b17, 1-b17],
[19, 706, 1+b17, -b17]]

Computations with the GAP Character Table Library 40

We see that the problem is an inconsistency between the 2-modular and the 19-modular character
table of J3 in [JLPW95]. In particular, changing the straight line program would not help to resolve
the problem.

How shall we proceed in order to fix the problem? We can decide to keep the 19-modular table of
J3, and to swap the two classes of element order 17 in the 2-modular table; then also the straight line
program has to be changed, and the classes of element orders 17 and 51 in the 2-modular character
table of the triple cover 3.J3 of J3 have to be adjusted. Alternatively, we can keep the 2-modular table
of J3 and the straight line program, and adjust the conjugacy classes of element orders divisible by 17
in the 19-modular character tables of J3, 3.J3, J3.2, and 3.J3.2.

We decide to change the 19-modular character tables. Note that these character tables —or equiv-
alently, the corresponding Brauer trees— have been described in [HL89], where explicit choices are
mentioned that lead to the shown Brauer trees. Questions about the consistency with Brauer tables
in other characteristic had not been an issue in this book. (Only the consistency of the Brauer trees
among the 19-blocks of 3.J3 is mentioned.) In fact, the book mentions that the 19-modular Brauer
trees for J3 had been computed already by W. Feit. The inconsistency of Brauer character tables in
different characteristic has apparently been overlooked when the data for [JLPW95] have been put
together, and had not been detected until now.

Remarks:

• Such a change of a Brauer table can in general affect the class fusions from and to this table.
Note that Brauer tables may impose conditions on the choice of the fusion among possible
fusions that are equivalent w. r. t. the table automorphisms of the ordinary table. In this particular
case, in fact no class fusion had to be changed, see the sections 9.6.1 and Section 9.6.3.

• The change of the character tables affects the decomposition matrices. Thus the
PDF files containing the 19-modular decomposition matrices had to be updated, see
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html.

• Jürgen Müller has checked that the conjugacy classes of all Brauer tables of J3, 3.J3, J3.2, 3.J3.2
are consistent after the fix described above.

1.3.3 A generality problem concerning the group HN (August 2022)

The classes 20A, 20B of the Harada-Norton group HN in the 11- and 19-modular character tables are
determined by unique Brauer characters that have different values on these classes. Once we have
defined these classes in one characteristic, the two Brauer characters tell us how to choose them con-
sistently in the other characteristic. Thus the question is whether the two Brauer tables are consistent
w.r.t. this property or not.

(Note that this question can be answered independently of all other questions of this kind for HN,
because the permutation that swaps exactly the classes 20A and 20B is a table automorphism of the
ordinary character table of HN.)

We start with the ordinary character table of HN. There are exactly two ordinary irreducible
characters that take different values on the classes 20A, 20B, these are χ51 and χ52.

Example
gap> t:= CharacterTable("HN");;
gap> pos20:= Positions(OrdersClassRepresentatives(t), 20);
[39, 40, 41, 42, 43]
gap> diff:= Filtered(Irr(t), x -> x[39] <> x[40]);;

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/dec/tex/J3/index.html

Computations with the GAP Character Table Library 41

gap> List(diff, x -> Position(Irr(t), x));
[51, 52]

These values are irrational and lie in the field that is generated by the square root of 5.
Example

gap> List(diff, x -> List(x{ [1, 39, 40] },
> CTblLib.StringOfAtlasIrrationality));
[["5103000", "2r5+1", "-2r5+1"], ["5103000", "-2r5+1", "2r5+1"]]

In each of the characteristics p ∈ {11,19}, the p-modular reductions of χ51 and χ52 decompose
differently into irreducibles. Note that the Galois automorphism of the ordinary character table that
maps

√
5 to −

√
5 does not live in the 11- and 19-modular Brauer tables.

For p = 11, the reduction of χ51 is ϕ40+ϕ48, with ϕ40(1) = 1575176 and ϕ48(1) = 3527824, and
the reduction of χ52 is ϕ39 +ϕ49, with ϕ39(1) = 1361919 and ϕ49(1) = 3741081.

Example
gap> t11:= t mod 11;;
gap> rest11:= RestrictedClassFunctions(diff, t11);;
gap> dec11:= Decomposition(Irr(t11), rest11, "nonnegative");;
gap> List(dec11, Set);
[[0, 1], [0, 1]]
gap> List(dec11, x -> Positions(x, 1));
[[40, 48], [39, 49]]
gap> List(Irr(t11){ [40, 48] }, x -> x[1]);
[1575176, 3527824]
gap> List(Irr(t11){ [39, 49] }, x -> x[1]);
[1361919, 3741081]

For p = 19, the reduction of χ51 is ϕ42+ϕ45, with ϕ42(1) = 2125925 and ϕ45(1) = 2977075, and
the reduction of χ52 is ϕ33 +ϕ48, with ϕ33(1) = 1197330 and ϕ48(1) = 3905670.

Example
gap> t19:= t mod 19;;
gap> rest19:= RestrictedClassFunctions(diff, t19);;
gap> dec19:= Decomposition(Irr(t19), rest19, "nonnegative");;
gap> List(dec19, Set);
[[0, 1], [0, 1]]
gap> List(dec19, x -> Positions(x, 1));
[[42, 45], [33, 48]]
gap> List(Irr(t19){ [42, 45] }, x -> x[1]);
[2125925, 2977075]
gap> List(Irr(t19){ [33, 48] }, x -> x[1]);
[1197330, 3905670]

The Frobenius-Schur indicators of all involved p-modular constituents are +. This implies that χ51
reduces orthogonally stably modulo 11 but not orthogonally stably modulo 19, whereas χ52 reduces
orthogonally stably modulo 19 but not orthogonally stably modulo 11.

Example
gap> Indicator(t11, 2){ [39, 40, 48, 49] };
[1, 1, 1, 1]
gap> Indicator(t19, 2){ [33, 42, 45, 48] };
[1, 1, 1, 1]

Computations with the GAP Character Table Library 42

In version up to 1.3.4 of the character table library, this condition was not satisfied: The reduction
of χ51 modulo both 11 and 19 was orthogonally stable, and the reduction of χ52 modulo both 11 and 19
was not orthogonally stable. However, this cannot happen, due to theoretical results about orthogonal
discriminants of the involved characters. Thus we have found a way to decide the consistency of the
classes 20A and 20B in characteristics 11 and 19: Either the 11-modular character table or the 19-
modular character table of HN had to be changed for version 1.3.5, by swapping the classes 20A and
20B.

We decided to change the 11-modular table, because there are no other generality problems for
HN involving the 19-modular table, and hence we are sure that this table will not need to be changed
because of new solutions to generality problems.

For HN.2, the situation is similar. There are additionally two classes of element order 40 that have
to be swapped if 20A and 20B get swapped. Thus we have to change the 11-modular table of HN.2
accordingly.

Changes of this kind may affect also derived character tables in the library. In this case, the
11-modular table with identifier "(D10xHN).2" was changed as well. Note that this table is not
stored explicitly in the data files, it gets constructed from ordinary and modular library tables via
ConstructIndexTwoSubdirectProduct (CTblLib: ConstructIndexTwoSubdirectProduct).

1.4 Brauer Tables that can be derived from Known Tables

In a few situations, one can derive the p-modular Brauer character table of a group from known
character theoretic information.

For quite some time, a method is available in GAP that computes the Brauer characters of p-
solvable groups (see (Reference: BrauerTable) and (Reference: IsPSolubleCharacterTable)).

The following sections list other situations where Brauer tables can be computed by GAP.

1.4.1 Brauer Tables via Construction Information

If a given ordinary character table t, say, has been constructed from other ordinary character tables
then GAP may be able to create the p-modular Brauer table of t from the p-modular Brauer tables of
the “ingredients”. This happens currently in the following cases.

• t has been constructed with CharacterTableDirectProduct (Reference: Charac-
terTableDirectProduct), and GAP can compute the p-modular Brauer tables of the direct fac-
tors.

• t has been constructed with CharacterTableIsoclinic (Reference: CharacterTableIso-
clinic), and GAP can compute the p-modular Brauer table of the table that is stored in t as the
value of the attribute SourceOfIsoclinicTable (Reference: SourceOfIsoclinicTable).

• t has the attribute ConstructionInfoCharacterTable (CTblLib: ConstructionInfoChar-
acterTable) set, the first entry of this list l, say, is one of the strings "ConstructGS3" (see
2.3.2), "ConstructIndexTwoSubdirectProduct" (see 2.3.6), "ConstructMGA" (see 2.3.1),
"ConstructPermuted", "ConstructV4G" (see 2.3.4), and GAP can construct the p-modular
Brauer table(s) of the relevant ordinary character table(s), which are library tables whose names
occur in l.

Computations with the GAP Character Table Library 43

1.4.2 Liftable Brauer Characters (May 2017)

Let B be a p-block of cyclic defect for the finite group G. It can be read off from the set Irr(B) of
ordinary irreducible characters of B whether all irreducible Brauer characters in B are restrictions of
ordinary characters to the p-regular classes of G, as follows.

If B has only one irreducible Brauer character then all ordinary characters in B restrict to this
Brauer character. So let us assume that B contains at least two irreducible Brauer characters, and
consider the set S, say, of restrictions of Irr(B) to the p-regular classes of G.

The block B contains exactly |S|− 1 irreducible Brauer characters, and the decomposition of the
characters in S into these Brauer characters is described by an |S| by |S| − 1 matrix M, say, whose
entries are zero and one, such that exactly two nonzero entries occur in each column. (See for example
[HL89, Theorem 2.1.5], which refers to [Dad66].)

If all irreducible Brauer characters of B occur in S then the matrix M contains |S| − 1 rows that
contain exactly one nonzero entry, hence the remaining row consists only of 1s. This means that the
element of largest degree in S is equal to the sum of all other elements in S. Conversely, if the element
of largest degree in S is equal to the sum of all other elements in S then the matrix M has the structure
as stated above, hence all irreducible Brauer characters of B occur in S.

Alternatively, one could state that all irreducible Brauer characters of B are restricted ordinary
characters if and only if the Brauer tree of B is a star (see [HL89, p. 2]. If B contains at least
two irreducible Brauer characters then this happens if and only if one of the types × or ◦ occurs for
exactly one node in the Brauer graph of B, see [HL89, Lemma 2.1.13], and the distribution to types is
determined by Irr(B).

The default method for BrauerTableOp (Reference: BrauerTableOp) that is contained in the
GAP library has been extended in version 4.11 such that it checks whether the Sylow p-subgroups of
the given group G are cyclic and, if yes, whether all p-blocks of G have the property discussed above.
(This feature arose from a discussion with Klaus Lux.)

Examples where this method is successful for all blocks are the p-modular character tables of the
groups PSL(2,q), where p is odd and does not divide q.

Example
gap> t:= CharacterTable(PSL(2, 11));;
gap> modt:= t mod 5;;
gap> modt <> fail;
true
gap> InfoText(modt);
"computed using that all Brauer characters lift to char. zero"

Another such example is the 5-modular table of the Mathieu group M11.
Example

gap> lib:= CharacterTable("M11");;
gap> fromgroup:= CharacterTable(MathieuGroup(11));;
gap> DecompositionMatrix(lib mod 5);
[[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]]

gap> fromgroup mod 5 <> fail;
true

Computations with the GAP Character Table Library 44

There are cases where all Brauer characters of a block lift to characteristic zero but the defect
group of the block is not cyclic, thus the method cannot be used. An example is the 2-modular table
of the Mathieu group M11.

Example
gap> DecompositionMatrix(lib mod 2);
[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0],

[0, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0],
[0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [1, 0, 0, 0, 1],
[1, 1, 0, 0, 1]]

gap> fromgroup mod 2;
fail

1.5 Information about certain subgroups of the Monster group

1.5.1 The Monster group does not contain subgroups of the type 2.U4(2) (August 2023)

In the context of a question about decomposition numbers of the sporadic simple Monster group M,
Benjamin Sambale was interested in possible embeddings of certain groups G into M such that the
decomposition matrices of G are known. For a given G, the first steps were to compute the possible
class fusions of G in M and then to check whether the corresponding embeddings would be interesting.

Apparently, calling PossibleClassFusions (Reference: PossibleClassFusions) with its default
parameters often runs very long and requires a lot of space when G is a small group such as 2.U4(2).
We can do better by calling the function with the parameter decompose:= false. This has the effect
that one criterion is omitted that checks the decomposability of restricted characters of M as an integral
linear combination of characters of the subgroup. As a rule of thumb, if the number of classes of the
subgroup is small compared to the number of classes of the group and if the result consists of many
candidates then it might be faster to omit the decomposability criterion.

Example
gap> s:= CharacterTable("2.U4(2)");;
gap> m:= CharacterTable("M");;
gap> sfusm:= PossibleClassFusions(s, m, rec(decompose:= false));;
gap> Length(sfusm);
2332

Looking at the (many) candidates, we see that all map the central involution of 2.U4(2) to the class
2B of M, thus any subgroup of the type 2.U4(2) lies inside the 2B normalizer in M. We compute the
possible class fusions into this subgroup.

Example
gap> Set(List(sfusm, x -> x[2]));
[3]
gap> t:= CharacterTable("MN2B");
CharacterTable("2^1+24.Co1")
gap> sfust:= PossibleClassFusions(s, t, rec(decompose:= false));;
gap> Length(sfust);
0

Thus we have shown that M does not contain subgroups of the type 2.U4(2).

Computations with the GAP Character Table Library 45

1.5.2 Perfect central extensions of L3(4) (August 2023)

There was the question in MathOverflow which perfect central extensions of the simple group G =
L3(4) are subgroups of the sporadic simple Monster group M.

First we get the list of perfect central extensions of G (asuming that their character tables are
contained in the character table library).

Example
gap> simp:= CharacterTable("L3(4)");;
gap> extnames:= AllCharacterTableNames(Identifier,
> x -> EndsWith(x, "L3(4)"));;
gap> ext:= List(extnames, CharacterTable);;
gap> ext:= Filtered(ext, x -> Length(ClassPositionsOfCentre(x)) =
> Size(x) / Size(simp));;
gap> SortBy(ext, Size);
gap> names:= List(ext, Identifier);
["L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "4_1.L3(4)",

"4_2.L3(4)", "6.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)",
"12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)",
"(4^2x3).L3(4)"]

The fact that G is not isomorphic to a subgroup of M is shown in [HW08] (at the end of this paper).
And the following embeddings of central extensions of G in M can be established using known

subgroups of M.

• 2.G < 2.U4(3)< 22.U6(2)< Fi23 < 3.Fi′24 <M.

• 22.G < He < 3.Fi′24 <M.

• 6.G < 2.G2(4)< 6.Suz < 31+12
+ .2Suz <M.

Note that G is a subgroup of U4(3) but not of 2.U4(3), 3.G is a subgroup of G2(4) but not of 2.G2(4),
and G2(4) is a subgroup of Suz but not of 2.Suz. The positive statements follow from [CCN+85, pp.
52, 97, 131] and the negative ones from the following computations.

Example
gap> Length(PossibleClassFusions(CharacterTable("L3(4)"),
> CharacterTable("2.U4(3)")));
0
gap> Length(PossibleClassFusions(CharacterTable("3.L3(4)"),
> CharacterTable("2.G2(4)")));
0
gap> Length(PossibleClassFusions(CharacterTable("G2(4)"),
> CharacterTable("2.Suz")));
0

The group 3.G centralizes an element of order three. If 3.G is a subgroup of M then it is contained
in a 3A centralizer (of the structure 3.Fi′24), a 3B centralizer (of the structure 31+12

+ .2Suz) or a 3C
centralizer (of the structure 3×T h). Clearly the case 3C cannot occur, and 3B is excluded by the fact
that no class fusion between 3.G and the 3B normalizer 31+12

+ .2Suz.2 is possible.
Example

gap> t:= CharacterTable("MN3B");
CharacterTable("3^(1+12).2.Suz.2")
gap> Length(PossibleClassFusions(CharacterTable("3.L3(4)"), t));
0

https://mathoverflow.net/questions/450255

Computations with the GAP Character Table Library 46

If 3.G is contained in the 3A centralizer then this embedding induces one of G into some maximal
subgroup of Fi′24. Using the known character tables of these maximal subgroups in GAP’s character
table library, one shows that only Fi23 admits a class fusion, but this subgroup lifts to 3×Fi23 in 3.Fi′24
and thus cannot lead to a subgroup of type 3.G..

Example
gap> mx:= List(Maxes(CharacterTable("Fi24’")), CharacterTable);;
gap> s:= CharacterTable("L3(4)");;
gap> Filtered(mx, x -> Length(PossibleClassFusions(s, x)) > 0);
[CharacterTable("Fi23")]

The other candidates m.G contain at least one central involution. If m.G is a subgroup of M
then it is contained in a 2A centralizer (of the structure 2.B) or a 2B centralizer (of the structure
2^{1+24}_+.Co_1). Again we use PossibleClassFusions (Reference: PossibleClassFusions)
to list all candidates for the class fusion, but here we prescribe the central involution of the 2A or 2B
centralizer as an image of one central involution in m.G.

Example
gap> done:= ["L3(4)", "2.L3(4)", "3.L3(4)", "2^2.L3(4)", "6.L3(4)"];;
gap> names:= Filtered(names, x -> not x in done);
["4_1.L3(4)", "4_2.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)",

"12_1.L3(4)", "12_2.L3(4)", "4^2.L3(4)", "(2x12).L3(4)",
"(4^2x3).L3(4)"]

gap> invcent:= List(["MN2A", "MN2B"], CharacterTable);
[CharacterTable("2.B"), CharacterTable("2^1+24.Co1")]
gap> ForAll(invcent, x -> ClassPositionsOfCentre(x) = [1, 2]);
true
gap> cand:= [];;
gap> ords:= "dummy";; # Avoid a message about an unbound variable ...
gap> for name in names do
> s:= CharacterTable(name);
> ords:= OrdersClassRepresentatives(s);
> invpos:= Filtered(ClassPositionsOfCentre(s), i -> ords[i] = 2);
> for i in invpos do
> for t in invcent do
> init:= InitFusion(s, t);
> if init = fail then
> continue;
> fi;
> init[i]:= 2;
> fus:= PossibleClassFusions(s, t, rec(fusionmap:= init,
> decompose:= false));
> if fus <> [] then
> Add(cand, [s, t, i, fus]);
> fi;
> od;
> od;
> od;
gap> List(cand, x -> x{ [1 .. 3] });
[[CharacterTable("4_1.L3(4)"), CharacterTable("2^1+24.Co1"), 3]

, [CharacterTable("(2x4).L3(4)"), CharacterTable("2.B"), 2],
[CharacterTable("(2x4).L3(4)"), CharacterTable("2.B"), 3]]

Computations with the GAP Character Table Library 47

(Note that we have called PossibleClassFusions (Reference: PossibleClassFusions) with the
option decompose:= false, in order to save space and time. See Section 1.5.1 for more details.)

Concerning the candidate (2× 4).G, we see that only fusions are possible for which the central
involution in question is mapped to a 2A element of M. Since we get candidates only for two out of
the three central involutions, we see that (2×4).G does not embed into M.

Thus it turns out that exactly one group m.G cannot be excluded this way. Namely, these character-
theoretical criteria leave the possibility that 41.G may occur as a subgroup of 21+24

+ .Co1.
Moreover, we see that if this happens then the centre C of 41.G lies inside the normal subgroup

N = 21+24
+ . The centralizer of C in N has order 224, and the centralizer of C in 21+24

+ .Co1 has order
224 · |Co3|. We see that 41.G, if it exists as a subgroup of 21+24

+ .Co1, must lie inside the subgroup
[224].Co3.

Example
gap> s:= cand[1][1];
CharacterTable("4_1.L3(4)")
gap> t:= cand[1][2];
CharacterTable("2^1+24.Co1")
gap> fus:= cand[1][4];
[[1, 5, 2, 5, 9, 8, 23, 27, 24, 27, 49, 49, 50, 50, 70, 74, 71, 74,

70, 74, 71, 74, 114, 119, 115, 119, 114, 119, 115, 119]]
gap> ClassPositionsOfCentre(s);
[1, 2, 3, 4]
gap> 5 in ClassPositionsOfPCore(t, 2);
true
gap> siz:= SizesCentralizers(t)[5] / 2^24;
495766656000
gap> mx:= Filtered(List(Maxes(CharacterTable("Co1")),
> CharacterTable),
> x -> Size(x) mod siz = 0);
[CharacterTable("Co3")]
gap> Size(mx[1]) = siz;
true

I do not see a character-theoretic argument that could disprove the existence of such an 41.G type
subgroup.

1.5.3 The character table of (2×O+
8 (3)).S4 ≤ 2.B (October 2023)

Consider a maximal subgroup H of type (32 : 2×O+
8 (3)).S4 in the sporadic simple Monster group.

The character table of H has been contributed by Tim Burness. We can view H as O+
8 (3).(3

2 : 2S4) =
O+

8 (3).F . The character table of H determines that of F , and this table determines the isomorphism
type of F as SmallGroup(432, 734).

Example
gap> tblH:= CharacterTable("(3^2:2xO8+(3)).S4");
CharacterTable("(3^2:2xO8+(3)).S4")
gap> N:= ClassPositionsOfSolvableResiduum(tblH);;
gap> tblF:= tblH / N;;
gap> Size(tblF);
432
gap> known:= NamesOfEquivalentLibraryCharacterTables(tblF);
["3^2.2.S4", "M12M7"]

Computations with the GAP Character Table Library 48

gap> Filtered(GroupInfoForCharacterTable(known[1]),
> x -> x[1] = "SmallGroup");
[["SmallGroup", [432, 734]]]

(Note that the precomputed GroupInfoForCharacterTable (CTblLib: GroupInfoForCharac-
terTable) information about GAP library character tables means that exactly one isomorphism type
of groups fits to the character table of F .)

We compute that O3(F) ∼= 32 has complements in F , thus H has a subgroup V of the type
O+

8 (3).2S4, which is a complement of O3(H) in H, thus V is isomorphic with H/O3(H).
Example

gap> G:= SmallGroup(432, 734);;
gap> P:= PCore(G, 3);;
gap> Length(ComplementClassesRepresentatives(G, P));
1

We can derive the character table of V from that of H, and compute that the group structure of V
is (2×O+

8 (3)).S4. For that, we consider the element orders of the unique normal subgroup of order
2|O+

8 (3)| in V . If this normal subgroup would not be isomorphic with 2×O+
8 (3) then it would have

one of the structures O+
8 (3).21 or O+

8 (3).22, but then it would contain elements of the orders 24.
Example

gap> tblV:= tblH / ClassPositionsOfPCore(tblH, 3);;
gap> ord:= 2 * Size(tblH) / Size(tblF);
9904359628800
gap> classes:= SizesConjugacyClasses(tblV);;
gap> 2N:= Filtered(ClassPositionsOfNormalSubgroups(tblV),
> l -> Sum(classes{ l }) = ord);;
gap> Length(2N);
1
gap> Set(OrdersClassRepresentatives(tblV){ 2N[1] });
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 26, 30]
gap> Set(OrdersClassRepresentatives(CharacterTable("O8+(3)")));
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20]
gap> Set(OrdersClassRepresentatives(CharacterTable("O8+(3).2_1")));
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28,

30, 36, 40]
gap> Set(OrdersClassRepresentatives(CharacterTable("O8+(3).2_2")));
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 24, 26, 28,

30, 36]

The class fusion of V into the Monster group shows that V centralizes a 2A element in the Monster,
hence V is a subgroup of a maximal subgroup of the type 2.B.

Example
gap> tblM:= CharacterTable("M");;
gap> VfusM:= PossibleClassFusions(tblV, tblM);;
gap> Length(VfusM);
4
gap> ZV:= ClassPositionsOfCentre(tblV);
[1, 2]
gap> Set(List(VfusM, l -> l{ ZV }));
[[1, 2]]

Computations with the GAP Character Table Library 49

From the list of maximal subgroups of B, we see that either V is contained in the preimage of Fi23
under the natural epimorphism from 2.B to B, or V is equal to the preimage of O+

8 (3).S4.
Example

gap> tblB:= CharacterTable("B");;
gap> mxB:= List(Maxes(tblB), CharacterTable);;
gap> cand:= Filtered(mxB, s -> Size(s) mod (Size(tblV) / 2) = 0);
[CharacterTable("Fi23"), CharacterTable("O8+(3).S4")]

The former possibility is excluded from the fact that the factor of V by its center does not admit a
class fusion into Fi23.

Example
gap> Length(PossibleClassFusions(tblV / ZV, CharacterTable("Fi23")));
0

We conclude that V is a maximal subgroup of 2.B.
Thus we have used the character table of H to construct the character table of a maximal subgroup

of 2.B, with very little effort.
This table is meanwhile available in the table library, with the identifier "(2xO8+(3)).S4".

Example
gap> lib:= CharacterTable("(2xO8+(3)).S4");;
gap> TransformingPermutationsCharacterTables(tblV, lib) <> fail;
true
gap> Irr(lib) = Irr(tblV);
true

In order to add the table to the library, we have to provide also the class fusions from V to 2.B, to
the maximal subgroup (2×O+

8 (3)).S4 of B, and to the maximal subgroup (32 : 2×O+
8 (3)).S4 of M,

such that the compositions of fusions from V to B via O+
8 (3).S4 and 2.B are compatible, . . .

Example
gap> tblU:= CharacterTable("O8+(3).S4");;
gap> tbl2B:= CharacterTable("2.B");;
gap> CompositionMaps(GetFusionMap(tblU, tblB),
> GetFusionMap(lib, tblU)) =
> CompositionMaps(GetFusionMap(tbl2B, tblB),
> GetFusionMap(lib, tbl2B));
true

. . . and that the compositions of fusions from V to M via (32 : 2×O+
8 (3)).S4 and 2.B are compati-

ble.
Example

gap> tblH:= CharacterTable("(3^2:2xO8+(3)).S4");;
gap> CompositionMaps(GetFusionMap(tblH, tblM),
> GetFusionMap(lib, tblH)) =
> CompositionMaps(GetFusionMap(tbl2B, tblM),
> GetFusionMap(lib, tbl2B));
true

Chapter 2

Using Table Automorphisms for
Constructing Character Tables in GAP

Date: June 27th, 2004
This chapter has three aims. First it shows how character table automorphisms can be utilized to

construct certain character tables from others using the GAP system [GAP21]; the GAP functions
used for that are part of the GAP Character Table Library [Bre24]. Second it documents several
constructions of character tables which are contained in the GAP Character Table Library. Third it
serves as a testfile for the involved GAP functions.

2.1 Overview

Several types of constructions of character tables of finite groups from known tables of smaller groups
are described in Section 2.3. Selecting suitable character table automorphisms is an important ingre-
dient of these constructions.

Section 2.2 collects the few representation theoretical facts on which these constructions are based.
The remaining sections show examples of the constructions in GAP. These examples use the GAP

Character Table Library, therefore we load this package first.
Example

gap> LoadPackage("ctbllib", "1.1.4", false);
true

2.2 Theoretical Background

2.2.1 Character Table Automorphisms

Let G be a finite group, Irr(G) be the matrix of ordinary irreducible characters of G, Cl(G) be the set
of conjugacy classes of elements in G, gG the G-conjugacy class of g ∈ G, and let

powp:Cl(G)→Cl(G),gG 7→ (gp)G

be the p-th power map, for each prime integer p.
A table automorphism of G is a permutation σ :Cl(G)→Cl(G) with the properties that χ ◦σ ∈

Irr(G) holds for all χ ∈ Irr(G) and that σ commutes with powp, for all prime integers p that divide

50

Computations with the GAP Character Table Library 51

the order of G. Note that for prime integers p that are coprime to the order of G, powp commutes with
each σ that permutes Irr(G), since powp acts as a field automorphism on the character values.

In GAP, a character table covers the irreducible characters –a matrix M of character values– as
well as the power maps of the underlying group –each power map powp being represented as a list
pow′p of positive integers denoting the positions of the image classes. The group of table automor-
phisms of a character table is represented as a permutation group on the column positions of the table;
it can be computed with the GAP function AutomorphismsOfTable (Reference: Automorphism-
sOfTable).

In the following, we will mainly use that each group automorphism σ of G induces a table auto-
morphism that maps the class of each element in G to the class of its image under σ .

2.2.2 Permutation Equivalence of Character Tables

Two character tables with matrices M1, M2 of irreducibles and p-th power maps pow1,p, pow2,p are
permutation equivalent if permutations ψ and π of row and column positions of the Mi exist such
that [M1]i, j = [M2]iψ, jπ holds for all indices i, j, and such that π · pow′2,p = pow′1,p · π holds for all
primes p that divide the (common) group order. The first condition is equivalent to the existence of a
permutation π such that permuting the columns of M1 with π maps the set of rows of M1 to the set of
rows of M2.

π is of course determined only up to table automorphisms of the two character tables, that is, two
transforming permutations π1, π2 satisfy that π1 ·π−1

2 is a table automorphism of the first table, and
π
−1
1 ·π2 is a table automorphism of the second.

Clearly two isomorphic groups have permutation equivalent character tables.
The GAP library function TransformingPermutationsCharacterTables (Reference: Trans-

formingPermutationsCharacterTables) returns a record that contains transforming permutations of
rows and columns if the two argument tables are permutation equivalent, and fail otherwise.

In the example sections, the following function for computing representatives from a list of char-
acter tables w.r.t. permutation equivalence will be used. More precisely, the input is either a list of
character tables or a list of records which have a component table whose value is a character table,
and the output is a sublist of the input.

Example
gap> RepresentativesCharacterTables:= function(list)
> local reps, entry, r;
>
> reps:= [];
> for entry in list do
> if ForAll(reps, r -> (IsCharacterTable(r) and
> TransformingPermutationsCharacterTables(entry, r) = fail)
> or (IsRecord(r) and TransformingPermutationsCharacterTables(
> entry.table, r.table) = fail)) then
> Add(reps, entry);
> fi;
> od;
> return reps;
> end;;

Computations with the GAP Character Table Library 52

2.2.3 Class Fusions

For two groups H, G such that H is isomorphic with a subgroup of G, any embedding ι :H → G
induces a class function

f usι :Cl(H)→Cl(G),hG 7→ (ι(h))G

the class fusion of H in G via ι . Analogously, for a normal subgroup N of G, any epimorphism
π:G→ G/N induces a class function

f usπ :Cl(G)→Cl(G/N),gG 7→ (π(g))G

the class fusion of G onto G/N via π .
When one works only with character tables and not with groups, these class fusions are the objects

that describe subgroup and factor group relations between character tables. Technically, class fusions
are necessary for restricting, inducing, and inflating characters from one character table to another. If
one is faced with the problem to compute the class fusion between the character tables of two groups
H and G for which it is known that H can be embedded into G then one can use character-theoretic
necessary conditions, concerning that the restriction of all irreducible characters of G to H (via the
class fusion) must decompose into the irreducible characters of H, and that the class fusion must
commute with the power maps of H and G.

With this character-theoretic approach, one can clearly determine possible class fusions only up to
character table automorphisms. Note that one can interpret each character table automorphism of G
as a class fusion from the table of G to itself.

If N is a normal subgroup in G then the class fusion of N in G determines the orbits of the con-
jugation action of G on the classes of N. Often the knowledge of these orbits suffices to identify the
subgroup of table automorphisms of N that corresponds to this action of G; for example, this is always
the case if N has index 2 in G.

GAP library functions for dealing with class fusions, power maps, and character table automor-
phisms are described in the chapter “Maps Concerning Character Tables” in the GAP Reference Man-
ual.

2.2.4 Constructing Character Tables of Certain Isoclinic Groups

As is stated in [CCN+85, p. xxiii], two groups G, H are called isoclinic if they can be embedded into
a group K such that K is generated by Z(K) and G, and also by Z(K) and H. In the following, two
special cases of isoclinism will be used, where the character tables of the isoclinic groups are closely
related.

(1) G∼= 2×U for a group U that has a central subgroup N of order 2, and H is the central product
of U and a cyclic group of order four. Here we can set K = 2×H.

(2) G∼= 2×U for a group U that has a normal subgroup N of index 2, and H is the subdirect product
of U and a cyclic group of order four, Here we can set K = 4×U .

Computations with the GAP Character Table Library 53

r
r r r N

r r〈z〉 r
r rU = S

rG r rH
rK

A
A
A
A
A
A

@
@

@
A
A
A
A
A
A

@
@

@
@
@

@

�
�
�
���

�
�
��

�
�
�
��

�
�
�
���

�
�
��

A
A
A
A
A
A

@
@

@
@
@

@

r
r

r〈z〉
r N

rUrS

r rH r G

rK

r

@
@
@

@
@

@
@

@
@
@

@
@
@

@
@

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Starting from the group K containing both G and H, we first note that each irreducible representa-
tion of G or H extends to K. More specifically, if ρG is an irreducible representation of G then we can
define an extension ρ of K by defining it suitably on Z(K) and then form ρH , the restriction of ρ to H.

In our two cases, we set S = G∩H, so K = S∪G \ S∪H \ S∪ zS holds for some element z ∈
Z(K)\(G∪H) of order four, and G= S∪gS for some g∈G\S, and H = S∪hS where h= z ·g∈H \S.
For defining ρH , it suffices to consider ρ(h) = ρ(z)ρ(g), where ρ(z) = ερ(z) · I is a scalar matrix.

As for the character table heads of G and H, we have sG = sH and z(g · s)G = (h · s)H for each
s ∈ S, so this defines a bijection of the conjugacy classes of G and H. For a prime integer p, (h · s)p =
(z ·g · s)p = zp · (g · s)p holds for all s ∈ S, so the p-th power maps of G and H are related as follows:
Inside S they coincide for any p. If p ≡ 1 mod 4 they coincide also outside S, if p ≡ −1 mod 4 the
images differ by exchanging the classes of (h · s)p and z2 · (h · s)p (if these elements lie in different
classes), and for p = 2 the images (which lie inside S) differ by exchanging the classes of (h · s)2 and
z2 · (g · s)2 (if these elements lie in different classes).

Let ρ be an irreducible representation of K. Then ρG and ρH are related as follows: ρG(s) = ρH(s)
and ρ(z) · ρG(g · s) = ρH(h · s) for all s ∈ S. If χG and χH are the characters afforded by ρG and
ρH , respectively, then χG(s) = χH(s) and ερ(z) · χG(g · s) = χH(h · s) hold for all s ∈ S. In the case
χG(z2) = χ(1) we have ερ(z) = ±1, and both cases actually occur if one considers all irreducible
representations of K. In the case χG(z2) =−χ(1) we have ερ(z) =±i, and again both cases occur. So
we obtain the irreducible characters of H from those of G by multiplying the values outside S in all
those characters by i that do not have z2 in their kernels.

In GAP, the function CharacterTableIsoclinic (Reference: CharacterTableIsoclinic) can
be used for computing the character table of H from that of G, and vice versa. (Note that in the
above two cases, also the groups U and H are isoclinic by definition, but CharacterTableIsoclinic
(Reference: CharacterTableIsoclinic) does not transfer the character table of U to that of H.)

One could construct the character tables mentioned above by forming the character tables
of certain factor groups or normal subgroups of direct products. However, the construction via
CharacterTableIsoclinic (Reference: CharacterTableIsoclinic) has the advantage that the re-
sult stores from which sources it arose, and this information can be used to derive also the Brauer
character tables, provided that the Brauer character tables of the source tables are known.

2.2.5 Character Tables of Isoclinic Groups of the Structure p.G.p (October 2016)

Since the release of GAP 4.11, CharacterTableIsoclinic (Reference: CharacterTableIsoclinic)
admits the construction of the character tables of the isoclinic variants of groups of the structure p.G.p,

Computations with the GAP Character Table Library 54

also for odd primes p.
This feature will be used in the construction of the character table of 9.U3(8).33, in order to con-

struct the table of the subgroup 3.(3×U3(8)) and of the factor group (3×U3(8)).33, see Section 2.4.16.
These constructions are a straightforward generalization of those described in detail in Section 2.2.4.

There are several examples of Atlas groups of the structure 3.G.3. The character table of one
such group is shown in the Atlas, the tables of their isoclinic variants can now be obtained from
CharacterTableIsoclinic (Reference: CharacterTableIsoclinic).

For example, the group GL(3,4) has the structure 3.L3(4).3. There are three pairwise nonisomor-
phic isoclinic variants of groups of this structure.

Example
gap> t:= CharacterTable("3.L3(4).3");
CharacterTable("3.L3(4).3")
gap> iso1:= CharacterTableIsoclinic(t);
CharacterTable("Isoclinic(3.L3(4).3,1)")
gap> iso2:= CharacterTableIsoclinic(t, rec(k:= 2));
CharacterTable("Isoclinic(3.L3(4).3,2)")
gap> TransformingPermutationsCharacterTables(t, iso1);
fail
gap> TransformingPermutationsCharacterTables(t, iso2);
fail
gap> TransformingPermutationsCharacterTables(iso1, iso2);
fail

The character table of GL(3,4) is in fact the one which is shown in the Atlas.
Example

gap> IsRecord(TransformingPermutationsCharacterTables(t,
> CharacterTable(GL(3, 4))));
true

2.2.6 Isoclinic Double Covers of Almost Simple Groups

The function CharacterTableIsoclinic (Reference: CharacterTableIsoclinic) can also be used
to switch between the character tables of double covers of groups of the type G.2, where G is a perfect
group, see [CCN+85, Section 6.7]. Typical examples are the double covers of symmetric groups.

Note that these double covers may be isomorphic. This happens for 2.S6. More generally, this
happens for all semilinear groups ΣL(2, p2), for odd primes p. The smallest examples are ΣL(2,9) =
2.A6.21 and ΣL(2,25) = 2.L2(25).22. This implies that the character table and its isoclinic variant are
permutation isomorphic.

Example
gap> t:= CharacterTable("2.A6.2_1");
CharacterTable("2.A6.2_1")
gap> TransformingPermutationsCharacterTables(t,
> CharacterTableIsoclinic(t));
rec(columns := (4,6)(5,7)(11,12)(14,16)(15,17),

group := Group([(16,17), (14,15)]),
rows := (3,5)(4,6)(10,11)(12,15,13,14))

gap> t:= CharacterTable("2.L2(25).2_2");
CharacterTable("2.L2(25).2_2")
gap> TransformingPermutationsCharacterTables(t,

Computations with the GAP Character Table Library 55

> CharacterTableIsoclinic(t));
rec(columns := (7,9)(8,10)(20,21)(23,24)(25,27)(26,28),

group := <permutation group with 4 generators>,
rows := (3,5)(4,6)(14,15)(16,17)(19,22,20,21))

For groups of the type 4.G.2, two different situations can occur. Either the distinguished central
cyclic subgroup of order four in 4.G is inverted by the elements in 4.G.2\4.G, or this subgroup is cen-
tral in 4.G.2. In the first case, calling CharacterTableIsoclinic (Reference: CharacterTableIso-
clinic) with the character table of 4.G.2 yields a character table with the same set of irreducibles,
only the 2-power map will in general differ from that of the input table. In the second case, the one
argument version of CharacterTableIsoclinic (Reference: CharacterTableIsoclinic) returns a
permutation isomorphic table. By supplying additional arguments, there is a chance to construct tables
of different groups.

We demonstrate this phenomenon with the various groups of the structure 4.L3(4).2.
Example

gap> tbls:= [];;
gap> for m in ["4_1", "4_2"] do
> for a in ["2_1", "2_2", "2_3"] do
> Add(tbls, CharacterTable(Concatenation(m, ".L3(4).", a)));
> od;
> od;
gap> tbls;
[CharacterTable("4_1.L3(4).2_1"), CharacterTable("4_1.L3(4).2_2")

, CharacterTable("4_1.L3(4).2_3"),
CharacterTable("4_2.L3(4).2_1"), CharacterTable("4_2.L3(4).2_2")

, CharacterTable("4_2.L3(4).2_3")]
gap> case1:= Filtered(tbls, t -> Size(ClassPositionsOfCentre(t)) = 2);
[CharacterTable("4_1.L3(4).2_1"), CharacterTable("4_1.L3(4).2_2")

, CharacterTable("4_2.L3(4).2_1"),
CharacterTable("4_2.L3(4).2_3")]

gap> case2:= Filtered(tbls, t -> Size(ClassPositionsOfCentre(t)) = 4);
[CharacterTable("4_1.L3(4).2_3"),

CharacterTable("4_2.L3(4).2_2")]

The centres of the groups 41.L3(4).21, 41.L3(4).22, 42.L3(4).21, and 42.L3(4).23 have order two,
that is, these groups belong to the first case. Each of these groups is not permutation equivalent to its
isoclinic variant but has the same irreducible characters.

Example
gap> isos1:= List(case1, CharacterTableIsoclinic);;
gap> List([1 .. 4], i -> Irr(case1[i]) = Irr(isos1[i]));
[true, true, true, true]
gap> List([1 .. 4],
> i -> TransformingPermutationsCharacterTables(case1[i], isos1[i]));
[fail, fail, fail, fail]

The groups 41.L3(4).23 and 42.L3(4).22 belong to the second case because their centres have order
four.

Example
gap> isos2:= List(case2, CharacterTableIsoclinic);;
gap> List([1, 2],

Computations with the GAP Character Table Library 56

> i -> TransformingPermutationsCharacterTables(case2[i], isos2[i]));
[rec(columns := (26,27,28,29)(30,31,32,33)(38,39,40,41)(42,43,44,45)

, group := <permutation group with 5 generators>,
rows := (16,17)(18,19)(20,21)(22,23)(28,29)(32,33)(36,37)(40,

41)),
rec(columns := (28,29,30,31)(32,33)(34,35,36,37)(38,39,40,41)(42,

43,44,45)(46,47,48,49), group := <permutation group with
3 generators>, rows := (15,16)(17,18)(20,21)(22,23)(24,25)(26,
27)(28,29)(34,35)(38,39)(42,43)(46,47))]

gap> isos3:= List(case2, t -> CharacterTableIsoclinic(t,
> ClassPositionsOfCentre(t)));;
gap> List([1, 2],
> i -> TransformingPermutationsCharacterTables(case2[i], isos3[i]));
[fail, fail]

2.2.7 Characters of Normal Subgroups

Let G be a group and N be a normal subgroup of G. We will need the following well-known facts
about the relation between the irreducible characters of G and N.

For an irreducible (Brauer) character χ of N and g ∈ G, we define χg by χg(n) = χ(ng) for all
n ∈ N, and set IG(χ) = {g ∈ G; χg = χ} (see [Fei82, p. 86]).

If IG(χ) = N then the induced character χG is an irreducible (Brauer) character of G (see [Fei82,
Lemma III 2.11] or [Nav98, Theorem 8.9] or [LP10, Corollary 4.3.8]).

If G/N is cyclic and if IG(χ) = G then χ = ψN for an irreducible (Brauer) character ψ of G, and
each irreducible (Brauer) character θ with the property χ = θN is of the form θ = ψ · ε , where ε is
an irreducible (Brauer) character of G/N (see [Fei82, Theorem III 2.14] or [Nav98, Theorem 8.12] or
[LP10, Theorem 3.6.13]).

Clifford’s theorem ([Fei82, Theorem III 2.12] or [Nav98, Corollary 8.7] or [LP10, Theorem 3.6.2])
states that the restriction of an irreducible (Brauer) character of G to N has the form e∑

t
i=1 ϕi for a

positive integer e and irreducible (Brauer) characters ϕi of N, where t is the index of IG(ϕ1) in G.
Now assume that G is a normal subgroup in a larger group H, that G/N is an abelian chief factor

of H and that ψ is an ordinary irreducible character of G such that IH(ψ) = H. Then either t = 1 and
e2 is one of 1, |G/N|, or t = |G/N| and e = 1 (see [Isa76, Theorem 6.18]).

2.3 The Constructions

2.3.1 Character Tables of Groups of the Structure M.G.A

(This kind of table construction is described in [Bre11].)
Let N denote a downward extension of the finite group G by a finite group M, let H denote an

automorphic (upward) extension of N by a finite cyclic group A such that M is normal in H, and set
F = H/M. We consider the situation that each irreducible character of N that does not contain M in
its kernel induces irreducibly to H. Equivalently, the action of A = 〈a〉 on the characters of N, via
χ 7→ χa, has only orbits of length exactly |A| on the set {χ ∈ Irr(N);M * ker(χ)}.

Computations with the GAP Character Table Library 57

rrM

G

rN
A

rH

N

G

H

F

-

6

-

6

This occurs for example if M is central in N and A acts fixed-point freely on M, we have |M| ≡
1 mod |A| in this case. If M has prime order then it is sufficient that A does not centralize M.

The ordinary (or p-modular) irreducible characters of H are then given by the ordinary (or p-
modular) irreducible characters of F and N, the class fusions from the table of N onto the table of G
and from the table of G into that of F , and the permutation π that is induced by the action of A on the
conjugacy classes of N.

In general, the action of A on the classes of M is not the right thing to look at, one really must
consider the action on the relevant characters of M.G. For example, take H the quaternion group or
the dihedral group of order eight, N a cyclic subgroup of index two, and M the centre of H; here A
acts trivially on M, but the relevant fact is that the action of A swaps those two irreducible characters
of N that take the value −1 on the involution in M –these are the faithful irreducible characters of N.

If the orders of M and A are coprime then also the power maps of H can be computed from
the above data. For each prime p that divides the orders of both M and A, the p-th power map is
in general not uniquely determined by these input data. In this case, we can compute the (finitely
many) candidates for the character table of H that are described by these data. One possible reason
for ambiguities is the existence of several isoclinic but nonisomorphic groups that can arise from the
input tables (cf. Section 2.2.4, see Section 2.4.12 for an example).

With the GAP function PossibleActionsForTypeMGA (CTblLib: PossibleActionsForType-
MGA), one can compute the possible orbit structures induced by G.A on the classes of M.G, and
PossibleCharacterTablesOfTypeMGA (CTblLib: PossibleCharacterTablesOfTypeMGA) com-
putes the possible ordinary character tables for a given orbit structure. For constructing the p-modular
Brauer table of a group H of the structure M.G.A, the GAP function BrauerTableOfTypeMGA
(CTblLib: BrauerTableOfTypeMGA) takes the ordinary character table of H and the p-modular
tables of the subgroup M.G and the factor group G.A as its input. The p-modular table of G is not
explicitly needed in the construction, it is implicitly given by the class fusions from M.G into M.G.A
and from M.G.A onto G.A; these class fusions must of course be available.

The GAP Character Table Library contains many tables of groups of the structure M.G.A as de-
scribed above, which are encoded by references to the tables of the groups M.G and G.A, plus the
fusion and action information. This reduces the space needed for storing these character tables.

For examples, see Section 2.4.

2.3.2 Character Tables of Groups of the Structure G.S3

Let G be a finite group, and H be an upward extension of G such that the factor group H/G is a
Frobenius group F = KC with abelian kernel K and cyclic complement C of prime order c. (Typical
cases for F are the symmetric group S3 on three points and the alternating group A4 on four points.)
Let N and U denote the preimages of K and C under the natural epimorphism from H onto F .

Computations with the GAP Character Table Library 58

r
rG

rN bU
rH
@
@

@ @
@

@

��

��

G

U

N

H
�
�
���

@
@R �

�
���

@
@R

For certain isomorphism types of F , the ordinary (or p-modular) character table of H can be
computed from the ordinary (or p-modular) character tables of G, U , and N, the class fusions from the
table of G into those of U and N, and the permutation π induced by H on the conjugacy classes of N.
This holds for example for F = S3 and in the ordinary case also for F = A4.

Each class of H is either a union of π-orbits or an H-class of U \G; the latter classes are in
bijection with the U-classes of U \G, they are just |K| times larger since the |K| conjugates of U in H
are fused. The power maps of H are uniquely determined from the power maps of U and N, because
each element in F lies in K or in an F-conjugate of C.

Concerning the computation of the ordinary irreducible characters of H, we could induce the
irreducible characters of U and N to H, and then take the union of the irreducible characters among
those and the irreducible differences of those. (For the case F = S3, this approach has been described
in the Appendix of [HL94].)

The GAP function CharacterTableOfTypeGS3 (CTblLib: CharacterTableOfTypeGS3) pro-
ceeds in a different way, which is suitable also for the construction of p-modular character tables of
H.

By the facts listed in Section 2.2.7, for an irreducible (Brauer) character χ of N, we have IH(χ)
equal to either N or H. In the former case, χ induces irreducibly to H. In the latter case, there are
extensions ψ(i), 1≤ i≤ |C| (or |C|p′), to H, and we have the following possibilities, depending on the
restriction χG.

If χG = eϕ , for an irreducible character ϕ of G, then IU(ϕ) =U holds, hence the ψ
(i)
U are |C| (or

|C|p′) extensions of χG to U . Moreover, we have either e = 1 or e2 = |K|. In the case e = 1, this
determines the values of the ψ(i) on the classes of U outside G. In the case e 6=1, we have the problem
to combine e extensions of ϕ to a character of U that extends to H.

(One additional piece of information in the case of ordinary character tables is that the norm of this
linear combination equals 1+(|K|−1)/|C|, which determines the ψ

(i)
U if F = A4 ∼= 22 : 3 or F = 23 : 7

holds; in the former case, the sum of each two out of the three different extensions of ϕ extends to U ;
in the latter case, the sum of all different extensions plus one of the extensions extends. Note that for
F = S3, the case e 6=1 does not occur.)

The remaining case is that χG is not a multiple of an irreducible character of G. Then χG =
ϕ1+ϕ2+ . . .+ϕ|K|, for pairwise different irreducible characters ϕi, 1≤ i≤ |K|, of G with the property
ϕN

i = χ . The action of U on G fixes at least one of the ϕi, since |K| ≡ 1 mod |C|. Without loss of
generality, let IU(ϕ1) =U , and let ϕ

(i)
1 , 1 ≤ i ≤ |C|, be the extensions of ϕ1 to U . (In fact exactly ϕ1

is fixed by U since otherwise k ∈ K would exist with ϕk
1 6=ϕ1 and such that also ϕk

1 would be invariant
in U ; but then ϕ1 would be invariant under both C and Ck, which generate F . So each of the |K|
constituents is invariant in exactly one of the |K| subgroups of type U above G.)

Then ((ϕ
(i)
1)H)N = ϕN

1 = χ , hence the values of ψ(i) on the classes of U \G are given by those of

Computations with the GAP Character Table Library 59

(ϕ
(i)
1)H . (These are exactly the values of ϕ

(i)
1 . So in both cases, we take the values of χ on N, and on

the classes of U \G the values of the extensions of the unique extendible constituent of χG.)
For examples, see Section 2.5.

2.3.3 Character Tables of Groups of the Structure G.22

Let G be a finite group, and H be an upward extension of G such that the factor group H/G is a Klein
four group. We assume that the ordinary character tables of G and of the three index two subgroups
U1, U2, and U3 (of the structures G.21, G.22, and G.23, respectively) of H above G are known, as well
as the class fusions of G into these groups. The idea behind the method that is described in this section
is that in this situation, there are only few possibilities for the ordinary character table of H.

r
rG

rU1 rU2 rU3

rH
@
@@

�
��
@

@@
�
��

G

U1

U2

U3

H
�
��

-

@
@R

@
@R
-

�
��

Namely, the action of H on the classes of G.2i is given by a table automorphism πi of G.2i, and H
realizes compatible choices of such automorphisms π1, π2, π3 in the sense that the orbits of all three
πi on the classes of G inside the groups G.2i coincide. Furthermore, if G.2i has ni conjugacy classes
then an action πi that is a product of fi disjoint transpositions leads to a character table candidate for
G.22 that has 2ni−3 fi classes, so also the fi must be compatible.

Taking the “inner” classes, i.e., the orbit sums of the classes inside G under the πi, plus the union
of the πi-orbits of the classes of G.2i \G gives a possibility for the classes of H. Furthermore, the
power maps of the groups G.2i determine the power maps of the candidate table constructed this way.

Concerning the computation of the irreducible characters of H, we consider also the case of p-
modular characters tables, where we assume that the ordinary character table of H is already known
and the only task is to compute the irreducible p-modular Brauer characters.

Let χ be an irreducible (p-modular Brauer) character of G. By the facts that are listed in Sec-
tion 2.2.7, there are three possibilities.

1. IH(χ) = G; then χH is irreducible.

2. IH(χ) = G.2i for i one of 1, 2, 3; then IG.2i(χ) = G.2i for this i, so χ extends to G.2i; none of
these extensions extends to H (because otherwise χ would be invariant in H), so they induce
irreducible characters of H.

3. IH(χ) = H; then χ extends to each of the three groups G.2i, and either all these extensions
induce the same character of H (which vanishes on H \G) or they are invariant in H and thus
extend to H.

In the latter part of case 3. (except if p = 2), the problem is to combine the values of six irreducible
characters of the groups G.2i to four characters of H. This yields essentially two choices, and we try
to exclude one possibility by forming scalar products with the 2-nd symmetrizations of the known
irreducibles. If several possibilities remain then we get several possible tables.

Computations with the GAP Character Table Library 60

So we end up with a list of possible character tables of H. The first step is to specify a list of
possible triples (π1,π2,π3), using the table automorphisms of the groups G.2i; this can be done us-
ing the GAP function PossibleActionsForTypeGV4 (CTblLib: PossibleActionsForTypeGV4).
Then the GAP function PossibleCharacterTablesOfTypeGV4 (CTblLib: PossibleCharacterTa-
blesOfTypeGV4) can be used for computing the character table candidates for each given triple of
permutations; it may of course happen that some triples of automorphisms are excluded in this second
step.

For examples, see Section 2.6.

2.3.4 Character Tables of Groups of the Structure 22.G (August 2005)

Let G be a finite group, and H be a central extension of G by a Klein four group Z = 〈z1,z2〉; set
z3 = z1z2 and Zi = 〈zi〉, for 1≤ i≤ 3. We assume that the ordinary character tables of the three factor
groups 2i.G = H/Zi of H are known, as well as the class fusions from these groups to G. The idea
behind the method described in this section is that in this situation, there are only few possibilities for
the ordinary character table of H.

r
rG

rZ1 rZ2 rZ3

rH

@
@@

�
��
@

@@
�
��

H

H/Z1

H/Z2

H/Z3

G
�
��

-

@
@R

@
@R
-

�
��

Namely, the irreducible (p-modular) characters of H are exactly the inflations of the irreducible
(p-modular) characters of the three factor groups H/Zi. (Note that for any noncyclic central subgroup
C of H and any χ ∈ Irr(H), we have |ker(χ)∩C| > 1. To see this, let N = ker(χ). Then clearly
|N| > 1, and χ can be regarded as a faithful irreducible character of H/N. If N ∩C would be trivial
then NC/N ∼=C would be a noncyclic central subgroup of H/N. This cannot happen by [Isa76, Thm.
2.32 (a)], so the statement can be regarded as an obvious refinement of this theorem.) So all we have
to construct is the character table head of H –classes and power maps– and the factor fusions from H
to these groups.

For fixed h ∈H, we consider the question in which H-classes the elements h, hz1, hz2, and hz3 lie.
There are three possibilities.

1. The four elements are all conjugate in H. Then in each of the three groups H/Zi, the two
preimages of hZ ∈ H/Z are conjugate.

2. We are not in case 1. but two of the four elements are conjugate in H, i. e., g−1hg = hzi for
some g ∈ H and some i; then g−1hz jg = hziz j for each j, so the four elements lie in exactly two
H-classes. This implies that for i 6= j, the elements h and hz j are not H-conjugate, so hZi is not
conjugate to hz jZi in H/Zi and hZ j is conjugate to hziZ j in H/Z j.

3. The four elements are pairwise nonconjugate in H. Then in each of the three groups H/Zi, the
two preimages of hZ ∈ H/Z are nonconjugate.

We observe that the question which case actually applies for h ∈ H can be decided from the three
factor fusions from H/Zi to G. So we attempt to construct the table head of H and the three factor

Computations with the GAP Character Table Library 61

fusions from H to the groups H/Zi, as follows. Each class gG of G yields either one or two or four
preimage classes in H.

In case 1., we get one preimage class in H, and have no choice for the factor fusions.
In case 2., we get two preimage classes, there is exactly one group H/Zi in which gG has two

preimage classes –which are in bijection with the two preimage classes of H– and for the other two
groups H/Z j, the factor fusions from H map the two classes of H to the unique preimage class of gG.
(In the following picture, this is shown for i = 1.)

H

H/Z1

H/Z

rh
rhZ1

r hz2

rhz2Z1

rhZ

�
�
�

A
A
A

H

H/Z2

H/Z

rh
rhZ2

r hz2

rhZ

�
�
�

A
A
A

H

H/Z3

H/Z

rh
rhZ3

r hz2

rhZ

�
�
�

A
A
A

In case 3., the three factor fusions are in general not uniquely determined: We get four classes,
which are defined as two pairs of preimages of the two preimages of gG in H/Z1 and in H/Z2 –so we
choose the relevant images in the two factor fusions to H/Z1 and H/Z2, respectively. Note that the
class of h in H is the unique class that maps to the class of hZ1 in H/Z1 and to the class of hZ2 in
H/Z2, and so on, and we define four classes of H via the four possible combinations of image classes
in H/Z1 and H/Z2 (see the picture below).

H

H/Z1

H/Z

rh rhz1 rhz2 rhz3

rhZ1 rhz2Z1

r hZ

�
�
�

A
A
A

�
�
�

A
A
A

�
�
�

@
@

@

H

H/Z2

H/Z

rh r hz1 rhz2 rhz3

r hZ2 rhz1Z2

r hZ

�
�
�

�
�
�
��

Q
Q
Q

QQ

A
A
A

�
�
�

@
@

@

Due to the fact that in general we do not know which of the two preimage classes of gG in H/Z3
is the class of hZ3, there are in general the following two possibilities for the fusion from H to H/Z3.

H

H/Z3

H/Z

rh r hz1 rhz2 rhz3

r hZ3 rhz1Z3

r hZ

�
�
�

�
�
�
��

�
�
�

aa
aa

aa
aa
�
�
�

@
@

@

H

H/Z3

H/Z

r h rhz1 rhz2 rhz3

r hz1Z3 rhZ3

r hZ

!!
!!

!!
!!

A
A
A

Q
Q

Q
QQ

A
A
A

�
�
�

@
@

@

This means that we can inflate the irreducible characters of H/Z1 and of H/Z2 to H but that for
the inflations of those irreducible characters of H/Z3 to H that are not characters of G, the values on
classes where case 3. applies are determined only up to sign.

The GAP function PossibleCharacterTablesOfTypeV4G (CTblLib: PossibleCharacterTa-
blesOfTypeV4G) computes the candidates for the table of H from the tables of the groups H/Zi by

Computations with the GAP Character Table Library 62

setting up the character table head of H using the class fusions from H/Z1 and H/Z2 to G, and then
forming the possible class fusions from H to H/Z3.

If case 3. applies for a class gG with g of odd element order then exactly one preimage class
in H has odd element order, and we can identify this class in the groups H/Zi, which resolves
the ambiguity in this situation. More generally, if g = k2 holds for some k ∈ G then all preim-
ages of kG in H square to the same class of H, so again this class can be identified. In fact
PossibleCharacterTablesOfTypeV4G (CTblLib: PossibleCharacterTablesOfTypeV4G) checks
whether the p-th power maps of the candidate table for H and the p-th power map of H/Z3 together
with the fusion candidate form a commutative diagram.

An additional criterion used by PossibleCharacterTablesOfTypeV4G (CTblLib: Possi-
bleCharacterTablesOfTypeV4G) is given by the property that the product of two characters inflated
from H/Z1 and H/Z2, respectively, that are not characters of G is a character of H that contains Z3 in
its kernel, so it is checked whether the scalar products of these characters with all characters that are
inflated from H/Z3 via the candidate fusion are nonnegative integers.

Once the fusions from H to the groups H/Zi are known, the computation of the irreducible p-
modular characters of H from those of the groups H/Zi is straightforward.

The only open question is why this construction is described in this note. That is, how is it related
to table automorphisms?

The answer is that in several interesting cases, the three subgroups Z1, Z2, Z3 are conjugate under
an order three automorphism σ , say, of H. In this situation, the three factor groups 2i.G = H/Zi

are isomorphic, and we can describe the input tables and fusions by the character table of 21.G, the
factor fusion from this group to G, and the automorphism σ ′ of G that is induced by σ . Assume that
σ(Z1) = Z2 holds, and choose h ∈ H. Then σ(hZ1) = σ(h)Z2 is mapped to σ(h)Z = σ ′(hZ) under
the factor fusion from 22.G to G. Let us start with the character table of 21.G, and fix the class fusion
to the character table of G. We may choose the identity map as isomorphism from the table of 21.G to
the tables of 22.G and 23.G, which implies that the class of hZ1 is identified with the class of hZ2 and
in turn the class fusion from the table of 22.G to that of G can be chosen as the class fusion from the
table of 21.G followed by the permutation of classes of G induced by σ ′; analogously, the fusion from
the table of 23.G is obtained by applying this permutation twice to the class fusion from the table of
21.G.

For examples, see Section 2.7.

2.3.5 p-Modular Tables of Extensions by p-singular Automorphisms

Let G be a finite group, and H be an upward extension of G by an automorphism of prime order
p, say. H induces a table automorphism of the p-modular character table of G; let π denote the
corresponding permutation of classes of G. The columns of the p-modular character table of H are
given by the orbits of π , and the irreducible Brauer characters of H are exactly the orbit sums of π on
the irreducible Brauer characters of G.

Note that for computing the p-modular character table of H from that of G, it is sufficient to know
the orbits of π and not π itself. Also the ordinary character table of H is not needed, but since GAP
stores Brauer character tables relative to their ordinary tables, we are interested mainly in cases where
the ordinary character tables of G and H and the p-modular character table of G are known. Assuming
that the class fusion between the ordinary tables of G and H is stored on the table of G, the orbits of
the action of H on the p-regular classes of G can be read off from it.

The GAP function IBrOfExtensionBySingularAutomorphism (CTblLib: IBrOfExtension-
BySingularAutomorphism) can be used to compute the p-modular irreducibles of H.

Computations with the GAP Character Table Library 63

For examples, see Section 2.8.

2.3.6 Character Tables of Subdirect Products of Index Two (July 2007)

Let C2 denote the cyclic group of order two, let G1, G2 be two finite groups, and for i ∈ {1,2}, let
ϕi:Gi→C2 be an epimorphism with kernel Hi. Let G be the subdirect product (pullback) of G1 and
G2 w.r.t. the epimorphisms ϕi, i.e.,

G = {(g1,g2) ∈ G1×G2;ϕ1(g1) = ϕ2(g2)}.

The group G has index two in the direct product G1×G2, and G contains H1×H2 as a subgroup of
index two.

In the following, we describe how the ordinary (or p-modular) character table of G can be com-
puted from the ordinary (or p-modular) character tables of the groups Gi and Hi, and the class fusions
from Hi to Gi.

(For the case that one of the groups Gi is a cyclic group of order four, an alternative way to
construct the character table of G is described in Section 2.2.4. For the case that one of the groups
Gi acts fixed point freely on the nontrivial irreducible characters of Hi, an alternative construction is
described in Section 2.3.1.)

r
rH1

rG1 rH2

rG2

rH1×H2

rG1×H2 r H1×G2r G

rG1×G2

�
�
�
�
�
�

@
@

@
@
@

@
�
�
�
�
�
�

@
@

@
@

@
@

�
�
�
�
�
�

@
@

@
@
@

@

H2

H1×H2

H1

G

G2

G1×G2

G1

6

?

6

?

-

-

- -

Each conjugacy class of G is either contained in H1×H2 or not. In the former case, let hi ∈Hi and
gi ∈ Gi \Hi; in particular, (g1,g2) ∈ G because both ϕ1(g1) and ϕ2(g2) are not the identity. There are
four possibilities.

1. If hH1
1 = hG1

1 and hH2
2 = hG2

2 then (h1,h2)
H1×H2 = (h1,h2)

G1×G2 holds, hence this class is equal to
(h1,h2)

G.

2. If hH1
1 6=hG1

1 and hH2
2 6=hG2

2 then the four H1 × H2-classes with the representatives (h1,h2),
(hg1

1 ,h2), (h1,h
g2
2), and (hg1

1 ,hg2
2) fall into two G-classes, where (h1,h2) is G-conjugate with

(hg1
1 ,hg2

2), and (hg1
1 ,h2) is G-conjugate with (h1,h

g2
2).

3. If hH1
1 = hG1

1 and hH2
2 6=hG2

2 then the two H1×H2-classes with the representatives (h1,h2) and
(h1,h

g2
2) fuse in G; note that there is g̃1 ∈CG1(h1)\H1, so (g̃1,g2) ∈ G holds.

4. The case of hH1
1 6=hG1

1 and hH2
2 = hG2

2 is analogous to case 3.

Computations with the GAP Character Table Library 64

It remains to deal with the G-classes that are not contained in H1×H2. Each such class is in fact
a conjugacy class of G1×G2. Note that two elements g1,g2 ∈ G1 \H1 are G1-conjugate if and only if
they are H1-conjugate. (If gx

1 = g2 for x ∈ G1 \H1 then gg1x
1 = g2 holds, and g1x ∈ H1.) This implies

(g1,g2)
G1×G2 = (g1,g2)

H1×H2 , and thus this class is equal to (g1,g2)
G.

The (ordinary or p-modular) irreducible characters of G are given by the restrictions χG of all
those irreducible characters χ of G1×G2 whose restriction to H1×H2 is irreducible, plus the induced
characters ϕG, where ϕ runs over all those irreducible characters of H1×H2 that do not occur as
restrictions of characters of G1×G2.

In other words, no irreducible character of H1×H2 has inertia subgroup G inside G1×G2. This
can be seen as follows. Let ϕ be an irreducible character of H1×H2. Then ϕ = ϕ1 ·ϕ2, where ϕ1, ϕ2
are irreducible characters of H1×H2 with the properties that H2 ⊆ ker(ϕ1) and H1 ⊆ ker(ϕ2). Sloppy
speaking, ϕi is an irreducible character of Hi.

There are four possibilities.

1. If ϕ1 extends to G1 and ϕ2 extends to G2 then ϕ extends to G, so ϕ has inertia subgroup G1×G2.

2. If ϕ1 does not extend to G1 and ϕ2 does not extend to G2 then ϕG1×G2 is irreducible, so ϕ has
inertia subgroup H1×H2.

3. If ϕ1 extends to G1 and ϕ2 does not extend to G2 then ϕ extends to G1×H2 but not to G1×G2,
so ϕ has inertia subgroup G1×H2.

4. The case that ϕ1 does not extend to G1 and ϕ2 extends to G2 is analogous to case 3, ϕ has inertia
subgroup H1×G2.

For examples, see Section 2.9.

2.4 Examples for the Type M.G.A

2.4.1 Character Tables of Dihedral Groups

Let n = 2k ·m where k is a nonnegative integer and m is an odd integer, and consider the dihedral group
D2n of order 2n. Let N denote the derived subgroup of D2n.

If k = 0 then D2n has the structure M.G.A, with M = N and G the trivial group, and A a cyclic
group of order two that inverts each element of N and hence acts fixed-point freely on N. The smallest
nontrivial example is of course that of D6 ∼= S3.

Example
gap> tblMG:= CharacterTable("Cyclic", 3);;
gap> tblG:= CharacterTable("Cyclic", 1);;
gap> tblGA:= CharacterTable("Cyclic", 2);;
gap> StoreFusion(tblMG, [1, 1, 1], tblG);
gap> StoreFusion(tblG, [1], tblGA);
gap> elms:= Elements(AutomorphismsOfTable(tblMG));
[(), (2,3)]
gap> orbs:= [[1], [2, 3]];;
gap> new:= PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, orbs,
> "S3");
[rec(MGfusMGA := [1, 2, 2], table := CharacterTable("S3"))]
gap> Display(new[1].table);
S3

Computations with the GAP Character Table Library 65

2 1 . 1
3 1 1 .

1a 3a 2a
2P 1a 3a 1a
3P 1a 1a 2a

X.1 1 1 1
X.2 1 1 -1
X.3 2 -1 .

If k > 0 then D2n has the structure M.G.A, with M = N and G a cyclic group of order two such
that M.G is cyclic, and A is a cyclic group of order two that inverts each element of M.G and hence
acts fixed-point freely on M.G. The smallest nontrivial example is of course that of D8.

Example
gap> tblMG:= CharacterTable("Cyclic", 4);;
gap> tblG:= CharacterTable("Cyclic", 2);;
gap> tblGA:= CharacterTable("2^2");;
gap> OrdersClassRepresentatives(tblMG);
[1, 4, 2, 4]
gap> StoreFusion(tblMG, [1, 2, 1, 2], tblG);
gap> StoreFusion(tblG, [1, 2], tblGA);
gap> elms:= Elements(AutomorphismsOfTable(tblMG));
[(), (2,4)]
gap> orbs:= Orbits(Group(elms[2]), [1 ..4]);;
gap> new:= PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, orbs,
> "order8");
[rec(MGfusMGA := [1, 2, 3, 2],

table := CharacterTable("order8")),
rec(MGfusMGA := [1, 2, 3, 2],

table := CharacterTable("order8"))]

Here we get two possible tables, which are the character tables of the dihedral and the quaternion
group of order eight, respectively.

Example
gap> List(new, x -> OrdersClassRepresentatives(x.table));
[[1, 4, 2, 2, 2], [1, 4, 2, 4, 4]]
gap> Display(new[1].table);
order8

2 3 2 3 2 2

1a 4a 2a 2b 2c
2P 1a 2a 1a 1a 1a

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 1 -1 1 1 -1
X.4 1 -1 1 -1 1
X.5 2 . -2 . .

Computations with the GAP Character Table Library 66

For each k > 1 and m = 1, we get two possible tables this way, that of the dihedral group of order
2k+1 and that of the generalized quaternion group of order 2k+1.

2.4.2 An M.G.A Type Example with M noncentral in M.G (May 2004)

The Sylow 7 normalizer in the symmetric group S12 has the structure 7 : 6×S5, its intersection N with
the alternating group A12 is of index two, it has the structure (7 : 3×A5) : 2.

Let M denote the normal subgroup of order 7 in N, let G denote the normal subgroup of the type
3×A5 in F = N/M ∼= 3×S5, and A = F/G, the cyclic group of order two. Then N has the structure
M.G.A, where A acts fixed-point freely on the irreducible characters of M.G = 7 : 3×A5 that do not
contain M in their kernels, hence the character table of N is determined by the character tables of M.G
and F , and the action of A on M.G.

Note that in this example, the group M is not central in M.G, unlike in most of our examples.

rr
7

r7 : 3

rA5

r7×A5

r7 : 3×A5

r(7×A5) : 2
rN

@
@

@

�
�
�
��
@

@
@

�
�
�
��

�
�
�
��

@@

Example
gap> tblMG:= CharacterTable("7:3") * CharacterTable("A5");;
gap> nsg:= ClassPositionsOfNormalSubgroups(tblMG);
[[1], [1, 6 .. 11], [1 .. 5], [1, 6 .. 21], [1 .. 15],

[1 .. 25]]
gap> List(nsg, x -> Sum(SizesConjugacyClasses(tblMG){ x }));
[1, 7, 60, 21, 420, 1260]
gap> tblG:= tblMG / nsg[2];;
gap> tblGA:= CharacterTable("Cyclic", 3) * CharacterTable("A5.2");;
gap> GfusGA:= PossibleClassFusions(tblG, tblGA);
[[1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18],

[1, 2, 3, 4, 4, 15, 16, 17, 18, 18, 8, 9, 10, 11, 11]]
gap> reps:= RepresentativesFusions(Group(()), GfusGA, tblGA);
[[1, 2, 3, 4, 4, 8, 9, 10, 11, 11, 15, 16, 17, 18, 18]]
gap> StoreFusion(tblG, reps[1], tblGA);
gap> acts:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
[[[1], [2], [3], [4, 5], [6, 11], [7, 12], [8, 13],

[9, 15], [10, 14], [16], [17], [18], [19, 20],
[21], [22], [23], [24, 25]]]

gap> poss:= PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA,
> acts[1], "A12N7");
[rec(

MGfusMGA := [1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 5, 6, 7, 9, 8, 10,
11, 12, 13, 13, 14, 15, 16, 17, 17],

table := CharacterTable("A12N7"))]

Let us compare the result table with the table of the Sylow 7 normalizer in A12.

Computations with the GAP Character Table Library 67

Example
gap> g:= AlternatingGroup(12);;
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> CharacterTable(Normalizer(g, SylowSubgroup(g, 7)))));
true

Since July 2007, an alternative way to construct the character table of N from other character tables
is to exploit its structure as a subdirect product of index two in the group 7 : 6×S5, see Section 2.3.6.

Example
gap> tblh1:= CharacterTable("7:3");;
gap> tblg1:= CharacterTable("7:6");;
gap> tblh2:= CharacterTable("A5");;
gap> tblg2:= CharacterTable("A5.2");;
gap> subdir:= CharacterTableOfIndexTwoSubdirectProduct(tblh1, tblg1,
> tblh2, tblg2, "(7:3xA5).2");;
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> subdir.table));
true

For storing the table of N in the GAP Character Table Library, the construction as a subdirect
product is more suitable, since the “auxiliary table” of the direct product 7 : 3×A5 need not be stored
in the library.

2.4.3 Atlas Tables of the Type M.G.A

We show the construction of some character tables of groups of the type M.G.A that are contained
in the GAP Character Table Library. Each entry in the following input list contains the names of the
library character tables of M.G, G, G.A, and M.G.A.

First we consider the situation where G is a simple group or a central extension of a simple group
whose character table is shown in the Atlas, and M and A are cyclic groups such that M is central in
M.G.

In the following cases, the character tables are uniquely determined by the input tables. Note that
in each of these cases, |A| and |M| are coprime.

Example
gap> listMGA:= [
> ["3.A6", "A6", "A6.2_1", "3.A6.2_1"],
> ["3.A6", "A6", "A6.2_2", "3.A6.2_2"],
> ["6.A6", "2.A6", "2.A6.2_1", "6.A6.2_1"],
> ["6.A6", "2.A6", "2.A6.2_2", "6.A6.2_2"],
> ["3.A7", "A7", "A7.2", "3.A7.2"],
> ["6.A7", "2.A7", "2.A7.2", "6.A7.2"],
> ["3.L3(4)", "L3(4)", "L3(4).2_2", "3.L3(4).2_2"],
> ["3.L3(4)", "L3(4)", "L3(4).2_3", "3.L3(4).2_3"],
> ["6.L3(4)", "2.L3(4)", "2.L3(4).2_2", "6.L3(4).2_2"],
> ["6.L3(4)", "2.L3(4)", "2.L3(4).2_3", "6.L3(4).2_3"],
> ["12_1.L3(4)", "4_1.L3(4)", "4_1.L3(4).2_2", "12_1.L3(4).2_2"],
> ["12_1.L3(4)", "4_1.L3(4)", "4_1.L3(4).2_3", "12_1.L3(4).2_3"],
> ["12_2.L3(4)", "4_2.L3(4)", "4_2.L3(4).2_2", "12_2.L3(4).2_2"],
> ["12_2.L3(4)", "4_2.L3(4)", "4_2.L3(4).2_3", "12_2.L3(4).2_3"],
> ["3.U3(5)", "U3(5)", "U3(5).2", "3.U3(5).2"],

Computations with the GAP Character Table Library 68

> ["3.M22", "M22", "M22.2", "3.M22.2"],
> ["6.M22", "2.M22", "2.M22.2", "6.M22.2"],
> ["12.M22", "4.M22", "4.M22.2", "12.M22.2"],
> ["3.L3(7)", "L3(7)", "L3(7).2", "3.L3(7).2"],
> ["3_1.U4(3)", "U4(3)", "U4(3).2_1", "3_1.U4(3).2_1"],
> ["3_1.U4(3)", "U4(3)", "U4(3).2_2’", "3_1.U4(3).2_2’"],
> ["3_2.U4(3)", "U4(3)", "U4(3).2_1", "3_2.U4(3).2_1"],
> ["3_2.U4(3)", "U4(3)", "U4(3).2_3’", "3_2.U4(3).2_3’"],
> ["6_1.U4(3)", "2.U4(3)", "2.U4(3).2_1", "6_1.U4(3).2_1"],
> ["6_1.U4(3)", "2.U4(3)", "2.U4(3).2_2’", "6_1.U4(3).2_2’"],
> ["6_2.U4(3)", "2.U4(3)", "2.U4(3).2_1", "6_2.U4(3).2_1"],
> ["6_2.U4(3)", "2.U4(3)", "2.U4(3).2_3’", "6_2.U4(3).2_3’"],
> ["12_1.U4(3)", "4.U4(3)", "4.U4(3).2_1", "12_1.U4(3).2_1"],
> ["12_2.U4(3)", "4.U4(3)", "4.U4(3).2_1", "12_2.U4(3).2_1"],
> ["3.G2(3)", "G2(3)", "G2(3).2", "3.G2(3).2"],
> ["3.U3(8)", "U3(8)", "U3(8).2", "3.U3(8).2"],
> ["3.U3(8).3_1", "U3(8).3_1", "U3(8).6", "3.U3(8).6"],
> ["3.J3", "J3", "J3.2", "3.J3.2"],
> ["3.U3(11)", "U3(11)", "U3(11).2", "3.U3(11).2"],
> ["3.McL", "McL", "McL.2", "3.McL.2"],
> ["3.O7(3)", "O7(3)", "O7(3).2", "3.O7(3).2"],
> ["6.O7(3)", "2.O7(3)", "2.O7(3).2", "6.O7(3).2"],
> ["3.U6(2)", "U6(2)", "U6(2).2", "3.U6(2).2"],
> ["6.U6(2)", "2.U6(2)", "2.U6(2).2", "6.U6(2).2"],
> ["3.Suz", "Suz", "Suz.2", "3.Suz.2"],
> ["6.Suz", "2.Suz", "2.Suz.2", "6.Suz.2"],
> ["3.ON", "ON", "ON.2", "3.ON.2"],
> ["3.Fi22", "Fi22", "Fi22.2", "3.Fi22.2"],
> ["6.Fi22", "2.Fi22", "2.Fi22.2", "6.Fi22.2"],
> ["3.2E6(2)", "2E6(2)", "2E6(2).2", "3.2E6(2).2"],
> ["6.2E6(2)", "2.2E6(2)", "2.2E6(2).2", "6.2E6(2).2"],
> ["3.F3+", "F3+", "F3+.2", "3.F3+.2"],
>];;

(We need not consider groups 3.U3(8).6′ and 3.U3(8).6′, see Section 2.4.7.)
Note that the groups of the types 121.L3(4).21 and 122.L3(4).21 have central subgroups of order

six, so we cannot choose G equal to 41.L3(4) and 42.L3(4), respectively, in these cases. See Sec-
tion 2.4.4 for the construction of these tables.

Also in the following cases, |A| and |M| are coprime, we have |M| = 3 and |A| = 2. The group
M.G has a central subgroup of the type 22× 3, and A acts on this group by inverting the elements in
the subgroup of order 3 and by swapping two involutions in the Klein four group.

Example
gap> Append(listMGA, [
> ["(2^2x3).L3(4)", "2^2.L3(4)", "2^2.L3(4).2_2", "(2^2x3).L3(4).2_2"],
> ["(2^2x3).L3(4)", "2^2.L3(4)", "2^2.L3(4).2_3", "(2^2x3).L3(4).2_3"],
> ["(2^2x3).U6(2)", "2^2.U6(2)", "2^2.U6(2).2", "(2^2x3).U6(2).2"],
> ["(2^2x3).2E6(2)", "2^2.2E6(2)", "2^2.2E6(2).2", "(2^2x3).2E6(2).2"],
>]);

Additionally, there are a few cases where A has order two, and G.A has a factor group of the
type 22, and a few cases where M has the type 22 and A is of order three and acts transitively on the

Computations with the GAP Character Table Library 69

involutions in M.
Example

gap> Append(listMGA, [
> ["3.A6.2_3", "A6.2_3", "A6.2^2", "3.A6.2^2"],
> ["3.L3(4).2_1", "L3(4).2_1", "L3(4).2^2", "3.L3(4).2^2"],
> ["3_1.U4(3).2_2", "U4(3).2_2", "U4(3).(2^2)_{122}",
> "3_1.U4(3).(2^2)_{122}"],
> ["3_2.U4(3).2_3", "U4(3).2_3", "U4(3).(2^2)_{133}",
> "3_2.U4(3).(2^2)_{133}"],
> ["3^2.U4(3).2_3’", "3_2.U4(3).2_3’", "3_2.U4(3).(2^2)_{133}",
> "3^2.U4(3).(2^2)_{133}"],
> ["2^2.L3(4)", "L3(4)", "L3(4).3", "2^2.L3(4).3"],
> ["(2^2x3).L3(4)", "3.L3(4)", "3.L3(4).3", "(2^2x3).L3(4).3"],
> ["2^2.L3(4).2_1", "L3(4).2_1", "L3(4).6", "2^2.L3(4).6"],
> ["2^2.Sz(8)", "Sz(8)", "Sz(8).3", "2^2.Sz(8).3"],
> ["2^2.U6(2)", "U6(2)", "U6(2).3", "2^2.U6(2).3"],
> ["(2^2x3).U6(2)", "3.U6(2)", "3.U6(2).3", "(2^2x3).U6(2).3"],
> ["2^2.O8+(2)", "O8+(2)", "O8+(2).3", "2^2.O8+(2).3"],
> ["2^2.O8+(3)", "O8+(3)", "O8+(3).3", "2^2.O8+(3).3"],
> ["2^2.2E6(2)", "2E6(2)", "2E6(2).3", "2^2.2E6(2).3"],
>]);

The constructions of the character tables of groups of the types 42.L3(4).23, 122.L3(4).23,
121.U4(3).2′2 and 122.U4(3).2′3 is described in Section 2.4.5 and 2.4.6, in these cases the GAP func-
tions return several possible tables.

The construction of the various character table of groups of the types 41.L3(4).22 and 42.L3(4).22

are described in Section 2.6.7.
The following function takes the ordinary character tables of the groups M.G, G, and G.A, a

string to be used as the Identifier (Reference: Identifier for tables of marks) value of the char-
acter table of M.G.A, and the character table of M.G.A that is contained in the GAP Character Table
Library; the function first computes the possible actions of G.A on the classes of M.G, using the func-
tion PossibleActionsForTypeMGA (CTblLib: PossibleActionsForTypeMGA), then computes the
union of possible character tables for these actions, and then representatives up to permutation equiv-
alence; if there is only one solution then the result table is compared with the library table.

Example
gap> ConstructOrdinaryMGATable:= function(tblMG, tblG, tblGA, name, lib)
> local acts, poss, trans;
>
> acts:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
> poss:= Concatenation(List(acts, pi ->
> PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, pi,
> name)));
> poss:= RepresentativesCharacterTables(poss);
> if Length(poss) = 1 then
> # Compare the computed table with the library table.
> if not IsCharacterTable(lib) then
> List(poss, x -> AutomorphismsOfTable(x.table));
> Print("#I no library table for ", name, "\n");
> else
> trans:= TransformingPermutationsCharacterTables(poss[1].table,
> lib);

Computations with the GAP Character Table Library 70

> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " differ\n");
> fi;
> # Compare the computed fusion with the stored one.
> if OnTuples(poss[1].MGfusMGA, trans.columns)
> <> GetFusionMap(tblMG, lib) then
> Print("#E computed and stored fusion for ", name,
> " differ\n");
> fi;
> fi;
> elif Length(poss) = 0 then
> Print("#E no solution for ", name, "\n");
> else
> Print("#E ", Length(poss), " possibilities for ", name, "\n");
> fi;
> return poss;
> end;;

The following function takes the ordinary character tables of the groups M.G, G.A, and M.G.A,
and tries to construct the p-modular character tables of M.G.A from the p-modular character tables of
the first two of these tables, for all prime divisors p of the order of M.G.A. Note that the tables of G
are not needed in the construction, only the class fusions from M.G to M.G.A and from M.G.A to G.A
must be stored.

Example
gap> ConstructModularMGATables:= function(tblMG, tblGA, ordtblMGA)
> local name, poss, p, modtblMG, modtblGA, modtblMGA, modlib, trans;
>
> name:= Identifier(ordtblMGA);
> poss:= [];
> for p in PrimeDivisors(Size(ordtblMGA)) do
> modtblMG := tblMG mod p;
> modtblGA := tblGA mod p;
> if ForAll([modtblMG, modtblGA], IsCharacterTable) then
> modtblMGA:= BrauerTableOfTypeMGA(modtblMG, modtblGA, ordtblMGA);
> Add(poss, modtblMGA);
> modlib:= ordtblMGA mod p;
> if IsCharacterTable(modlib) then
> trans:= TransformingPermutationsCharacterTables(modtblMGA.table,
> modlib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " mod ", p, " differ\n");
> fi;
> else
> AutomorphismsOfTable(modtblMGA.table);
> Print("#I no library table for ", name, " mod ", p, "\n");
> fi;
> else
> Print("#I not all input tables for ", name, " mod ", p,
> " available\n");
> fi;

Computations with the GAP Character Table Library 71

> od;
>
> return poss;
> end;;

Now we run the constructions for the cases in the list. Note that in order to avoid conflicts of the
class fusions that arise in the construction with the class fusions that are already stored on the library
tables, we choose identifiers for the result tables that are different from the identifiers of the library
tables.

Example
gap> for input in listMGA do
> tblMG := CharacterTable(input[1]);
> tblG := CharacterTable(input[2]);
> tblGA := CharacterTable(input[3]);
> name := Concatenation("new", input[4]);
> lib := CharacterTable(input[4]);
> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
> if 1 <> Length(poss) then
> Print("#I ", Length(poss), " possibilities for ", name, "\n");
> elif lib = fail then
> Print("#I no library table for ", input[4], "\n");
> else
> ConstructModularMGATables(tblMG, tblGA, lib);
> fi;
> od;
#I not all input tables for 3.2E6(2).2 mod 2 available
#I not all input tables for 3.2E6(2).2 mod 3 available
#I not all input tables for 3.2E6(2).2 mod 5 available
#I not all input tables for 3.2E6(2).2 mod 7 available
#I not all input tables for 3.2E6(2).2 mod 11 available
#I not all input tables for 3.2E6(2).2 mod 13 available
#I not all input tables for 3.2E6(2).2 mod 17 available
#I not all input tables for 3.2E6(2).2 mod 19 available
#I not all input tables for 6.2E6(2).2 mod 2 available
#I not all input tables for 6.2E6(2).2 mod 3 available
#I not all input tables for 6.2E6(2).2 mod 5 available
#I not all input tables for 6.2E6(2).2 mod 7 available
#I not all input tables for 6.2E6(2).2 mod 11 available
#I not all input tables for 6.2E6(2).2 mod 13 available
#I not all input tables for 6.2E6(2).2 mod 17 available
#I not all input tables for 6.2E6(2).2 mod 19 available
#I not all input tables for 3.F3+.2 mod 2 available
#I not all input tables for 3.F3+.2 mod 3 available
#I not all input tables for 3.F3+.2 mod 5 available
#I not all input tables for 3.F3+.2 mod 7 available
#I not all input tables for 3.F3+.2 mod 13 available
#I not all input tables for 3.F3+.2 mod 17 available
#I not all input tables for 3.F3+.2 mod 29 available
#I not all input tables for (2^2x3).2E6(2).2 mod 2 available
#I not all input tables for (2^2x3).2E6(2).2 mod 3 available
#I not all input tables for (2^2x3).2E6(2).2 mod 5 available
#I not all input tables for (2^2x3).2E6(2).2 mod 7 available

Computations with the GAP Character Table Library 72

#I not all input tables for (2^2x3).2E6(2).2 mod 11 available
#I not all input tables for (2^2x3).2E6(2).2 mod 13 available
#I not all input tables for (2^2x3).2E6(2).2 mod 17 available
#I not all input tables for (2^2x3).2E6(2).2 mod 19 available
#I not all input tables for 3^2.U4(3).(2^2)_{133} mod 2 available
#I not all input tables for 3^2.U4(3).(2^2)_{133} mod 5 available
#I not all input tables for 3^2.U4(3).(2^2)_{133} mod 7 available
#I not all input tables for 2^2.O8+(3).3 mod 5 available
#I not all input tables for 2^2.O8+(3).3 mod 7 available
#I not all input tables for 2^2.O8+(3).3 mod 13 available
#I not all input tables for 2^2.2E6(2).3 mod 2 available
#I not all input tables for 2^2.2E6(2).3 mod 3 available
#I not all input tables for 2^2.2E6(2).3 mod 5 available
#I not all input tables for 2^2.2E6(2).3 mod 7 available
#I not all input tables for 2^2.2E6(2).3 mod 11 available
#I not all input tables for 2^2.2E6(2).3 mod 13 available
#I not all input tables for 2^2.2E6(2).3 mod 17 available
#I not all input tables for 2^2.2E6(2).3 mod 19 available

We do not get any unexpected output, so the character tables in question are determined by the
inputs.

Alternative constructions of the character tables of 3.A6.22, 3.L3(4).22, and 32.U4(3).(22)133 can
be found in Section 2.6.2.

2.4.4 More Atlas Tables of the Type M.G.A

In the following situations, we have |A| = 2, and |M| is a multiple of 2. The result turns out to be
unique up to isoclinism, see Section 2.3.1.

First, there are some cases where the centre of M.G is a cyclic group of order four, and |M| = 2
holds.

Example
gap> listMGA2:= [
> ["4_1.L3(4)", "2.L3(4)", "2.L3(4).2_1", "4_1.L3(4).2_1"],
> ["4_1.L3(4)", "2.L3(4)", "2.L3(4).2_2", "4_1.L3(4).2_2"],
> ["4_2.L3(4)", "2.L3(4)", "2.L3(4).2_1", "4_2.L3(4).2_1"],
> ["4.M22", "2.M22", "2.M22.2", "4.M22.2"],
> ["4.U4(3)", "2.U4(3)", "2.U4(3).2_2", "4.U4(3).2_2"],
> ["4.U4(3)", "2.U4(3)", "2.U4(3).2_3", "4.U4(3).2_3"],
>];;

Note that the groups 41.L3(4).23 and 42.L3(4).22 and their isoclinic variants have centres of or-
der four, so they do not appear here. The construction of the character table of 42.L3(4).23 is more
involved, it is described in Section 2.4.5.

Also in the following cases, we have |M| = 2, but the situation is different because M.G has a
central subgroup of the type 22 containing a unique subgroup of order 2 that is central in M.G.A.

Example
gap> Append(listMGA2, [
> ["2^2.L3(4)", "2.L3(4)", "2.L3(4).2_2", "2^2.L3(4).2_2"],
> ["2^2.L3(4)", "2.L3(4)", "2.L3(4).2_3", "2^2.L3(4).2_3"],
> ["2^2.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123}", "2^2.L3(4).2^2"],

Computations with the GAP Character Table Library 73

> ["2^2.O8+(2)", "2.O8+(2)", "2.O8+(2).2", "2^2.O8+(2).2"],
> ["2^2.U6(2)", "2.U6(2)", "2.U6(2).2", "2^2.U6(2).2"],
> ["2^2.2E6(2)", "2.2E6(2)", "2.2E6(2).2", "2^2.2E6(2).2"],
>]);

Next there are two constructions for G = 6.L3(4), with |M|= 12 and |A|= 2. Note that the groups
121.L3(4).21 and 122.L3(4).21 have central subgroups of the order six, so we cannot use the factor
groups 41.L3(4).21 and 42.L3(4).21, respectively, for the constructions.

Example
gap> Append(listMGA2, [
> ["12_1.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_1.L3(4).2_1"],
> ["12_2.L3(4)", "6.L3(4)", "6.L3(4).2_1", "12_2.L3(4).2_1"],
>]);

Next there are alternative constructions for tables which have been constructed in Section 2.4.3.
There we had viewed the groups of the structure 12.S.2, for a simple group S, as 3.G.2 with G = 4.S.
Here we view these groups as 2.G.2 with G = 6.S, which means that we do not prescribe the 4.S.2
type factor group. So it is not surprising that we get more than one solution, and that the computation
of the 2-power map of 12.S.2 is more involved. Note that the construction of the character table of
122.L3(4).23 is more involved, it is described in Section 2.4.5.

Example
gap> Append(listMGA2, [
> ["12.M22", "6.M22", "6.M22.2", "12.M22.2"],
> ["12_1.L3(4)", "6.L3(4)", "6.L3(4).2_2", "12_1.L3(4).2_2"],
> ["12_1.U4(3)", "6_1.U4(3)", "6_1.U4(3).2_2", "12_1.U4(3).2_2"],
> ["12_2.U4(3)", "6_2.U4(3)", "6_2.U4(3).2_3", "12_2.U4(3).2_3"],
>]);

Finally, there are alternative constructions for the cases where the group M.G has a central sub-
group of the type 22×3, and A acts on this group by inverting the elements in the subgroup of order 3
and by swapping two involutions in the Klein four group.

Example
gap> Append(listMGA2, [
> ["(2^2x3).L3(4)", "6.L3(4)", "6.L3(4).2_2", "(2^2x3).L3(4).2_2"],
> ["(2^2x3).L3(4)", "6.L3(4)", "6.L3(4).2_3", "(2^2x3).L3(4).2_3"],
> ["(2^2x3).U6(2)", "6.U6(2)", "6.U6(2).2", "(2^2x3).U6(2).2"],
> ["(2^2x3).2E6(2)", "6.2E6(2)", "6.2E6(2).2", "(2^2x3).2E6(2).2"],
>]);

Now we run the constructions for the cases in the list.
Example

gap> for input in listMGA2 do
> tblMG := CharacterTable(input[1]);
> tblG := CharacterTable(input[2]);
> tblGA := CharacterTable(input[3]);
> name := Concatenation("new", input[4]);
> lib := CharacterTable(input[4]);
> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);

Computations with the GAP Character Table Library 74

> if Length(poss) = 2 then
> iso:= CharacterTableIsoclinic(poss[1].table);
> if IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
> iso)) then
> Unbind(poss[2]);
> fi;
> elif Length(poss) = 1 then
> Print("#I unique up to permutation equivalence: ", name, "\n");
> fi;
> if 1 <> Length(poss) then
> Print("#I ", Length(poss), " possibilities for ", name, "\n");
> elif lib = fail then
> Print("#I no library table for ", input[4], "\n");
> else
> ConstructModularMGATables(tblMG, tblGA, lib);
> fi;
> od;
#E 2 possibilities for new4_1.L3(4).2_1
#E 2 possibilities for new4_1.L3(4).2_2
#E 2 possibilities for new4_2.L3(4).2_1
#E 2 possibilities for new4.M22.2
#E 2 possibilities for new4.U4(3).2_2
#E 2 possibilities for new4.U4(3).2_3
#I unique up to permutation equivalence: new2^2.L3(4).2_2
#I unique up to permutation equivalence: new2^2.L3(4).2_3
#I unique up to permutation equivalence: new2^2.L3(4).2^2
#I unique up to permutation equivalence: new2^2.O8+(2).2
#I unique up to permutation equivalence: new2^2.U6(2).2
#I unique up to permutation equivalence: new2^2.2E6(2).2
#I not all input tables for 2^2.2E6(2).2 mod 2 available
#I not all input tables for 2^2.2E6(2).2 mod 3 available
#I not all input tables for 2^2.2E6(2).2 mod 5 available
#I not all input tables for 2^2.2E6(2).2 mod 7 available
#E 2 possibilities for new12_1.L3(4).2_1
#E 2 possibilities for new12_2.L3(4).2_1
#E 2 possibilities for new12.M22.2
#E 2 possibilities for new12_1.L3(4).2_2
#E 2 possibilities for new12_1.U4(3).2_2
#E 2 possibilities for new12_2.U4(3).2_3
#I unique up to permutation equivalence: new(2^2x3).L3(4).2_2
#I unique up to permutation equivalence: new(2^2x3).L3(4).2_3
#I unique up to permutation equivalence: new(2^2x3).U6(2).2
#I unique up to permutation equivalence: new(2^2x3).2E6(2).2
#I not all input tables for (2^2x3).2E6(2).2 mod 2 available
#I not all input tables for (2^2x3).2E6(2).2 mod 3 available
#I not all input tables for (2^2x3).2E6(2).2 mod 5 available
#I not all input tables for (2^2x3).2E6(2).2 mod 7 available
#I not all input tables for (2^2x3).2E6(2).2 mod 11 available
#I not all input tables for (2^2x3).2E6(2).2 mod 13 available
#I not all input tables for (2^2x3).2E6(2).2 mod 17 available
#I not all input tables for (2^2x3).2E6(2).2 mod 19 available

Computations with the GAP Character Table Library 75

Again, we do not get any unexpected output, so the character tables in question are determined up
to isoclinism by the inputs.

2.4.5 The Character Tables of 42.L3(4).23 and 122.L3(4).23

In the construction of the character table of M.G.A = 42.L3(4).23 from the tables of M.G = 42.L3(4)
and G.A = 2.L3(4).23, the action of A on the classes of M.G is uniquely determined, but we get four
possible character tables.

Example
gap> tblMG := CharacterTable("4_2.L3(4)");;
gap> tblG := CharacterTable("2.L3(4)");;
gap> tblGA := CharacterTable("2.L3(4).2_3");;
gap> name := "new4_2.L3(4).2_3";;
gap> lib := CharacterTable("4_2.L3(4).2_3");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
#E 4 possibilities for new4_2.L3(4).2_3
[rec(

MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,
12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.L3(4).2_3")),

rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,

12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.L3(4).2_3")),

rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,

12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.L3(4).2_3")),

rec(
MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 11, 10, 12,

12, 13, 14, 15, 14, 16, 17, 18, 17, 19, 20, 21, 22, 19, 22,
21, 20], table := CharacterTable("new4_2.L3(4).2_3"))]

The centre of 42.L3(4) is inverted by the action of the outer automorphism, so the existence of
two possible tables can be expected because two isoclinic groups of the type 42.L3(4).23 exist, see
Section 2.2.6.

Indeed the result consists of two pairs of isoclinic tables, so we have to decide which pair of tables
belongs to the groups of the type 42.L3(4).23.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> CharacterTableIsoclinic(poss[4].table)));
true
gap> IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
> CharacterTableIsoclinic(poss[3].table)));
true

The possible tables differ only w.r.t. the 2-power map and perhaps the element orders. The Atlas
prints the table of the split extension of M.G, this table is one of the first two possibilities.

Computations with the GAP Character Table Library 76

Example
gap> List(poss, x -> PowerMap(x.table, 2));
[[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,

21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13],
[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,

21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13],
[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,

21, 19, 21, 3, 3, 8, 8, 9, 9, 11, 11, 18, 18, 15, 15],
[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,

21, 19, 21, 3, 3, 8, 8, 11, 11, 9, 9, 18, 18, 15, 15]]

The 2-power map is not determined by the irreducible characters (and by the 2-power map of the
factor group 2.L3(4).23). We determine this map using the embedding of 42.L3(4).23 into 4.U4(3).23.
Note that L3(4).23 is a maximal subgroup of U4(3).23 (see [CCN+85, p. 52]), and that the subgroup
L3(4) of U4(3) lifts to 42.L3(4) in 4.U4(3) because no embedding of L3(4), 2.L3(4), or 41.L3(4) into
4.U4(3) is possible.

Example
gap> PossiblePowerMaps(poss[1].table, 2);
[[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,

21, 19, 21, 1, 1, 6, 6, 11, 11, 9, 9, 16, 16, 13, 13],
[1, 3, 1, 1, 3, 6, 8, 6, 4, 4, 4, 5, 16, 18, 16, 13, 15, 13, 19,

21, 19, 21, 1, 1, 6, 6, 9, 9, 11, 11, 16, 16, 13, 13]]
gap> t:= CharacterTable("4.U4(3)");;
gap> List(["L3(4)", "2.L3(4)", "4_1.L3(4)", "4_2.L3(4)"], name ->
> Length(PossibleClassFusions(CharacterTable(name), t)));
[0, 0, 0, 4]

So the split extension 42.L3(4).23 of 42.L3(4) is a subgroup of the split extension 4.U4(3).23 of
4.U4(3), and only one of the two possible tables of 42.L3(4).23 admits a class fusion into the Atlas
table of 4.U3(4).23; the construction of the latter table is shown in Section 2.4.3.

Example
gap> t2:= CharacterTable("4.U4(3).2_3");;
gap> List(poss, x -> Length(PossibleClassFusions(x.table, t2)));
[0, 16, 0, 0]

I do not know a character theoretic argument that would disprove the existence of a group whose
character table is the other candidate (or its isoclinic variant). For example, the table passes the tests
from Section 2.4.17.

(It is straightforward to compute all extensions of 42.L3(4) by an automorphism of order two. The
extensions with 34 conjugacy classes belong to the second candidate and its isoclinic variant.)

The correct table is the one that is contained in the GAP Character Table Library.
Example

gap> IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
> lib));
true
gap> ConstructModularMGATables(tblMG, tblGA, lib);;

In the construction of the character table of 122.L3(4).23, the same ambiguity arises. We resolve it
using the fact that 42.L3(4).23 occurs as a factor group, modulo the unique normal subgroup of order
three.

Computations with the GAP Character Table Library 77

Example
gap> tblMG := CharacterTable("12_2.L3(4)");;
gap> tblG := CharacterTable("6.L3(4)");;
gap> tblGA := CharacterTable("6.L3(4).2_3");;
gap> name := "new12_2.L3(4).2_3";;
gap> lib := CharacterTable("12_2.L3(4).2_3");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);;
#E 4 possibilities for new12_2.L3(4).2_3
gap> Length(poss);
4
gap> nsg:= ClassPositionsOfNormalSubgroups(poss[1].table);
[[1], [1, 5], [1, 7], [1, 4 .. 7], [1, 3 .. 7],

[1 .. 7], [1 .. 50], [1 .. 62]]
gap> List(nsg, x -> Sum(SizesConjugacyClasses(poss[1].table){ x }));
[1, 3, 2, 4, 6, 12, 241920, 483840]
gap> factlib:= CharacterTable("4_2.L3(4).2_3");;
gap> List(poss, x -> IsRecord(TransformingPermutationsCharacterTables(
> x.table / [1, 5], factlib)));
[false, true, false, false]
gap> IsRecord(TransformingPermutationsCharacterTables(poss[2].table,
> lib));
true
gap> ConstructModularMGATables(tblMG, tblGA, lib);;

2.4.6 The Character Tables of 121.U4(3).2′2 and 122.U4(3).2′3 (December 2015)

In the construction of the character table of M.G.A= 121.U4(3).2′2 from the tables of M.G= 121.U4(3)
and G.A = 2.U4(3).2′2, the action of A on the classes of M.G is uniquely determined, but we get two
possible character tables.

(Note that the groups 2.U4(3).22 and 2.U4(3).2′2 are isomorphic, but we have to take the latter one
because the stored factor fusion from 121.U4(3) to 2.U4(3) must be combined with the class fusion
from 2.U4(3) to 2.U4(3).2′2; using the library table of 2.U4(3).22 would be technically more involved.)

Example
gap> tblMG := CharacterTable("12_1.U4(3)");;
gap> tblG := CharacterTable("2.U4(3)");;
gap> tblGA := CharacterTable("2.U4(3).2_2’");;
gap> name := "new12_1.U4(3).2_2’";;
gap> lib := CharacterTable("12_1.U4(3).2_2’");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);;
#E 2 possibilities for new12_1.U4(3).2_2’
gap> ConstructModularMGATables(tblMG, tblGA, lib);;

This is not surprising, the two tables involve the two isoclinic variants of 4.U4(3).2′2 (which is
isomorphic with 4.U4(3).22) as tables of factor groups. The irreducible characters of the two tables
are equal, only the 2-power map and the element orders are different.

Example
gap> Irr(poss[1].table) = Irr(poss[2].table);
true
gap> iso:= CharacterTableIsoclinic(poss[1].table);;
gap> TransformingPermutationsCharacterTables(iso, poss[2].table);

Computations with the GAP Character Table Library 78

rec(columns := (), group := <permutation group with 5 generators>,
rows := ())

The same phenomenon occurs in the construction of the character table of M.G.A = 122.U4(3).2′3
from the tables of M.G = 122.U4(3) and G.A = 2.U4(3).2′3.

Example
gap> tblMG := CharacterTable("12_2.U4(3)");;
gap> tblG := CharacterTable("2.U4(3)");;
gap> tblGA := CharacterTable("2.U4(3).2_3’");;
gap> name := "new12_2.U4(3).2_3’";;
gap> lib := CharacterTable("12_2.U4(3).2_3’");;
gap> poss := ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);;
#E 2 possibilities for new12_2.U4(3).2_3’
gap> ConstructModularMGATables(tblMG, tblGA, lib);;
gap> iso:= CharacterTableIsoclinic(poss[1].table);;
gap> TransformingPermutationsCharacterTables(iso, poss[2].table);
rec(columns := (), group := <permutation group with 8 generators>,

rows := ())

2.4.7 Groups of the Structures 3.U3(8).31 and 3.U3(8).6 (February 2017)

The list of Improvements to the Atlas of Finite Groups [BN95] states the following, concerning the
group G =U3(8).

“There is a unique group of type 3.G.6 which contains the group of type 3.G.3 shown. But the
(unique) groups of type 3.G.6′ and 3.G.6′′ contain not this 3.G.3 but its isoclines.”

In this section we will show that this statement is not correct, in the sense that the three isoclinic
variants of groups of the structure 3.U3(8).31 are in fact isomorphic.

As a consequence, there is a unique group of the structure 3.U3(8).6, up to isomorphism. Note
that otherwise the strange situation of nonisomorphic groups 3.G.6, 3.G.6′, and 3.G.6′′ would happen,
which would be also not isoclinic because their centres are trivial.

A group of the structure 3.U3(8).31 can be obtained as the semidirect product G, say, of the group
SU(3,8) with the automorphism of the field with 64 elements that raises each field element to its
fourth power. Note that the semidirect product of SU(3,8) with the field automorphism that squares
each field element yields a group of the structure 3.U3(8).6.

First we create a permutation representation of G.
Example

gap> s:= SU(3,8);;
gap> gens:= GeneratorsOfGroup(s);;
gap> imgs1:= List(gens, m -> List(m, v -> List(v, x -> x^4)));;
gap> imgs2:= List(gens, m -> List(m, v -> List(v, x -> x^16)));;
gap> f:= GF(64);;
gap> mats:= List(gens, m -> IdentityMat(9, f));;
gap> for i in [1 .. Length(gens)] do
> mats[i]{ [1 .. 3] }{ [1 .. 3] }:= gens[i];
> mats[i]{ [4 .. 6] }{ [4 .. 6] }:= imgs1[i];
> mats[i]{ [7 .. 9] }{ [7 .. 9] }:= imgs2[i];
> od;
gap> fieldaut:= NullMat(9, 9, f);;
gap> fieldaut{ [4 .. 6] }{ [1 .. 3] }:= IdentityMat(3, f);;

Computations with the GAP Character Table Library 79

gap> fieldaut{ [7 .. 9] }{ [4 .. 6] }:= IdentityMat(3, f);;
gap> fieldaut{ [1 .. 3] }{ [7 .. 9] }:= IdentityMat(3, f);;
gap> v:= [1, 0, 0, 1, 0, 0, 1, 0, 0] * One(f);;
gap> g:= Group(Concatenation(mats, [fieldaut]));;
gap> orb:= Orbit(g, v);;
gap> Length(orb);
32319
gap> act:= Action(g, orb);;
gap> Size(act) = 3 * Size(s);
true
gap> sm:= SmallerDegreePermutationRepresentation(act);;
gap> NrMovedPoints(Image(sm));
4617
gap> g:= Image(sm);;

The next step is the construction of the central product of G and a cyclic group of order nine, of
the structure 3.(3×U3(8).31). We could try to create the factor group of 9× 3.U3(8).31 modulo a
diagonal subgroup of order three, by just applying the / operation. Since GAP would need too much
time for that, and since we know better in which situation we are, we create the desired action directly
on suitable sets on pairs.

Example
gap> c:= CyclicGroup(IsPermGroup, 9);;
gap> dp:= DirectProduct(g, c);;
gap> u:= Image(Embedding(dp, 1));;
gap> c:= Image(Embedding(dp, 2));;
gap> c3:= c.1^3;
(4618,4621,4624)(4619,4622,4625)(4620,4623,4626)
gap> z:= Centre(u);;
gap> Size(z); Length(GeneratorsOfGroup(z));
3
1
gap> diag:= Subgroup(dp, [c3 * z.1]);;
gap> orb:= Orbit(dp, [1, 4618], OnPairs);;
gap> Length(orb);
41553
gap> orb:= Set(orb);;
gap> orbs:= List(OrbitsDomain(diag, orb, OnSets), Set);;
gap> Length(orbs);
13851
gap> cp:= Action(dp, orbs, OnSetsSets);;
gap> Size(cp);
148925952

The three isoclinic variants of the structure 3.U3(8).31 appear as subgroups of index three in this
central product. (The fourth subgroup of index three is of course a central product of the structure
3.(3×U3(8)).)

Example
gap> der:= DerivedSubgroup(cp);;
gap> Index(cp, der);
9

Computations with the GAP Character Table Library 80

gap> inter:= IntermediateSubgroups(cp, der).subgroups;;
gap> z:= Centre(cp);;
gap> Size(z);
9
gap> inter:= Filtered(inter, x -> not IsSubset(x, z));;
gap> List(inter, Size);
[49641984, 49641984, 49641984]

Finally, we check that the three groups are isomorphic.
Example

gap> IsomorphismGroups(inter[1], inter[2]) <> fail;
true
gap> IsomorphismGroups(inter[1], inter[3]) <> fail;
true

Remark:
An indication that the groups might be isomorphic is the fact that their character tables are equiv-

alent, which can be shown much easier, as follows.
Example

gap> t1:= CharacterTable("3.U3(8).3_1");;
gap> t2:= CharacterTableIsoclinic(t1, rec(k:= 1));;
gap> t3:= CharacterTableIsoclinic(t1, rec(k:= 2));;
gap> TransformingPermutationsCharacterTables(t1, t2) <> fail;
true
gap> TransformingPermutationsCharacterTables(t1, t3) <> fail;
true

2.4.8 The Character Table of (22×F4(2)) : 2 < B (March 2003)

The sporadic simple group B contains a maximal subgroup N of the type (22×F4(2)) : 2, which is the
normalizer of a 2C element x in B (see [CCN+85, p. 217]).

We will see below that the normal Klein four group V in N contains two 2A elements in B. The
2A centralizer in B, a group of the structure 2.2E6(2).2, contains maximal subgroups of the type
22×F4(2). So the two 2A type subgroups C1, C2 in V are conjugate in N, and Z = 〈x〉 is the centre of
N.

rbC1 bC2 r
Z

rV
rrU r rrN

�
�
�
�
�
�

�
�
�
�
�
�

@@
@@

@@
@@

We start with computing the class fusion of the 22×F4(2) type subgroup U of N into B; in order
to speed this up, we first compute the class fusion of the F4(2) subgroup of U into B (which is unique),
and use it and the stored embedding into U for prescribing an approximation of the desired class
fusion. Additionally, we prescribe (without loss of generality) that the first involution class in V is
mapped to the class 2C of B.

Computations with the GAP Character Table Library 81

Example
gap> f42:= CharacterTable("F4(2)");;
gap> v4:= CharacterTable("2^2");;
gap> dp:= v4 * f42;
CharacterTable("V4xF4(2)")
gap> b:= CharacterTable("B");;
gap> f42fusb:= PossibleClassFusions(f42, b);;
gap> Length(f42fusb);
1
gap> f42fusdp:= GetFusionMap(f42, dp);;
gap> comp:= CompositionMaps(f42fusb[1], InverseMap(f42fusdp));
[1, 3, 3, 3, 5, 6, 6, 7, 9, 9, 9, 9, 14, 14, 13, 13, 10, 14, 14, 12,

14, 17, 15, 18, 22, 22, 22, 22, 26, 26, 22, 22, 27, 27, 28, 31, 31,
39, 39, 36, 36, 33, 33, 39, 39, 35, 41, 42, 47, 47, 49, 49, 49, 58,
58, 56, 56, 66, 66, 66, 66, 58, 58, 66, 66, 69, 69, 60, 72, 72, 75,
79, 79, 81, 81, 85, 86, 83, 83, 91, 91, 94, 94, 104, 104, 109, 109,
116, 116, 114, 114, 132, 132, 140, 140]

gap> v4fusdp:= GetFusionMap(v4, dp);
[1, 96 .. 286]
gap> comp[v4fusdp[2]]:= 4;;
gap> dpfusb:= PossibleClassFusions(dp, b, rec(fusionmap:= comp));;
gap> Length(dpfusb);
4
gap> Set(dpfusb, x -> x{ v4fusdp });
[[1, 4, 2, 2]]

As announced above, we see that V contains two 2A involutions.
Set G =U/Z, M.G =U , and G.A = N/Z. The latter group is the direct product of F4(2).2 and a

cyclic group of order 2. Next we compute the class fusion from G into G.A.
Example

gap> tblG:= dp / v4fusdp{ [1, 2] };;
gap> tblMG:= dp;;
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblGA:= c2 * CharacterTable("F4(2).2");
CharacterTable("C2xF4(2).2")
gap> GfusGA:= PossibleClassFusions(tblG, tblGA);;
gap> Length(GfusGA);
4
gap> Length(RepresentativesFusions(tblG, GfusGA, tblGA));
1

In principle, we have to be careful which of these equivalent maps we choose, since the underlying
symmetries may be broken in the central extension M.G→ G, for which we choose the default factor
fusion.

However, in this situation the fusion G into G.A is unique already up to table automorphisms of
the table of G.A, so we are free to choose one map.

Example
gap> Length(RepresentativesFusions(Group(()), GfusGA, tblGA));
1
gap> StoreFusion(tblG, GfusGA[1], tblGA);

Computations with the GAP Character Table Library 82

The tables involved determine the character table of M.G.A∼= N uniquely.
Example

gap> elms:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);;
gap> Length(elms);
1
gap> poss:= PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, elms[1],
> "(2^2xF4(2)):2");;
gap> Length(poss);
1
gap> tblMGA:= poss[1].table;;

Finally, we compare the table we constructed with the one that is contained in the GAP Character
Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(tblMGA,
> CharacterTable("(2^2xF4(2)):2")));
true

2.4.9 The Character Table of 2.(S3×Fi22.2)< 2.B (March 2003)

The sporadic simple group B contains a maximal subgroup M of type S3×Fi22.2. In order to compute
the character table of its preimage M in the Schur cover 2.B, we first analyse the structure of M and
then describe the construction of the character table from known character tables.

Let Z denote the centre of 2.B. We start with M = M/Z. Its class fusion into B is uniquely
determined by the character tables.

Example
gap> s3:= CharacterTable("Dihedral", 6);;
gap> fi222:= CharacterTable("Fi22.2");;
gap> tblMbar:= s3 * fi222;;
gap> b:= CharacterTable("B");;
gap> Mbarfusb:= PossibleClassFusions(tblMbar, b);;
gap> Length(Mbarfusb);
1

The subgroup of type Fi22 lifts to the double cover 2.Fi22 (that is, a group that is not a direct
product 2×Fi22) in 2.B since 2.B admits no class fusion from Fi22.

Example
gap> 2b:= CharacterTable("2.B");;
gap> PossibleClassFusions(CharacterTable("Fi22"), 2b);
[]

So the preimage of Fi22.2 is one of the two nonisomorphic but isoclinic groups of type 2.Fi22.2,
and we have to decide which one really occurs. For that, we consider the subgroup of type 3×Fi22.2
in B, which is a 3A centralizer in B. Its preimage has the structure 3×2.Fi22.2 because the preimage of
the central group of order 3 is a cyclic group of order 6 and thus contains a normal complement of the
2.Fi22 type subgroup. And a class fusion into 2.B is possible only from the direct product containing
the 2.Fi22.2 group that is printed in the Atlas.

Computations with the GAP Character Table Library 83

Example
gap> c3:= CharacterTable("Cyclic", 3);;
gap> 2fi222:= CharacterTable("2.Fi22.2");;
gap> PossibleClassFusions(c3 * CharacterTableIsoclinic(2fi222), 2b);
[]

Next we note that the involutions in the normal subgroup S of type S3 in M lift to involutions in
2.B.

Example
gap> s3inMbar:= GetFusionMap(s3, tblMbar);
[1, 113 .. 225]
gap> s3inb:= Mbarfusb[1]{ s3inMbar };
[1, 6, 2]
gap> 2bfusb:= GetFusionMap(2b, b);;
gap> 2s3in2B:= InverseMap(2bfusb){ s3inb };
[[1, 2], [8, 9], 3]
gap> CompositionMaps(OrdersClassRepresentatives(2b), 2s3in2B);
[[1, 2], [3, 6], 2]

Thus the preimage S of S contains elements of order 6 but no elements of order 4, which implies
that S is a direct product 2×S3.

The two complements C1, C2 of Z in S are normal in the preimage N of N = S3×Fi22, which is
thus of type S3×2.Fi22. However, they are conjugate under the action of 2.Fi22.2, as no class fusion
from S3×2.Fi22.2 into 2.B is possible.

Example
gap> PossibleClassFusions(s3 * 2fi222, 2b);
[]

(More specifically, the classes of element order 36 in 2.Fi22.2 have centralizer orders 36 and 72,
so their centralizer orders in S3× 2.Fi22.2 are 216 and 432; but the centralizers of order 36 elements
in 2.B have centralizer order at most 216.)

Now let us see how the character table of M can be constructed.
Let Y denote the normal subgroup of order 3 in M, and U its centralizer in M, which has index 2

in M. Then the character table of M is determined by the tables of M/Y , U , U/Y ∼= 2.Fi22.2, and the
action of M on the classes of U .

As for M/Y , consider the normal subgroup N = NM(C1) of index 2 in M. In particular, S/Y is
central in N/Y but not in M/Y , so the character table of M/Y is determined by the tables of M/(Y Z),
N/Y ∼= 2×2.Fi22, N/(Y Z)∼= 2×Fi22, and the action of M/Y on the classes of N/Y .

Thus we proceed in two steps, starting with the computation of the character table of M/Y , for
which we choose the name according to the structure 22.Fi22.2.

r
r
Y

bC1 bC2 r
6

rS

r
Z

r rr rUrrN
rM

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

@@
@@

@@
@@

Computations with the GAP Character Table Library 84

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> 2fi22:= CharacterTable("2.Fi22");;
gap> tblNmodY:= c2 * 2fi22;;
gap> centre:= GetFusionMap(2fi22, tblNmodY){
> ClassPositionsOfCentre(2fi22) };
[1, 2]
gap> tblNmod6:= tblNmodY / centre;;
gap> tblMmod6:= c2 * fi222;;
gap> fus:= PossibleClassFusions(tblNmod6, tblMmod6);;
gap> Length(fus);
1
gap> StoreFusion(tblNmod6, fus[1], tblMmod6);
gap> elms:= PossibleActionsForTypeMGA(tblNmodY, tblNmod6, tblMmod6);;
gap> Length(elms);
1
gap> poss:= PossibleCharacterTablesOfTypeMGA(tblNmodY, tblNmod6, tblMmod6,
> elms[1], "2^2.Fi22.2");;
gap> Length(poss);
1
gap> tblMmodY:= poss[1].table;
CharacterTable("2^2.Fi22.2")

So we found a unique solution for the character table of M/Y . Now we compute the table of M.
For that, we have to specify the class fusion of U/Y into M/Y ; it is unique up to table automorphisms
of M/Y .

Example
gap> tblU:= c3 * 2fi222;;
gap> tblUmodY:= tblU / GetFusionMap(c3, tblU);;
gap> fus:= PossibleClassFusions(tblUmodY, tblMmodY);;
gap> Length(RepresentativesFusions(Group(()), fus, tblMmodY));
1
gap> StoreFusion(tblUmodY, fus[1], tblMmodY);
gap> elms:= PossibleActionsForTypeMGA(tblU, tblUmodY, tblMmodY);;
gap> Length(elms);
1
gap> poss:= PossibleCharacterTablesOfTypeMGA(tblU, tblUmodY, tblMmodY,
> elms[1], "(S3x2.Fi22).2");;
gap> Length(poss);
1
gap> tblM:= poss[1].table;
CharacterTable("(S3x2.Fi22).2")
gap> mfus2b:= PossibleClassFusions(tblM, 2b);;
gap> Length(RepresentativesFusions(tblM, mfus2b, 2b));
1

We did not construct M as a central extension of M, so we verify that the tables fit together; note
that this way we get also the class fusion from M onto M.

Example
gap> Irr(tblM / ClassPositionsOfCentre(tblM)) = Irr(tblMbar);
true

Computations with the GAP Character Table Library 85

Finally, we compare the table we constructed with the one that is contained in the GAP Character
Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(tblM,
> CharacterTable("(S3x2.Fi22).2")));
true

2.4.10 The Character Table of (2×2.Fi22) : 2 < Fi24 (November 2008)

The automorphism group Fi24 of the sporadic simple group Fi′24 contains a maximal subgroup N of
the type (2×2.Fi22) : 2, whose intersection with Fi′24 is 2.Fi22.2 (see [CCN+85, p. 207]).

The normal Klein four group V in N contains two 2C elements in Fi24, because the 2C centralizer
in Fi24, a group of the structure 2×Fi23, contains maximal subgroups of the type 2× 2.Fi22, and so
the two 2C type subgroups C1, C2 in V are conjugate in N, and Z = Z(N) is the centre of N∩Fi′24.

rbC1 bC2 r
Z

rV
rrU r r N∩Fi′24

rN

�
�
�
�
�
�

�
�
�
�
�
�

@@
@@

@@
@@

With U = CN(C1), a group of the type 2× 2.Fi22, we set G = U/Z, M.G = U , and G.A = N/Z.
The latter group is the direct product of Fi22.2 and a cyclic group of order 2.

This is exactly the situation of the construction of the character table of the group that is called
22.Fi22.2 in Section 2.4.9, where this group occurs as “M/Y ”. Since the character table is uniquely
determined by the input data, it is the table we are interested in here.

So all we have to do is to compute the class fusion from this table into that of Fi24.
Example

gap> fi24:= CharacterTable("Fi24");;
gap> t:= CharacterTable("2^2.Fi22.2");;
gap> fus:= PossibleClassFusions(t, fi24);;
gap> Length(fus);
4
gap> Length(RepresentativesFusions(t, fus, fi24));
1

(It should be noted that we did not need the character table of the 2.Fi22.2 type subgroup of N in
the above construction, only the tables of 2.Fi22 and Fi22.2 were used.)

The fact that the character table of a factor of a subgroup of 2.B occurs as the character table of a
subgroup of Fi24 is not a coincidence. In fact, the groups 3.Fi24 and 2.B are subgroups of the Monster
group M, and the subgroup U = 2.(S3×Fi22.2) of 2.B normalizes an element of order three. The full
normalizer of this element in M is 3.Fi24, which means that we have established U as a (maximal)
subgroup of 3.Fi24. Note that we have constructed the character table of U in Section 2.4.9.

Let us compute the class fusion of U into 3.Fi24.
Example

gap> t:= CharacterTable("(S3x2.Fi22).2");;
gap> 3fi24:= CharacterTable("3.Fi24");;

Computations with the GAP Character Table Library 86

gap> fus:= PossibleClassFusions(t, 3fi24);;
gap> Length(fus);
16
gap> Length(RepresentativesFusions(t, fus, 3fi24));
1
gap> GetFusionMap(t, 3fi24) in fus;
true

Moreover, U turns out to be the full normalizer of a 6A element in M,
Example

gap> m:= CharacterTable("M");;
gap> tfusm:= PossibleClassFusions(t, m);;
gap> Length(tfusm);
4
gap> Length(RepresentativesFusions(t, tfusm, m));
1
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = 6);
[[1, 2, 142, 143]]
gap> Set(tfusm, x -> x{ nsg[1] });
[[1, 2, 4, 13]]
gap> OrdersClassRepresentatives(t){ nsg[1] };
[1, 2, 3, 6]
gap> PowerMap(m, -1)[13];
13
gap> Size(t) = 2 * SizesCentralizers(m)[13];
true

(Thus U is also the full normalizer of an element of order six in 2.B and in 3.Fi24.)

2.4.11 The Character Table of S3×2.U4(3).22 ≤ 2.Fi22 (September 2002)

The sporadic simple Fischer group Fi22 contains a maximal subgroup M of type S3 ×U4(3).22
(see [CCN+85, p. 163]). We claim that the preimage M of M in the central extension 2.Fi22 has
the structure S3×2.U4(3).22, where the factor of type 2.U4(3).22 is the one printed in the Atlas.

For that, we first note that the normal subgroup S of type S3 in M lifts to a group S which has the
structure 2×S3. This follows from the fact that all involutions in Fi22 lift to involutions in 2.Fi22 or,
equivalently, the central involution in 2.Fi22 is not a square.

r
rS3

rS

r

r
r
U ′

rU
rM

�
�
�
�
�
�

�
�
�
�
�
�

@
@

@ @
@

@
@
@

@ @
@
@

Example
gap> 2Fi22:= CharacterTable("2.Fi22");;
gap> ClassPositionsOfCentre(2Fi22);

Computations with the GAP Character Table Library 87

[1, 2]
gap> 2 in PowerMap(2Fi22, 2);
false

Second, the normal subgroup U ∼=U4(3).22 of Fi22 lifts to a nonsplit extension U in 2.Fi22, since
2.Fi22 contains no U4(3) type subgroup. Furthermore, U is the 2.U4(3).22 type group printed in the
Atlas because the isoclinic variant does not admit a class fusion into 2.Fi22.

Example
gap> PossibleClassFusions(CharacterTable("U4(3)"), 2Fi22);
[]
gap> tblU:= CharacterTable("2.U4(3).2_2");;
gap> iso:= CharacterTableIsoclinic(tblU);
CharacterTable("Isoclinic(2.U4(3).2_2)")
gap> PossibleClassFusions(iso, 2Fi22);
[]

Now there are just two possibilities. Either the two S3 type subgroups in S are normal in M (and
thus M is the direct product of any such S3 with the preimage of the U4(3).22 type subgroup), or they
are conjugate in M.

Suppose we are in the latter situation, let z be a generator of the centre of 2.Fi22, and let τ , σ be
an involution and an order three element respectively, in one of the S3 type subgroups.

Each element g ∈ U \U ′ conjugates τ to an involution in the other S3 type subgroup of S, so
g−1τg = τσ iz for some i ∈ {0,1,2}. Furthermore, it is possible to choose g as an involution.

Example
gap> derpos:= ClassPositionsOfDerivedSubgroup(tblU);;
gap> outer:= Difference([1 .. NrConjugacyClasses(tblU)], derpos);;
gap> 2 in OrdersClassRepresentatives(tblU){ outer };
true

With this choice, (gτ)2 = τσ izτ = σ−iz holds, which means that (gτ)3 squares to z. As we have
seen above, this is impossible, hence M is a direct product, as claimed.

The class fusion of M into 2.Fi22 is determined by the character tables, up to table automorphisms.
Example

gap> tblM:= CharacterTable("Dihedral", 6) * tblU;;
gap> fus:= PossibleClassFusions(tblM, 2Fi22);;
gap> Length(RepresentativesFusions(tblM, fus, 2Fi22));
1
gap> IsRecord(TransformingPermutationsCharacterTables(tblM,
> CharacterTable("2.Fi22M8")));
true

2.4.12 The Character Table of 4.HS.2≤ HN.2 (May 2002)

The maximal subgroup U of type 2.HS.2 in the sporadic simple group HN extends to a group N of
structure 4.HS.2 in the automorphism group HN.2 of HN (see [CCN+85, p. 166]).

N is the normalizer of a 4D element g ∈HN.2\HN. The centralizer C of g is of type 4.HS, which
is the central product of 2.HS and the cyclic group 〈g〉 of order 4. We have Z = Z(N) = 〈g2〉. Since
U/Z ∼= HS.2 is a complement of 〈g〉/Z in N/Z, the factor group N/Z is a direct product of HS.2 and
a cyclic group of order 2.

Computations with the GAP Character Table Library 88

rr Z

r〈g〉
rrC r rUrN

�
�
�
��

�
�
�
��

@@

@@
@@

Thus N has the structure 2.G.2, the normal subgroup 2.G being C, the factor group G.2 being
2×HS.2, and G being 2×HS. Each element in N \C inverts g, so N acts fixed point freely on
the faithful irreducible characters of C. Hence we can use PossibleCharacterTablesOfTypeMGA
(CTblLib: PossibleCharacterTablesOfTypeMGA) for constructing the character table of N from
the tables of C and N/Z and the action of N on the classes of C.

We start with the table of the central product C. It can be viewed as an isoclinic table of the direct
product of 2.HS and a cyclic group of order 2, see 2.2.4.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblC:= CharacterTableIsoclinic(CharacterTable("2.HS") * c2);;

The table of G is given as that of the factor group by the unique normal subgroup of C that consists
of two conjugacy classes.

Example
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) = 2);
[[1, 3]]
gap> tblCbar:= tblC / ord2[1];;

Finally, we construct the table of the extension G.2 and the class fusion of G into this table (which
is uniquely determined by the character tables).

Example
gap> tblNbar:= CharacterTable("HS.2") * c2;;
gap> fus:= PossibleClassFusions(tblCbar, tblNbar);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 29, 30, 31, 32,
33, 34, 35, 36, 35, 36, 37, 38, 39, 40, 41, 42, 41, 42]]

gap> StoreFusion(tblCbar, fus[1], tblNbar);

Now we compute the table automorphisms of the table of C that are compatible with the extension
N; we get two solutions.

Example
gap> elms:= PossibleActionsForTypeMGA(tblC, tblCbar, tblNbar);
[[[1], [2, 4], [3], [5], [6, 8], [7], [9], [10],

[11], [12, 14], [13], [15], [16, 18], [17], [19],
[20], [21], [22], [23], [24, 26], [25], [27],
[28, 30], [29], [31], [32, 34], [33], [35],
[36, 38], [37], [39], [40, 42], [41], [43],
[44, 46], [45], [47], [48, 50], [49], [51, 53],
[52, 54], [55], [56, 58], [57], [59], [60],
[61, 65], [62, 68], [63, 67], [64, 66], [69],
[70, 72], [71], [73], [74, 76], [75], [77, 81],

Computations with the GAP Character Table Library 89

[78, 84], [79, 83], [80, 82]],
[[1], [2, 4], [3], [5], [6, 8], [7], [9], [10],

[11], [12, 14], [13], [15, 17], [16], [18], [19],
[20], [21], [22], [23], [24, 26], [25], [27],
[28, 30], [29], [31], [32, 34], [33], [35, 37],
[36], [38], [39], [40, 42], [41], [43], [44, 46],
[45], [47, 49], [48], [50], [51, 53], [52, 54],
[55], [56, 58], [57], [59], [60], [61, 65],
[62, 68], [63, 67], [64, 66], [69, 71], [70], [72],
[73], [74, 76], [75], [77, 83], [78, 82], [79, 81],
[80, 84]]]

We compute the possible character tables arising from these two actions.
Example

gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblCbar, tblNbar, pi, "4.HS.2"));;
gap> List(poss, Length);
[0, 2]

So one of the two table automorphisms turned out to be impossible; the reason is that the cor-
responding “character table” would not admit a 2-power map. (Alternatively, we could exclude this
action on C by the fact that it is not compatible with the action of 2.HS.2 on its subgroup 2.HS, which
occurs here as the restriction of the action of N on C to that of U on C∩U .)

The other table automorphism leads to two possible character tables. This is not surprising since
N contains a subgroup of type 2.HS.2, and the above setup does not determine which of the two
isoclinism types of this group occurs. Let us look at the possible class fusions from these tables into
that of HN.2:

Example
gap> result:= poss[2];;
gap> hn2:= CharacterTable("HN.2");;
gap> possfus:= List(result, r -> PossibleClassFusions(r.table, hn2));;
gap> List(possfus, Length);
[32, 0]
gap> RepresentativesFusions(result[1].table, possfus[1], hn2);
[[1, 46, 2, 2, 47, 3, 7, 45, 4, 58, 13, 6, 46, 47, 6, 47, 7, 48,

10, 62, 20, 9, 63, 21, 12, 64, 24, 27, 49, 50, 13, 59, 14, 16,
70, 30, 18, 53, 52, 17, 54, 20, 65, 22, 36, 56, 26, 76, 39, 77,
28, 59, 58, 31, 78, 41, 34, 62, 35, 65, 2, 45, 3, 45, 6, 48, 7,
47, 17, 54, 13, 49, 13, 50, 14, 50, 18, 53, 18, 52, 21, 56, 25,
57, 27, 59, 30, 60, 44, 72, 34, 66, 35, 66, 41, 71]]

Only one of the candidates admits an embedding, and the class fusion is unique up to table auto-
morphisms. So we are done.

Finally, we compare the table we have constructed with the one that is contained in the GAP
Character Table Library.

Example
gap> libtbl:= CharacterTable("4.HS.2");;
gap> IsRecord(TransformingPermutationsCharacterTables(result[1].table,
> libtbl));
true

Computations with the GAP Character Table Library 90

(The following paragraphs have been added in May 2006.)
The Brauer tables of N = 2.G.2 can be constructed as in Section 2.4.3. Note that the Brauer tables

of C = 2.G and of N/Z = G.2 are automatically available because the ordinary tables constructed
above arose as a direct product and as an isoclinic table of a direct product, and the GAP Character
Table Library contains the Brauer tables of the direct factors involved.

Example
gap> StoreFusion(tblC, result[1].MGfusMGA, result[1].table);
gap> ForAll(PrimeDivisors(Size(result[1].table)),
> p -> IsRecord(TransformingPermutationsCharacterTables(
> BrauerTableOfTypeMGA(tblC mod p, tblNbar mod p,
> result[1].table).table, libtbl mod p)));
true

Here it is advantageous that the Brauer table of C/Z = G is not needed in the construction, since
GAP does not know how to compute the p-modular table of the ordinary table of G constructed above.
Of course we have G ∼= 2×HS, and the p-modular table of HS is known, but in the construction of
the table of G as a factor of the table of 2.G, the information is missing that the nonsolvable simple
direct factor of 2.G corresponds to the library table of HS.

2.4.13 The Character Tables of 4.A6.23, 12.A6.23, and 4.L2(25).23

For the “broken box” cases in the Atlas (see [CCN+85, p. xxiv]), the character tables can be con-
structed with the M.G.A construction method from Section 2.3.1. (The situation with 9.U3(8).33 is
more complicated, this group will be considered in Section 2.4.16.)

The group N = 4.A6.23 (see [CCN+85, p. 5]) can be described as an upward extension of the
normal subgroup C ∼= 4.A6 –which is a central product of U = 2.A6 and a cyclic group 〈g〉 of order 4–
by a cyclic group of order 2, such that the factor group of N by the central subgroup Z = 〈g2〉 of order
2 is isomorphic to a subdirect product N of M10 = A6.23 and a cyclic group of order 4 and that N acts
nontrivially on its normal subgroup 〈g〉.

rrZ

r〈g〉
rUrC

rN

�
�
��

�
�

@@

@@

Thus N has the structure 2.G.2, with 2.G=C and G.2=N. These two groups are isoclinic variants
of 2×2.A6 and of 2×M10, respectively. Each element in N \C inverts g, so it acts fixed point freely on
the faithful irreducible characters of C. Hence we can use PossibleCharacterTablesOfTypeMGA
(CTblLib: PossibleCharacterTablesOfTypeMGA) for constructing the character table of N from
the tables of C and N/Z and the action of N on the classes of C.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> 2a6:= CharacterTable("2.A6");;
gap> tblC:= CharacterTableIsoclinic(2a6 * c2);;
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),

Computations with the GAP Character Table Library 91

> x -> Length(x) = 2);
[[1, 3]]
gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("A6.2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
[[1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10]]
gap> StoreFusion(tblG, fus[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
[[[1], [2], [3], [4], [5], [6], [7, 11], [8, 12],

[9, 13], [10, 14], [15, 17], [16, 18], [19, 23],
[20, 24], [21, 25], [22, 26]],

[[1], [2, 4], [3], [5], [6], [7, 11], [8, 14],
[9, 13], [10, 12], [15], [16, 18], [17], [19, 23],
[20, 26], [21, 25], [22, 24]],

[[1], [2, 4], [3], [5], [6], [7, 11], [8, 14],
[9, 13], [10, 12], [15, 17], [16], [18], [19, 23],
[20, 26], [21, 25], [22, 24]]]

gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblG, tblNbar, pi, "4.A6.2_3"));
[[], [],

[
rec(

MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10,
11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14],

table := CharacterTable("4.A6.2_3"))]]

So we get a unique solution. It coincides with the character table of 4.A6.23 that is stored in the
GAP Character Table Library.

Example
gap> t:= poss[3][1].table;;
gap> IsRecord(TransformingPermutationsCharacterTables(t,
> CharacterTable("4.A6.2_3")));
true

Note that the first two candidates for the action lead to tables that do not admit a 2-power map. In
fact the 2-power map of the character table of 4.A6.23 is not uniquely determined by the matrix of char-
acter values. However, the 2-power map is unique up to automorphisms of this matrix; the function
PossibleCharacterTablesOfTypeMGA (CTblLib: PossibleCharacterTablesOfTypeMGA) takes
this into account, and returns only representatives, in this case one table.

As is mentioned in the Atlas (see [CCN+85, Section 6.7]), the group ΓL(2,9) contains subgroups
of the structure 4.A6.23. We can find them as follows.

Example
gap> g:= GammaL(2,9);;
gap> phi:= IsomorphismPermGroup(g);;
gap> img:= Image(phi);;
gap> der:= DerivedSubgroup(img);;
gap> derder:= DerivedSubgroup(der);;
gap> Index(img, derder);
16
gap> inter:= Filtered(IntermediateSubgroups(img, derder).subgroups,

Computations with the GAP Character Table Library 92

> s -> Size(s) = 4 * Size(derder) and
> IsCyclic(CommutatorFactorGroup(s)) and
> Size(Centre(s)) = 2);;
gap> Length(inter);
2
gap> ForAll(inter, x -> IsConjugate(img, inter[1], x));
true
gap> IsRecord(TransformingPermutationsCharacterTables(t,
> CharacterTable(inter[1])));
true

The Atlas states in [CCN+85, Section 6.7] that there is a group of the structure 22.A6.23 that is
isoclinic with 4.A6.23. We construct also the character table of the 22.A6.23 type group with the M.G.A
construction method from Section 2.3.1.

The group N = 22.A6.23 can be described as an upward extension of the normal subgroup C ∼=
2× 2.A6 by a cyclic group of order 2, such that the factor group of N by the central subgroup Z of
order 2 that is contained in U =C′ ∼= 2.A6 is isomorphic to a subdirect product N of M10 = A6.23 and
a cyclic group of order 4 and that N acts nontrivially on the centre of C, which is a Klein four group.

rb b r
Z

r rUrC

rN

�
�
�
��

�
�
�
��

@@
@@

@@

Thus N has the structure 2.G.2, with 2.G =C and G.2 = N. These latter group is an isoclinic vari-
ant of 2×M10, as in the construction of 4.A6.23. Each element in N \C swaps the two involutions in
Z(C)\Z, so it acts fixed point freely on those irreducible characters of C whose kernels do not contain
Z. Hence we can use PossibleCharacterTablesOfTypeMGA (CTblLib: PossibleCharacterTable-
sOfTypeMGA) for constructing the character table of N from the tables of C and N/Z and the action
of N on the classes of C.

Example
gap> tblC:= 2a6 * c2;;
gap> z:= GetFusionMap(2a6, tblC){ ClassPositionsOfCentre(2a6) };
[1, 3]
gap> tblG:= tblC / z;;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("A6.2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
[[1, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 9, 10]]
gap> StoreFusion(tblG, fus[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
[[[1], [2], [3], [4], [5], [6], [7, 11], [8, 12],

[9, 13], [10, 14], [15, 17], [16, 18], [19, 23],
[20, 24], [21, 25], [22, 26]],

[[1], [2, 4], [3], [5], [6], [7, 11], [8, 14],
[9, 13], [10, 12], [15], [16, 18], [17], [19, 23],
[20, 26], [21, 25], [22, 24]],

[[1], [2, 4], [3], [5], [6], [7, 11], [8, 14],

Computations with the GAP Character Table Library 93

[9, 13], [10, 12], [15, 17], [16], [18], [19, 23],
[20, 26], [21, 25], [22, 24]]]

gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblG, tblNbar, pi, "2^2.A6.2_3"));
[[], [],

[
rec(

MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 9, 6, 9, 8, 7, 10,
11, 10, 12, 13, 14, 15, 16, 13, 16, 15, 14],

table := CharacterTable("2^2.A6.2_3"))]]

So we get a unique solution.
The group N = 12.A6.23 (see [CCN+85, p. 5]) can be described as an upward extension of the

normal subgroup C ∼= 12.A6 –which is a central product of U = 6.A6 and a cyclic group 〈g〉 of order
4– by a cyclic group of order 2, such that the factor group of N by the central subgroup Z = 〈g2〉 of
order 2 is isomorphic to a subdirect product N of 3.M10 = 3.A6.23 and a cyclic group of order 4 and
that N acts nontrivially on its normal subgroup 〈g〉.

Note that N has a central subgroup Y , say, of order 3, so the situation here differs from that for
groups of the type 12.G.2 with G one of L3(4), U4(3), where the action on the normal subgroup of
order three is nontrivial.

rrZ

r〈g〉 r Y

r
rUr

rC

rN

�
�
�
��

�
�
�
��

�
�

@@

@
@

@@

Thus N has the structure 2.G.2, with 2.G=C and G.2=N. These two groups are isoclinic variants
of 2×6.A6 and of 2×3.M10, respectively. Each element in N \C inverts g, so it acts fixed point freely
on the faithful irreducible characters of C. Hence we can use PossibleCharacterTablesOfTypeMGA
(CTblLib: PossibleCharacterTablesOfTypeMGA) for constructing the character table of N from
the tables of C and N/Z and the action of N on the classes of C.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblC:= CharacterTableIsoclinic(CharacterTable("6.A6") * c2);;
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) = 2);
[[1, 7]]
gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("3.A6.2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26]
,

[1, 2, 5, 6, 3, 4, 7, 8, 11, 12, 9, 10, 13, 14, 13, 14, 15, 16,
19, 20, 17, 18, 21, 22, 25, 26, 23, 24, 21, 22, 25, 26, 23, 24

]]

Computations with the GAP Character Table Library 94

gap> rep:= RepresentativesFusions(Group(()), fus, tblNbar);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 21, 22, 23, 24, 25, 26
]]

gap> StoreFusion(tblG, rep[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
[[[1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13], [14], [15], [16], [17],
[18], [19, 23], [20, 24], [21, 25], [22, 26],
[27, 33], [28, 34], [29, 35], [30, 36], [31, 37],
[32, 38], [39, 51], [40, 52], [41, 53], [42, 54],
[43, 55], [44, 56], [45, 57], [46, 58], [47, 59],
[48, 60], [49, 61], [50, 62]],

[[1], [2, 8], [3], [4, 10], [5], [6, 12], [7],
[9], [11], [13], [14], [15], [16], [17], [18],
[19, 23], [20, 26], [21, 25], [22, 24], [27],
[28, 34], [29], [30, 36], [31], [32, 38], [33],
[35], [37], [39, 51], [40, 58], [41, 53], [42, 60],
[43, 55], [44, 62], [45, 57], [46, 52], [47, 59],
[48, 54], [49, 61], [50, 56]],

[[1], [2, 8], [3], [4, 10], [5], [6, 12], [7],
[9], [11], [13], [14], [15], [16], [17], [18],
[19, 23], [20, 26], [21, 25], [22, 24], [27, 33],
[28], [29, 35], [30], [31, 37], [32], [34], [36],
[38], [39, 51], [40, 58], [41, 53], [42, 60],
[43, 55], [44, 62], [45, 57], [46, 52], [47, 59],
[48, 54], [49, 61], [50, 56]]]

gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblG, tblNbar, pi, "12.A6.2_3"));
[[], [],

[
rec(

MGfusMGA := [1, 2, 3, 4, 5, 6, 7, 2, 8, 4, 9, 6, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 16, 19, 18, 17, 20, 21, 22,
23, 24, 25, 20, 26, 22, 27, 24, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 29, 36, 31, 38, 33, 40, 35,
30, 37, 32, 39, 34],

table := CharacterTable("12.A6.2_3"))]]

So we get again a unique solution. It coincides with the character table that is stored in the GAP
Character Table Library.

Example
gap> IsRecord(TransformingPermutationsCharacterTables(poss[3][1].table,
> CharacterTable("12.A6.2_3")));
true

The construction of the character table of 4.L2(25).23 is analogous to that of the table of 4.A6.23.
We get a unique table that coincides with the table in the GAP library.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> tblC:= CharacterTableIsoclinic(CharacterTable("2.L2(25)") * c2);;

Computations with the GAP Character Table Library 95

gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) = 2);
[[1, 3]]
gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(CharacterTable("L2(25).2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15,

16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 17,

18, 17, 18, 19, 20, 19, 20, 15, 16, 15, 16],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 19,

20, 19, 20, 15, 16, 15, 16, 17, 18, 17, 18]]
gap> rep:= RepresentativesFusions(Group(()), fus, tblNbar);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10, 11, 12, 13, 14, 13, 14, 15,

16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20]]
gap> StoreFusion(tblG, rep[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);
[[[1], [2], [3], [4], [5], [6], [7], [8], [9],

[10], [11, 13], [12, 14], [15, 19], [16, 20],
[17, 21], [18, 22], [23, 25], [24, 26], [27, 33],
[28, 34], [29, 31], [30, 32], [35, 39], [36, 40],
[37, 41], [38, 42], [43, 47], [44, 48], [45, 49],
[46, 50], [51, 55], [52, 56], [53, 57], [54, 58]],

[[1], [2, 4], [3], [5], [6], [7], [8, 10], [9],
[11], [12, 14], [13], [15, 19], [16, 22], [17, 21],
[18, 20], [23, 25], [24], [26], [27, 31], [28, 34],
[29, 33], [30, 32], [35, 39], [36, 42], [37, 41],
[38, 40], [43, 47], [44, 50], [45, 49], [46, 48],
[51, 55], [52, 58], [53, 57], [54, 56]],

[[1], [2, 4], [3], [5], [6], [7], [8, 10], [9],
[11, 13], [12], [14], [15, 19], [16, 22], [17, 21],
[18, 20], [23, 25], [24], [26], [27, 33], [28, 32],
[29, 31], [30, 34], [35, 39], [36, 42], [37, 41],
[38, 40], [43, 47], [44, 50], [45, 49], [46, 48],
[51, 55], [52, 58], [53, 57], [54, 56]]]

gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblG, tblNbar, pi, "4.L2(25).2_3"));
[[], [],

[
rec(

MGfusMGA := [1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 9, 10, 9, 11, 12,
13, 14, 15, 12, 15, 14, 13, 16, 17, 16, 18, 19, 20, 21,
22, 21, 20, 19, 22, 23, 24, 25, 26, 23, 26, 25, 24, 27,
28, 29, 30, 27, 30, 29, 28, 31, 32, 33, 34, 31, 34, 33,
32], table := CharacterTable("4.L2(25).2_3"))]]

gap> IsRecord(TransformingPermutationsCharacterTables(poss[3][1].table,
> CharacterTable("4.L2(25).2_3")));
true

Note that the group ΓL(2,25) does not contain subgroups of the structure 4.L2(25).23, since
ΓL(2,25) acts on its subgroup of scalar matrices via mapping each element to its fifth power, thus
the central subgroup of order four in GL(2,25) is central also in ΓL(2,25).

Computations with the GAP Character Table Library 96

Example
gap> g:= GammaL(2,25);;
gap> phi:= IsomorphismPermGroup(g);;
gap> img:= Image(phi);;
gap> der:= DerivedSubgroup(img);;
gap> derder:= DerivedSubgroup(der);;
gap> Index(img, derder);
48
gap> inter:= Filtered(IntermediateSubgroups(img, derder).subgroups,
> s -> Size(s) = 4 * Size(derder) and
> IsCyclic(CommutatorFactorGroup(s)) and
> Size(Centre(s)) = 2);
[]

In order to construct a representation of a group of the structure 4.L2(25).23, we can use the func-
tion CyclicExtensions from the GAP package GrpConst. We start from the index two subgroup
4.L2(25), which is a central product of SL(2,25) and a cyclic group of order four, and find exactly one
upwards extension by a cyclic group of order two, up to isomorphism, with the required properties.

Example
gap> c:= Centralizer(img, derder);;
gap> Size(c); IsCyclic(c);
24
true
gap> cgen:= MinimalGeneratingSet(c);;
gap> four:= cgen[1]^6;;
gap> s:= ClosureGroup(derder, four);;
gap> LoadPackage("GrpConst", false);
true
gap> filt:= Filtered(CyclicExtensions(s, 2),
> x -> Size(Centre(x)) = 2 and
> IsCyclic(CommutatorFactorGroup(x)));;
gap> Length(filt);
2
gap> IsomorphismGroups(filt[1], filt[2]) <> fail;
true

The character table of this group coincides with the library table.
Example

gap> TransformingPermutationsCharacterTables(CharacterTable(filt[1]),
> CharacterTable("4.L2(25).2_3")) <> fail;
true

2.4.14 The Character Table of 4.L2(49).23 (December 2020)

The character tables of the simple group L2(49) and of its extensions do not appear in the Atlas of
Finite Groups [CCN+85], but they may be regarded as Atlas tables because a data file in the format
used to produce the Atlas has been available for a long time, as is stated in [JLPW95, Appendix 2].

Analogous to L2(9) ∼= A6 and L2(25), see Section 2.4.13, the Atlas map for G = L2(49) shows
a “broken box”, since there is no group of the form 2.G.23, and a group of the structure 4.G.23 can

Computations with the GAP Character Table Library 97

be considered instead, which has a normal subgroup isomorphic with 2.(2×G) and a factor group
isomorphic with (2×G).23, see Section 2.4.13. Having its character table available has the effect that
the functions DisplayAtlasMap (CTblLib: DisplayAtlasMap for the name of a simple group) and
BrowseAtlasTable (CTblLib: BrowseAtlasTable) work with input "L2(49)".

We construct the character table of 4.L2(49).23 in the same way as for the extensions of L2(9) and
L2(25). There is a unique solution.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> 2l:= CharacterTable("2.L2(49)");;
gap> tblC:= CharacterTableIsoclinic(2l * c2);;
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) = 2);
[[1, 3]]
gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(
> CharacterTable("L2(49).2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);;
gap> Length(fus);
10
gap> StoreFusion(tblG, fus[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);;
gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblG, tblNbar, pi, "4.L2(49).2_3"));;
gap> List(poss, Length);
[0, 0, 1]
gap> t:= poss[3][1].table;
CharacterTable("4.L2(49).2_3")

Analogous to the situation with L2(9), a group of the desired structure can be found inside the
semilinear group ΓL(2,49). In fact, there is a unique class of subgroups in ΓL(2,49) that contain
SL(2,49)∼= 2.G, have the right order, have cyclic commutator factor group, and centre of order 2.

Example
gap> g:= GammaL(2,49);;
gap> phi:= IsomorphismPermGroup(g);;
gap> img:= Image(phi);;
gap> der:= DerivedSubgroup(img);;
gap> derder:= DerivedSubgroup(der);;
gap> Index(img, derder);
96
gap> inter:= Filtered(IntermediateSubgroups(img, derder).subgroups,
> s -> Size(s) = 4 * Size(derder) and
> IsCyclic(CommutatorFactorGroup(s)) and
> Size(Centre(s)) = 2);;
gap> Length(inter);
4
gap> ForAll(inter, x -> IsConjugate(img, inter[1], x));
true

The character tables of these groups coincide with the table constructed above, and with the library
table.

Computations with the GAP Character Table Library 98

Example
gap> TransformingPermutationsCharacterTables(t,
> CharacterTable(inter[1])) <> fail;
true
gap> TransformingPermutationsCharacterTables(t,
> CharacterTable("4.L2(49).2_3")) <> fail;
true

2.4.15 The Character Table of 4.L2(81).23 (December 2020)

We start with the character-theoretic construction of this table, analogous to the cases of L2(9), L2(25),
L2(49).

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> 2l:= CharacterTable("2.L2(81)");;
gap> tblC:= CharacterTableIsoclinic(2l * c2);;
gap> ord2:= Filtered(ClassPositionsOfNormalSubgroups(tblC),
> x -> Length(x) = 2);
[[1, 3]]
gap> tblG:= tblC / ord2[1];;
gap> tblNbar:= CharacterTableIsoclinic(
> CharacterTable("L2(81).2_3") * c2);;
gap> fus:= PossibleClassFusions(tblG, tblNbar);;
gap> Length(fus);
40
gap> fusreps:= RepresentativesFusions(tblG, fus, tblNbar);;
gap> Length(fusreps);
1
gap> StoreFusion(tblG, fusreps[1], tblNbar);
gap> elms:= PossibleActionsForTypeMGA(tblC, tblG, tblNbar);;
gap> poss:= List(elms, pi -> PossibleCharacterTablesOfTypeMGA(
> tblC, tblG, tblNbar, pi, "4.L2(81).2_3"));;
gap> List(poss, Length);
[0, 0, 1]
gap> TransformingPermutationsCharacterTables(poss[3][1].table,
> CharacterTable("4.L2(81).2_3")) <> fail;
true

Like in the case of L2(25), there are no 4.L2(81).23 type subgroups in ΓL(2,81).
Example

gap> g:= GammaL(2,81);;
gap> phi:= IsomorphismPermGroup(g);;
gap> img:= Image(phi);;
gap> der:= DerivedSubgroup(img);;
gap> derder:= DerivedSubgroup(der);;
gap> Index(img, derder);
320
gap> inter:= Filtered(IntermediateSubgroups(img, derder).subgroups,
> s -> Size(s) = 4 * Size(derder) and
> IsCyclic(CommutatorFactorGroup(s)) and
> Size(Centre(s)) = 2);;

Computations with the GAP Character Table Library 99

gap> ForAll(inter, x -> IsConjugate(img, inter[1], x));
true
gap> NrConjugacyClasses(inter[1]);
52
gap> NrConjugacyClasses(CharacterTable("4.L2(81).2_3"));
112

The subgroups of ΓL(2,81) constructed above have the structure 2.L2(81).41.
Example

gap> t:= CharacterTable("2.L2(81).4_1");;
gap> NrConjugacyClasses(t);
52
gap> TransformingPermutationsCharacterTables(t,
> CharacterTable(inter[1])) <> fail;
true

Like in the case of L2(25), we can construct a group with the structure 4.L2(81).23 via the function
CyclicExtensions from the GAP package GrpConst.

Example
gap> c:= Centralizer(img, derder);;
gap> Size(c); IsCyclic(c);
80
true
gap> cgen:= MinimalGeneratingSet(c);;
gap> four:= cgen[1]^20;;
gap> s:= ClosureGroup(derder, four);;
gap> LoadPackage("GrpConst", false);
true
gap> filt:= Filtered(CyclicExtensions(s, 2),
> x -> Size(Centre(x)) = 2 and
> IsCyclic(CommutatorFactorGroup(x)));;
gap> Length(filt);
2
gap> IsomorphismGroups(filt[1], filt[2]) <> fail;
true
gap> TransformingPermutationsCharacterTables(CharacterTable(filt[1]),
> CharacterTable("4.L2(81).2_3")) <> fail;
true

2.4.16 The Character Table of 9.U3(8).33 (March 2017)

The group that is called 9.U3(8).33 in the Atlas of Finite Groups occurs as a subgroup of ΓU(3,8).
Note that GU(3,8) has the structure 3.(3×U3(8)).32 (see [CCN+85, p. 66]), and extending the sub-
group C = 3.(3×U3(8)) by the product of an element outside C with the field automorphism of order
three of GF(64) yields a group N of the structure 3.(3×U3(8)).33 whose centre has order three.

The character table of N can be constructed with the M.G.A construction method from Sec-
tion 2.3.1. The situation is similar to that with 4.A6.23, see Section 2.4.13, in particular the situation
is described by the same picture that is shown for 4.A6.23 in this section, just the subgroups Z and 〈g〉
have the orders three and nine, respectively, and C has index three in N.

Computations with the GAP Character Table Library 100

The normal subgroup C ∼= 9.U3(8) is a central product of U = 3.U3(8) and a cyclic group 〈g〉
of order 9, and the factor group of N by the central subgroup Z = 〈g3〉 of order 3 is isomorphic to
a subdirect product N of U3(8).33 and a cyclic group of order 9, such that N acts nontrivially on its
normal subgroup 〈g〉.

Thus N has the structure 3.G.3, with 3.G =C and G.3 = N. Each element in N \C raises g to its
fourth or seventh power, so it acts fixed point freely on the faithful irreducible characters of C. Hence
we can use PossibleCharacterTablesOfTypeMGA (CTblLib: PossibleCharacterTablesOfType-
MGA) for constructing the character table of N from the tables of C and N/Z and the action of N on
the classes of C.

Since we want to construct also Brauer tables of N, we have to choose the class fusion that de-
scribes the embedding of C/Z into N compatibly with the known Brauer tables of U3(8) and U3(8).33.
Note that the 2-modular tables of these groups impose additional conditions on the class fusion.

Example
gap> s:= CharacterTable("U3(8)");;
gap> s3:= CharacterTable("U3(8).3_3");;
gap> poss:= PossibleClassFusions(s, s3);;
gap> Length(poss);
4
gap> Length(RepresentativesFusions(s, poss, s3));
1
gap> smod2:= s mod 2;;
gap> s3mod2:= s3 mod 2;;
gap> good:= [];; modmap:= 0;;
gap> for map in poss do
> modmap:= CompositionMaps(InverseMap(GetFusionMap(s3mod2, s3)),
> CompositionMaps(map, GetFusionMap(smod2, s)));
> rest:= List(Irr(s3mod2), x -> x{ modmap });
> if not fail in Decomposition(Irr(smod2), rest, "nonnegative") then
> Add(good, map);
> fi;
> od;
gap> Length(good);
2

The class fusion from U3(8) to U3(8).33 is determined up to complex conjugation by the 2-modular
Brauer tables. We choose the fusion that is stored on the library tables.

Example
gap> good[2] = CompositionMaps(PowerMap(s3, -1), good[1]);
true
gap> GetFusionMap(s, s3) in good;
true
gap> sfuss3:= GetFusionMap(s, s3);;

In the next step, we construct the character tables of C/Z ∼=U3(8)×3 and N/Z ∼= (U3(8)×3).33,
and those class fusions between the two tables that are compatible with the fusion between the factors
that was chosen above (w. r. t. the stored factor fusions).

In order not to leave out some candidates, we have to consider also the table of N/Z that is obtained
from the “other” construction as an isoclinic table of 3×U3(8).33.

Computations with the GAP Character Table Library 101

(This may look complicated. It would perhaps be more natural to construct the ordinary tables
first, by considering the possible fusions, and later to adjust the choices to the conditions that are
imposed by the Brauer tables. However, the technical complications of that construction would not be
smaller in the end.)

We get four candidates, two for each of the two tables of N/Z.
Example

gap> c3:= CharacterTable("Cyclic", 3);;
gap> tblG:= s * c3;;
gap> dp:= s3 * c3;;
gap> tblGA1:= CharacterTableIsoclinic(dp, rec(k:= 1));;
gap> tblGA2:= CharacterTableIsoclinic(dp, rec(k:= 2));;
gap> good:= [];;
gap> tblGmod2:= tblG mod 2;;
gap> for tblGA in [tblGA1, tblGA2] do
> tblGAmod2:= tblGA mod 2;
> for map in PossibleClassFusions(tblG, tblGA) do
> modmap:= CompositionMaps(
> InverseMap(GetFusionMap(tblGAmod2, tblGA)),
> CompositionMaps(map, GetFusionMap(tblGmod2, tblG)));
> rest:= List(Irr(tblGAmod2), x -> x{ modmap });
> if not fail in Decomposition(Irr(tblGmod2), rest,
> "nonnegative") and
> CompositionMaps(GetFusionMap(tblGA, s3), map) =
> CompositionMaps(sfuss3, GetFusionMap(tblG, s)) then
> Add(good, [tblGA, map]);
> fi;
> od;
> od;
gap> List(good, x -> x[1]);
[CharacterTable("Isoclinic(U3(8).3_3xC3,1)"),

CharacterTable("Isoclinic(U3(8).3_3xC3,1)"),
CharacterTable("Isoclinic(U3(8).3_3xC3,2)"),
CharacterTable("Isoclinic(U3(8).3_3xC3,2)")]

The character table of C can be constructed with CharacterTableIsoclinic (Reference: Char-
acterTableIsoclinic) from the character table of 3× 3.U3(8). (Here we need to consider only one
variant of the table.)

Example
gap> 3s:= CharacterTable("3.U3(8)");;
gap> dp:= 3s * c3;;
gap> tblMG:= CharacterTableIsoclinic(dp);;

The construction of this table does not automatically yield a factor fusion to the table of C/Z. We
form the relevant factor table, which has the same ordering of irreducible characters, and use the factor
fusion to this table.

Example
gap> GetFusionMap(tblMG, tblG);
fail
gap> cen:= ClassPositionsOfCentre(tblMG);
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Computations with the GAP Character Table Library 102

gap> OrdersClassRepresentatives(tblMG){ cen };
[1, 9, 9, 3, 9, 9, 3, 9, 9]
gap> facttbl:= tblMG / [1, 4, 7];;
gap> tr:= TransformingPermutationsCharacterTables(facttbl, tblG);;
gap> tr.rows; tr.columns;
()
()
gap> StoreFusion(tblMG, GetFusionMap(tblMG, facttbl), tblG);

Now we compute the orbits of the possible actions of N on the classes of C, and the resulting
candidates for the character table of N.

Example
gap> posstbls:= [];;
gap> for pair in good do
> tblGA:= pair[1];
> GfusGA:= pair[2];
> tblG:= s * c3;
> StoreFusion(tblG, GfusGA, tblGA);
> for pi in PossibleActionsForTypeMGA(tblMG, tblG, tblGA) do
> for cand in PossibleCharacterTablesOfTypeMGA(
> tblMG, tblG, tblGA, pi, "test") do
> Add(posstbls, [tblGA, cand]);
> od;
> od;
> od;
gap> Length(posstbls);
32

Now we discard all those candidates that are not compatible with the 2-modular character tables.
Example

gap> compatible:= [];; r:= 0;; modr:= 0;;
gap> for pair in posstbls do
> tblGA:= pair[1];
> r:= pair[2];
> comp:= ComputedClassFusions(tblMG);
> pos:= PositionProperty(comp, x -> x.name = Identifier(r.table));
> if pos = fail then
> StoreFusion(tblMG, r.MGfusMGA, r.table);
> else
> comp[pos]:= ShallowCopy(comp[pos]);
> comp[pos].map:= r.MGfusMGA;
> fi;
> Unbind(ComputedBrauerTables(tblMG)[2]);
> modr:= BrauerTableOfTypeMGA(tblMG mod 2, tblGA mod 2, r.table);
> rest:= List(Irr(modr.table), x -> x{ modr.MGfusMGA });
> dec:= Decomposition(Irr(tblMG mod 2), rest, "nonnegative");
> if not fail in dec then
> Add(compatible, pair);
> fi;
> od;
gap> Length(compatible);
8

Computations with the GAP Character Table Library 103

The remaining candidates fall into two equivalence classes.
Example

gap> tbls:= [];;
gap> for pair in compatible do
> if ForAll(tbls, t -> TransformingPermutationsCharacterTables(
> t, pair[2].table) = fail) then
> Add(tbls, pair[2].table);
> fi;
> od;
gap> Length(tbls);
2

The two tables can be distinguished by their element orders one contains the element order 54
and the other does not or by their 4th power maps the classes of element order 171 in one table are
not fixed by the 4th power map, the corresponding classes in the other table are fixed.

Example
gap> Set(OrdersClassRepresentatives(tbls[1]));
[1, 2, 3, 4, 6, 7, 9, 12, 18, 19, 21, 27, 36, 54, 57, 63, 171]
gap> Set(OrdersClassRepresentatives(tbls[2]));
[1, 2, 3, 4, 6, 7, 9, 12, 18, 19, 21, 27, 36, 57, 63, 171]
gap> pos171:= Positions(OrdersClassRepresentatives(tbls[1]), 171);;
gap> pow4:= PowerMap(tbls[1], 4);;
gap> ForAny([1 .. Length(pos171)],
> i -> pos171[i] = pow4[pos171[i]]);
false
gap> pos171:= Positions(OrdersClassRepresentatives(tbls[2]), 171);;
gap> PowerMap(tbls[2], 4){ pos171 } = pos171;
true

Thus we can use the group N to decide which table is correct. For that, we construct a permutation
representation of N.

Example
gap> gu:= GU(3,8);;
gap> orbs:= OrbitsDomain(gu, Elements(GF(64)^3));;
gap> List(orbs, Length);
[1, 32319, 32832, 32832, 32832, 32832, 32832, 32832, 32832]
gap> orb:= SortedList(First(orbs, x -> Length(x) = 32319));;
gap> actgu:= Action(gu, orb, OnRight);;
gap> Size(actgu) = Size(gu);
true
gap> cen:= Centre(actgu);;
gap> Size(cen);
9
gap> u:= ClosureGroup(DerivedSubgroup(actgu), cen);;
gap> aut:= v -> List(v, x -> x^4);;
gap> pi:= PermList(List(orb, v -> PositionSorted(orb, aut(v))));;
gap> outer:= First(GeneratorsOfGroup(actgu), x -> not x in u);;
gap> g:= ClosureGroup(u, pi * outer);;

Before we perform computations with the group, we reduce the degree of the representation by a
factor of 7.

Computations with the GAP Character Table Library 104

Example
gap> g:= Group(SmallGeneratingSet(g));;
gap> allbl:= AllBlocks(g);;
gap> List(allbl, Length);
[3, 21, 63, 9, 7]
gap> orb:= Orbit(g, First(allbl, x -> Length(x) = 7), OnSets);;
gap> act:= Action(g, orb, OnSets);;
gap> Size(act) = Size(g);
true
gap> NrMovedPoints(act);
4617

Now we test whether an element of order 171 in N is conjugate in N to its fourth power.
Example

gap> repeat x:= PseudoRandom(act); until Order(x) = 171;
gap> IsConjugate(act, x, x^4);
true

This means that the second of the candidate tables constructed above is the right one. The character
table with the identifier "9.U3(8).3_3" in the character table library is equivalent to this table.

Example
gap> lib:= CharacterTable("9.U3(8).3_3");;
gap> IsRecord(TransformingPermutationsCharacterTables(tbls[2], lib));
true

GAP’s currently available methods for the automatic computation of character tables would re-
quire too much space when called with this permutation group. Using interactive methods, one can
compute the character table with GAP. The table obtained this way is equivalent to the library char-
acter table with the identifier "9.U3(8).3_3".

I do not know how to disprove the other candidate with character-theoretic arguments. Thus this
table provides an example of a pseudo character table, see Section 2.4.17.

2.4.17 Pseudo Character Tables of the Type M.G.A (May 2004)

With the construction method for character tables of groups of the type M.G.A, one can construct tables
that have many properties of character tables but that are not character tables of groups, cf. [Gag86].
For example, the group 3.A6.23 has a central subgroup of order 3, so it is not of the type M.G.A with
fixed-point free action on the faithful characters of M.G.

However, if we apply the “M.G.A construction” to the groups M.G = 3.A6, G = A6, and G.A =
A6.23 then we get a (in this case unique) result.

Example
gap> tblMG := CharacterTable("3.A6");;
gap> tblG := CharacterTable("A6");;
gap> tblGA := CharacterTable("A6.2_3");;
gap> elms:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
[[[1], [2, 3], [4], [5, 6], [7, 8], [9], [10, 11],

[12, 15], [13, 17], [14, 16]]]
gap> poss:= PossibleCharacterTablesOfTypeMGA(
> tblMG, tblG, tblGA, elms[1], "pseudo");

Computations with the GAP Character Table Library 105

[rec(
MGfusMGA := [1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 8, 10,

9], table := CharacterTable("pseudo"))]

Such a table automatically satisfies the orthogonality relations, and the tensor product of two “irre-
ducible characters” of which at least one is a row from G.A decomposes into a sum of the “irreducible
characters”, where the coefficients are nonnegative integers.

In this example, any tensor product decomposes with nonnegative integral coefficients, n-th sym-
metrizations of “irreducible characters” decompose, for n ≤ 5, and the “class multiplication coeffi-
cients” are nonnegative integers.

Example
gap> pseudo:= poss[1].table;
CharacterTable("pseudo")
gap> Display(pseudo);
pseudo

2 4 3 4 3 . 3 2 . . . 2 3 3
3 3 3 1 1 2 1 1 1 1 1 . . .
5 1 1 1 1 1 . . .

1a 3a 2a 6a 3b 4a 12a 5a 15a 15b 4b 8a 8b
2P 1a 3a 1a 3a 3b 2a 6a 5a 15a 15b 2a 4a 4a
3P 1a 1a 2a 2a 1a 4a 4a 5a 5a 5a 4b 8a 8b
5P 1a 3a 2a 6a 3b 4a 12a 1a 3a 3a 4b 8b 8a

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 1 1 -1 -1 -1
X.3 10 10 2 2 1 -2 -2
X.4 16 16 . . -2 . . 1 1 1 . . .
X.5 9 9 1 1 . 1 1 -1 -1 -1 1 -1 -1
X.6 9 9 1 1 . 1 1 -1 -1 -1 -1 1 1
X.7 10 10 -2 -2 1 B -B
X.8 10 10 -2 -2 1 -B B
X.9 6 -3 -2 1 . 2 -1 1 A /A . . .
X.10 6 -3 -2 1 . 2 -1 1 /A A . . .
X.11 12 -6 4 -2 . . . 2 -1 -1 . . .
X.12 18 -9 2 -1 . 2 -1 -2 1 1 . . .
X.13 30 -15 -2 1 . -2 1

A = -E(15)-E(15)^2-E(15)^4-E(15)^8
= (-1-Sqrt(-15))/2 = -1-b15

B = E(8)+E(8)^3
= Sqrt(-2) = i2

gap> IsInternallyConsistent(pseudo);
true
gap> irr:= Irr(pseudo);;
gap> test:= Concatenation(List([2 .. 5],
> n -> Symmetrizations(pseudo, irr, n)));;
gap> Append(test, Set(Tensored(irr, irr)));
gap> fail in Decomposition(irr, test, "nonnegative");
false

Computations with the GAP Character Table Library 106

gap> if ForAny(Tuples([1 .. NrConjugacyClasses(pseudo)], 3),
> t -> not ClassMultiplicationCoefficient(pseudo, t[1], t[2], t[3])
> in NonnegativeIntegers) then
> Error("contradiction");
> fi;

I do not know a character-theoretic argument for showing that this table is not the character table
of a group, but we can use the following group-theoretic argument. Suppose that the group G, say, has
the above character table. Then G has a unique composition series with factors of the orders 3, 360,
and 2, respectively. Let N denote the normal subgroup of order 3 in G. The factor group F = G/N is
an automorphic extension of A6, and according to [CCN+85, p. 4] it is isomorphic with M10 = A6.23
and has Sylow 3 normalizers of the structure 32 : Q8. Since the Sylow 3 subgroup of G is a self-
centralizing nonabelian group of order 33 and of exponent 3, the Sylow 3 normalizers in G have the
structure 31+2

+ : Q8, but the Q8 type subgroups of Aut(31+2
+) act trivially on the centre of 31+2

+ , contrary
to the situation in the above table.

In general, this construction need not produce tables for which all symmetrizations of irreducible
characters decompose properly. For example, applying PossibleCharacterTablesOfTypeMGA
(CTblLib: PossibleCharacterTablesOfTypeMGA) to the case M.G = 3.L3(4) and G.A = L3(4).21
does not yield a table because the function suppresses tables that do not admit p-th power maps, for
prime divisors p of the order of M.G.A, and in this case no compatible 2-power map exists.

Example
gap> tblMG := CharacterTable("3.L3(4)");;
gap> tblG := CharacterTable("L3(4)");;
gap> tblGA := CharacterTable("L3(4).2_1");;
gap> elms:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
[[[1], [2, 3], [4], [5, 6], [7], [8], [9, 10],

[11], [12, 13], [14], [15, 16], [17, 20], [18, 22],
[19, 21], [23, 26], [24, 28], [25, 27]]]

gap> PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, elms[1], "?");
[]

Also, it may happen that already PossibleActionsForTypeMGA (CTblLib: PossibleActions-
ForTypeMGA) returns an empty list. Examples are M.G = 31.U4(3), G.A = U4(3).22 and M.G =
32.U4(3), G.A =U4(3).23.

Example
gap> tblG := CharacterTable("U4(3)");;
gap> tblMG := CharacterTable("3_1.U4(3)");;
gap> tblGA := CharacterTable("U4(3).2_2");;
gap> PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
[]
gap> tblMG:= CharacterTable("3_2.U4(3)");;
gap> tblGA:= CharacterTable("U4(3).2_3");;
gap> PossibleActionsForTypeMGA(tblMG, tblG, tblGA);
[]

Also the sections 2.4.5 and 2.4.16 provide examples of pseudo character tables. If one does not
use the arguments about Brauer tables then the latter section presents in fact several pseudo character
tables.

Computations with the GAP Character Table Library 107

2.4.18 Some Extra-ordinary p-Modular Tables of the Type M.G.A (September 2005)

For a group M.G.A in the sense of Section 2.3.1 such that not all ordinary irreducible characters χ

have the property that M is contained in the kernel of χ or χ is induced from M.G, it may happen that
there are primes p such that all irreducible p-modular characters have this property. This happens if
and only if the preimages in M.G.A of each p-regular conjugacy class in G.A\G form one conjugacy
class.

The following function can be used to decide whether this situation applies to a character table
in the GAP Character Table Library; here we assume that for the library table of a group with the
structure M.G.A, the class fusions from M.G and to G.A are stored.

Example
gap> FindExtraordinaryCase:= function(tblMGA)
> local result, der, nsg, tblMGAclasses, orders, tblMG,
> tblMGfustblMGA, tblMGclasses, pos, M, Mimg, tblMGAfustblGA, tblGA,
> outer, inv, filt, other, primes, p;
> result:= [];
> der:= ClassPositionsOfDerivedSubgroup(tblMGA);
> nsg:= ClassPositionsOfNormalSubgroups(tblMGA);
> tblMGAclasses:= SizesConjugacyClasses(tblMGA);
> orders:= OrdersClassRepresentatives(tblMGA);
> if Length(der) < NrConjugacyClasses(tblMGA) then
> # Look for tables of normal subgroups of the form $M.G$.
> for tblMG in Filtered(List(NamesOfFusionSources(tblMGA),
> CharacterTable), x -> x <> fail) do
> tblMGfustblMGA:= GetFusionMap(tblMG, tblMGA);
> tblMGclasses:= SizesConjugacyClasses(tblMG);
> pos:= Position(nsg, Set(tblMGfustblMGA));
> if pos <> fail and
> Size(tblMG) = Sum(tblMGAclasses{ nsg[pos] }) then
> # Look for normal subgroups of the form M.
> for M in Difference(ClassPositionsOfNormalSubgroups(tblMG),
> [[1], [1 .. NrConjugacyClasses(tblMG)]]) do
> Mimg:= Set(tblMGfustblMGA{ M });
> if Sum(tblMGAclasses{ Mimg }) = Sum(tblMGclasses{ M }) then
> tblMGAfustblGA:= First(ComputedClassFusions(tblMGA),
> r -> ClassPositionsOfKernel(r.map) = Mimg);
> if tblMGAfustblGA <> fail then
> tblGA:= CharacterTable(tblMGAfustblGA.name);
> tblMGAfustblGA:= tblMGAfustblGA.map;
> outer:= Difference([1 .. NrConjugacyClasses(tblGA)],
> CompositionMaps(tblMGAfustblGA, tblMGfustblMGA));
> inv:= InverseMap(tblMGAfustblGA){ outer };
> filt:= Flat(Filtered(inv, IsList));
> if not IsEmpty(filt) then
> other:= Filtered(inv, IsInt);
> primes:= Filtered(PrimeDivisors(Size(tblMGA)),
> p -> ForAll(orders{ filt }, x -> x mod p = 0)
> and ForAny(orders{ other }, x -> x mod p <> 0));
> for p in primes do
> Add(result, [Identifier(tblMG),
> Identifier(tblMGA),
> Identifier(tblGA), p]);

Computations with the GAP Character Table Library 108

> od;
> fi;
> fi;
> fi;
> od;
> fi;
> od;
> fi;
> return result;
> end;;

Let us list the tables which are found by this function.
Example

gap> cases:= [];;
gap> for name in AllCharacterTableNames(IsDuplicateTable, false) do
> Append(cases, FindExtraordinaryCase(CharacterTable(name)));
> od;
gap> for i in Set(cases) do
> Print(i, "\n");
> od;
["2.A6", "2.A6.2_1", "A6.2_1", 3]
["2.Fi22", "2.Fi22.2", "Fi22.2", 3]
["2.L2(25)", "2.L2(25).2_2", "L2(25).2_2", 5]
["2.L2(49)", "2.L2(49).2_2", "L2(49).2_2", 7]
["2.L2(81)", "2.L2(81).2_1", "L2(81).2_1", 3]
["2.L2(81)", "2.L2(81).4_1", "L2(81).4_1", 3]
["2.L2(81).2_1", "2.L2(81).4_1", "L2(81).4_1", 3]
["2.L4(3)", "2.L4(3).2_2", "L4(3).2_2", 3]
["2.L4(3)", "2.L4(3).2_3", "L4(3).2_3", 3]
["2.S3", "2.D12", "S3x2", 3]
["2.U4(3).2_1", "2.U4(3).(2^2)_{12*2*}", "U4(3).(2^2)_{122}", 3]
["2.U4(3).2_1", "2.U4(3).(2^2)_{122}", "U4(3).(2^2)_{122}", 3]
["2.U4(3).2_1", "2.U4(3).(2^2)_{13*3*}", "U4(3).(2^2)_{133}", 3]
["2.U4(3).2_1", "2.U4(3).(2^2)_{133}", "U4(3).(2^2)_{133}", 3]
["3.U3(8)", "3.U3(8).3_1", "U3(8).3_1", 2]
["3.U3(8)", "3.U3(8).6", "U3(8).6", 2]
["3.U3(8)", "3.U3(8).6", "U3(8).6", 3]
["3.U3(8).2", "3.U3(8).6", "U3(8).6", 2]
["3^2:8", "2.A8N3", "s3wrs2", 3]
["5^(1+2):8:4", "2.HS.2N5", "HS.2N5", 5]
["6.A6", "6.A6.2_1", "3.A6.2_1", 3]
["6.A6", "6.A6.2_1", "A6.2_1", 3]
["6.Fi22", "6.Fi22.2", "3.Fi22.2", 3]
["6.Fi22", "6.Fi22.2", "Fi22.2", 3]
["Isoclinic(2.U4(3).2_1)", "2.U4(3).(2^2)_{1*2*2}",

"U4(3).(2^2)_{122}", 3]
["Isoclinic(2.U4(3).2_1)", "2.U4(3).(2^2)_{1*3*3}",

"U4(3).(2^2)_{133}", 3]
["bd10", "2.D20", "D20", 5]

The smallest example in this list is 2.A6.21, the double cover of the symmetric group on six points.
The 3-modular table of this group looks as follows.

Computations with the GAP Character Table Library 109

Example
gap> Display(CharacterTable("2.A6.2_1") mod 3);
2.A6.2_1mod3

2 5 5 4 3 1 1 4 4 3
3 2 2 1 1 .
5 1 1 . . 1 1 . . .

1a 2a 4a 8a 5a 10a 2b 4b 8b
2P 1a 1a 2a 4a 5a 5a 1a 2a 4a
3P 1a 2a 4a 8a 5a 10a 2b 4b 8b
5P 1a 2a 4a 8a 1a 2a 2b 4b 8b

X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1
X.3 6 6 -2 2 1 1 . . .
X.4 4 4 . -2 -1 -1 2 -2 .
X.5 4 4 . -2 -1 -1 -2 2 .
X.6 9 9 1 1 -1 -1 3 3 -1
X.7 9 9 1 1 -1 -1 -3 -3 1
X.8 4 -4 . . -1 1 . . .
X.9 12 -12 . . 2 -2 . . .

We see that the two faithful irreducible characters vanish on the three classes outside 2.A6.
For the groups in the above list, the function BrauerTableOfTypeMGA (CTblLib: BrauerTable-

OfTypeMGA) can be used to construct the p-modular tables of M.G.A from the tables of M.G and
G.A, for the given special primes p. The computations can be performed as follows.

Example
gap> for input in cases do
> p:= input[4];
> modtblMG:= CharacterTable(input[1]) mod p;
> ordtblMGA:= CharacterTable(input[2]);
> modtblGA:= CharacterTable(input[3]) mod p;
> name:= Concatenation(Identifier(ordtblMGA), " mod ", String(p));
> if ForAll([modtblMG, modtblGA], IsCharacterTable) then
> poss:= BrauerTableOfTypeMGA(modtblMG, modtblGA, ordtblMGA);
> modlib:= ordtblMGA mod p;
> if IsCharacterTable(modlib) then
> trans:= TransformingPermutationsCharacterTables(poss.table,
> modlib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " differ\n");
> fi;
> else
> Print("#I no library table for ", name, "\n");
> fi;
> else
> Print("#I not all input tables for ", name, " available\n");
> fi;
> od;
#I not all input tables for 2.L2(49).2_2 mod 7 available

Computations with the GAP Character Table Library 110

#I not all input tables for 2.L2(81).2_1 mod 3 available
#I not all input tables for 2.L2(81).4_1 mod 3 available
#I not all input tables for 2.L2(81).4_1 mod 3 available

The examples 2.A6.21, 2.L2(25).22, and 2.L2(49).22 belong to the infinite series of semiliniear groups
ΣL(2, p2), for odd primes p. All groups in this series have the property that all faithful irreducible
characters vanish on the p-regular classes outside SL(2, p2). (Cf. Section 2.2.6 for another property
of the groups in this series.)

2.5 Examples for the Type G.S3

2.5.1 Small Examples

The symmetric group S4 on four points has the form G.S3 where G is the Klein four group V4, G.2
is the dihedral group D8 of order 8, and G.3 is the alternating group A4. The trivial character of A4
extends twofold to S4, in the same way as the trivial character of V4 extends to the dihedral group. The
nontrivial linear characters of A4 induce irreducibly to S4. The irreducible degree three character of
A4 is induced from any of the three nontrivial linear characters of V4, it extends to S4 in the same way
as the unique constituent of the restriction to V4 that is invariant in the chosen D8 extends to D8.

Example
gap> c2:= CharacterTable("Cyclic", 2);;
gap> t:= c2 * c2;;
gap> tC:= CharacterTable("Dihedral", 8);;
gap> tK:= CharacterTable("Alternating", 4);;
gap> tfustC:= PossibleClassFusions(t, tC);
[[1, 3, 4, 4], [1, 3, 5, 5], [1, 4, 3, 4], [1, 4, 4, 3],

[1, 5, 3, 5], [1, 5, 5, 3]]
gap> StoreFusion(t, tfustC[1], tC);
gap> tfustK:= PossibleClassFusions(t, tK);
[[1, 2, 2, 2]]
gap> StoreFusion(t, tfustK[1], tK);
gap> elms:= PossibleActionsForTypeGS3(t, tC, tK);
[(3,4)]
gap> new:= CharacterTableOfTypeGS3(t, tC, tK, elms[1], "S4");
rec(table := CharacterTable("S4"),

tblCfustblKC := [1, 4, 2, 2, 5], tblKfustblKC := [1, 2, 3, 3])
gap> Display(new.table);
S4

2 3 3 . 2 2
3 1 . 1 . .

1a 2a 3a 4a 2b
2P 1a 1a 3a 2a 1a
3P 1a 2a 1a 4a 2b

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 3 -1 . 1 -1

Computations with the GAP Character Table Library 111

X.4 3 -1 . -1 1
X.5 2 2 -1 . .

The case e > 1 occurs in the following example. We choose G the cyclic group of order two, G.C
the cyclic group of order six, G.K the quaternion group of order eight, and construct the character
table of G.F = SL2(3), with F ∼= A4.

We get three extensions of the trivial character of G.K to G.F , a degree three character induced
from the nontrivial linear characters of G.K, and three extensions of the irreducible degree 2 character
of G.K.

Example
gap> t:= CharacterTable("Cyclic", 2);;
gap> tC:= CharacterTable("Cyclic", 6);;
gap> tK:= CharacterTable("Quaternionic", 8);;
gap> tfustC:= PossibleClassFusions(t, tC);
[[1, 4]]
gap> StoreFusion(t, tfustC[1], tC);
gap> tfustK:= PossibleClassFusions(t, tK);
[[1, 3]]
gap> StoreFusion(t, tfustK[1], tK);
gap> elms:= PossibleActionsForTypeGS3(t, tC, tK);
[(2,5,4)]
gap> new:= CharacterTableOfTypeGS3(t, tC, tK, elms[1], "SL(2,3)");
rec(table := CharacterTable("SL(2,3)"),

tblCfustblKC := [1, 4, 5, 3, 6, 7],
tblKfustblKC := [1, 2, 3, 2, 2])

gap> Display(new.table);
SL(2,3)

2 3 2 3 1 1 1 1
3 1 . 1 1 1 1 1

1a 4a 2a 6a 3a 3b 6b
2P 1a 2a 1a 3a 3b 3a 3b
3P 1a 4a 2a 2a 1a 1a 2a

X.1 1 1 1 1 1 1 1
X.2 1 1 1 A /A A /A
X.3 1 1 1 /A A /A A
X.4 3 -1 3
X.5 2 . -2 /A -A -/A A
X.6 2 . -2 1 -1 -1 1
X.7 2 . -2 A -/A -A /A

A = E(3)
= (-1+Sqrt(-3))/2 = b3

2.5.2 Atlas Tables of the Type G.S3

We demonstrate the construction of all those ordinary and modular character tables in the GAP Char-
acter Table Library that are of the type G.S3 where G is a simple group or a central extension of a sim-
ple group whose character table is contained in the Atlas. Here is the list of Identifier (Reference:

Computations with the GAP Character Table Library 112

Identifier for tables of marks) values needed for accessing the input tables and the known library
tables corresponding to the output.

Example
gap> listGS3:= [
> ["U3(5)", "U3(5).2", "U3(5).3", "U3(5).S3"],
> ["3.U3(5)", "3.U3(5).2", "3.U3(5).3", "3.U3(5).S3"],
> ["L3(4)", "L3(4).2_2", "L3(4).3", "L3(4).3.2_2"],
> ["L3(4)", "L3(4).2_3", "L3(4).3", "L3(4).3.2_3"],
> ["3.L3(4)", "3.L3(4).2_2", "3.L3(4).3", "3.L3(4).3.2_2"],
> ["3.L3(4)", "3.L3(4).2_3", "3.L3(4).3", "3.L3(4).3.2_3"],
> ["2^2.L3(4)", "2^2.L3(4).2_2","2^2.L3(4).3", "2^2.L3(4).3.2_2"],
> ["2^2.L3(4)", "2^2.L3(4).2_3","2^2.L3(4).3", "2^2.L3(4).3.2_3"],
> ["U6(2)", "U6(2).2", "U6(2).3", "U6(2).3.2"],
> ["3.U6(2)", "3.U6(2).2", "3.U6(2).3", "3.U6(2).3.2"],
> ["2^2.U6(2)", "2^2.U6(2).2", "2^2.U6(2).3", "2^2.U6(2).3.2"],
> ["O8+(2)", "O8+(2).2", "O8+(2).3", "O8+(2).3.2"],
> ["2^2.O8+(2)", "2^2.O8+(2).2", "2^2.O8+(2).3", "2^2.O8+(2).3.2"],
> ["L3(7)", "L3(7).2", "L3(7).3", "L3(7).S3"],
> ["3.L3(7)", "3.L3(7).2", "3.L3(7).3", "3.L3(7).S3"],
> ["U3(8)", "U3(8).2", "U3(8).3_2", "U3(8).S3"],
> ["3.U3(8)", "3.U3(8).2", "3.U3(8).3_2", "3.U3(8).S3"],
> ["U3(11)", "U3(11).2", "U3(11).3", "U3(11).S3"],
> ["3.U3(11)", "3.U3(11).2", "3.U3(11).3", "3.U3(11).S3"],
> ["O8+(3)", "O8+(3).2_2", "O8+(3).3", "O8+(3).S3"],
> ["2E6(2)", "2E6(2).2", "2E6(2).3", "2E6(2).S3"],
> ["2^2.2E6(2)", "2^2.2E6(2).2", "2^2.2E6(2).3", "2^2.2E6(2).S3"],
>];;

(For G one of L3(4), U6(2), O+
8 (2), and 2E6(2), the tables of 22.G, 22.G.2, and 22.G.3 can be

constructed with the methods described in Section 2.3.4 and Section 2.3.1, respectively.)
Analogously, the automorphism groups of L3(4), U3(8), and O+

8 (3) have factor groups isomorphic
with S3; in these cases, we choose G = L3(4).21, G =U3(8).31, and G = O+

8 (3).2
2
111, respectively.

Example
gap> Append(listGS3, [
> ["L3(4).2_1", "L3(4).2^2", "L3(4).6", "L3(4).D12"],
> ["2^2.L3(4).2_1", "2^2.L3(4).2^2", "2^2.L3(4).6", "2^2.L3(4).D12"],
> ["U3(8).3_1", "U3(8).6", "U3(8).3^2", "U3(8).(S3x3)"],
> ["O8+(3).(2^2)_{111}", "O8+(3).D8", "O8+(3).A4", "O8+(3).S4"],
>]);

In all these cases, the required table automorphism of G.3 is uniquely determined. We first com-
pute the ordinary character table of G.S3 and then the p-modular tables, for all prime divisors p of the
order of G such that the GAP Character Table Library contains the necessary p-modular input tables.

In each case, we compare the computed character tables with the ones in the GAP Character Table
Library. Note that in order to avoid conflicts of the class fusions that arise in the construction with
the class fusions that are already stored on the library tables, we choose identifiers for the result tables
that are different from the identifiers of the library tables.

Example
gap> ProcessGS3Example:= function(t, tC, tK, identifier, pi)
> local tF, lib, trans, p, tmodp, tCmodp, tKmodp, modtF;

Computations with the GAP Character Table Library 113

>
> tF:= CharacterTableOfTypeGS3(t, tC, tK, pi,
> Concatenation(identifier, "new"));
> lib:= CharacterTable(identifier);
> if lib <> fail then
> trans:= TransformingPermutationsCharacterTables(tF.table, lib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ‘", identifier,
> "’ differ\n");
> fi;
> else
> Print("#I no library table for ‘", identifier, "’\n");
> fi;
> StoreFusion(tC, tF.tblCfustblKC, tF.table);
> StoreFusion(tK, tF.tblKfustblKC, tF.table);
> for p in PrimeDivisors(Size(t)) do
> tmodp := t mod p;
> tCmodp:= tC mod p;
> tKmodp:= tK mod p;
> if IsCharacterTable(tmodp) and
> IsCharacterTable(tCmodp) and
> IsCharacterTable(tKmodp) then
> modtF:= CharacterTableOfTypeGS3(tmodp, tCmodp, tKmodp,
> tF.table,
> Concatenation(identifier, "mod", String(p)));
> if Length(Irr(modtF.table)) <>
> Length(Irr(modtF.table)[1]) then
> Print("#E nonsquare result table for ‘",
> identifier, " mod ", p, "’\n");
> elif lib <> fail and IsCharacterTable(lib mod p) then
> trans:= TransformingPermutationsCharacterTables(modtF.table,
> lib mod p);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ‘",
> identifier, " mod ", p, "’ differ\n");
> fi;
> else
> Print("#I no library table for ‘", identifier, " mod ",
> p, "’\n");
> fi;
> else
> Print("#I not all inputs available for ‘", identifier,
> " mod ", p, "’\n");
> fi;
> od;
> end;;

Now we call the function for the examples in the list.
Example

gap> for input in listGS3 do
> t := CharacterTable(input[1]);
> tC:= CharacterTable(input[2]);

Computations with the GAP Character Table Library 114

> tK:= CharacterTable(input[3]);
> identifier:= input[4];
> elms:= PossibleActionsForTypeGS3(t, tC, tK);
> if Length(elms) = 1 then
> ProcessGS3Example(t, tC, tK, identifier, elms[1]);
> else
> Print("#I ", Length(elms), " actions possible for ‘",
> identifier, "’\n");
> fi;
> od;
#I not all inputs available for ‘O8+(3).S3 mod 3’
#I not all inputs available for ‘2E6(2).S3 mod 2’
#I not all inputs available for ‘2E6(2).S3 mod 3’
#I not all inputs available for ‘2E6(2).S3 mod 5’
#I not all inputs available for ‘2E6(2).S3 mod 7’
#I not all inputs available for ‘2E6(2).S3 mod 11’
#I not all inputs available for ‘2E6(2).S3 mod 13’
#I not all inputs available for ‘2E6(2).S3 mod 17’
#I not all inputs available for ‘2E6(2).S3 mod 19’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 2’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 3’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 5’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 7’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 11’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 13’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 17’
#I not all inputs available for ‘2^2.2E6(2).S3 mod 19’
#I not all inputs available for ‘U3(8).(S3x3) mod 2’
#I not all inputs available for ‘U3(8).(S3x3) mod 19’
#I not all inputs available for ‘O8+(3).S4 mod 3’

Also the ordinary character table of the automorphic extension of the simple Atlas group O+
8 (3)

by A4 can be constructed with the same approach. Here we get four possible permutations, which lead
to essentially the same character table.

Example
gap> input:= ["O8+(3)", "O8+(3).3", "O8+(3).(2^2)_{111}", "O8+(3).A4"];;
gap> t := CharacterTable(input[1]);;
gap> tC:= CharacterTable(input[2]);;
gap> tK:= CharacterTable(input[3]);;
gap> identifier:= input[4];;
gap> elms:= PossibleActionsForTypeGS3(t, tC, tK);;
gap> Length(elms);
4
gap> differ:= MovedPoints(Group(List(elms, x -> x / elms[1])));;
gap> List(elms, x -> RestrictedPerm(x, differ));
[(118,216,169)(119,217,170)(120,218,167)(121,219,168),

(118,216,170)(119,217,169)(120,219,168)(121,218,167),
(118,217,169)(119,216,170)(120,218,168)(121,219,167),
(118,217,170)(119,216,169)(120,219,167)(121,218,168)]

gap> poss:= List(elms, pi -> CharacterTableOfTypeGS3(t, tC, tK, pi,
> Concatenation(identifier, "new")));;
gap> lib:= CharacterTable(identifier);;

Computations with the GAP Character Table Library 115

gap> ForAll(poss, r -> IsRecord(
> TransformingPermutationsCharacterTables(r.table, lib)));
true

Also the construction of the p-modular tables of O+
8 (3).A4 works.

Example
gap> ProcessGS3Example(t, tC, tK, identifier, elms[1]);
#I not all inputs available for ‘O8+(3).A4 mod 3’

2.6 Examples for the Type G.22

2.6.1 The Character Table of A6.22

As the first example, we consider the automorphism group Aut(A6) ∼= A6.22 of the alternating group
A6 on six points.

In this case, the triple of actions on the subgroups A6.2i is uniquely determined by the condition
on the number of conjugacy classes in Section 2.3.3.

Example
gap> tblG:= CharacterTable("A6");;
gap> tblsG2:= List(["A6.2_1", "A6.2_2", "A6.2_3"], CharacterTable);;
gap> List(tblsG2, NrConjugacyClasses);
[11, 11, 8]
gap> possact:= List(tblsG2, x -> Filtered(Elements(
> AutomorphismsOfTable(x)), y -> Order(y) <= 2));
[[(), (3,4)(7,8)(10,11)],

[(), (8,9), (5,6)(10,11), (5,6)(8,9)(10,11)], [(), (7,8)]]

Note that n1 = n2 implies f1 = f2, and n1−n3 = 3 implies f1− f3 = 2, so we get f1 = 3 and f3 = 1,
and A6.22 has 2 ·11−3 ·3 = 2 ·8−3 ·1 = 13 classes.

(The compatibility on the classes inside A6 yields only that the classes 3 and 4 of A6.21 ∼= S6 must
be fused in A6.22, as well as the classes 5 and 6 of A6.22 ∼= PGL(2,9).)

Example
gap> List(tblsG2, x -> GetFusionMap(tblG, x));
[[1, 2, 3, 4, 5, 6, 6], [1, 2, 3, 3, 4, 5, 6],

[1, 2, 3, 3, 4, 5, 5]]

These arguments are used by the GAP function PossibleActionsForTypeGV4 (CTblLib: Pos-
sibleActionsForTypeGV4), which returns the list of all possible triples of permutations such that the
i-th permutation describes the action of A6.22 on the classes of A6.2i.

Example
gap> acts:= PossibleActionsForTypeGV4(tblG, tblsG2);
[[(3,4)(7,8)(10,11), (5,6)(8,9)(10,11), (7,8)]]

For the given actions, the GAP function PossibleCharacterTablesOfTypeGV4 (CTblLib:
PossibleCharacterTablesOfTypeGV4) then computes the possibilities for the character table of
A6.22; in this case, the result is unique.

Computations with the GAP Character Table Library 116

Example
gap> poss:= PossibleCharacterTablesOfTypeGV4(tblG, tblsG2, acts[1],
> "A6.2^2");
[rec(

G2fusGV4 := [[1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8],
[1, 2, 3, 4, 5, 5, 9, 10, 10, 11, 11],
[1, 2, 3, 4, 5, 12, 13, 13]],

table := CharacterTable("A6.2^2"))]
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> CharacterTable("A6.2^2")));
true

Finally, possible p-modular tables can be computed from the p-modular input tables and the ordi-
nary table of A6.22; here we show this for p = 3.

Example
gap> PossibleCharacterTablesOfTypeGV4(tblG mod 3,
> List(tblsG2, t -> t mod 3), poss[1].table);
[rec(

G2fusGV4 :=
[[1, 2, 3, 4, 5, 5, 6], [1, 2, 3, 4, 4, 7, 8, 8, 9, 9],

[1, 2, 3, 4, 10, 11, 11]],
table := BrauerTable("A6.2^2", 3))]

2.6.2 Atlas Tables of the Type G.22 – Easy Cases

We demonstrate the construction of all those ordinary and modular character tables in the GAP Char-
acter Table Library that are of the type G.22 where G is a simple group or a central extension of a sim-
ple group whose character table is contained in the Atlas. Here is the list of Identifier (Reference:
Identifier for tables of marks) values needed for accessing the input tables and the result tables.

(The construction of the character table of O+
8 (3).2

2
111 is more involved and will be described in

Section 2.6.10. The construction of the character tables of groups of the type 2.L3(4).22 and 6.L3(4).22

is described in the sections 2.6.4 and 2.6.5, respectively. The construction of the character tables of
groups of the type 2.U4(3).22 is described in Section 2.6.6.)

Example
gap> listGV4:= [
> ["A6", "A6.2_1", "A6.2_2", "A6.2_3", "A6.2^2"],
> ["3.A6", "3.A6.2_1", "3.A6.2_2", "3.A6.2_3", "3.A6.2^2"],
> ["L2(25)", "L2(25).2_1", "L2(25).2_2", "L2(25).2_3", "L2(25).2^2"],
> ["L3(4)", "L3(4).2_1", "L3(4).2_2", "L3(4).2_3", "L3(4).2^2"],
> ["2^2.L3(4)", "2^2.L3(4).2_1", "2^2.L3(4).2_2", "2^2.L3(4).2_3",
> "2^2.L3(4).2^2"],
> ["3.L3(4)", "3.L3(4).2_1", "3.L3(4).2_2", "3.L3(4).2_3", "3.L3(4).2^2"],
> ["U4(3)", "U4(3).2_1", "U4(3).2_2", "U4(3).2_2’",
> "U4(3).(2^2)_{122}"],
> ["U4(3)", "U4(3).2_1", "U4(3).2_3", "U4(3).2_3’",
> "U4(3).(2^2)_{133}"],
> ["3_1.U4(3)", "3_1.U4(3).2_1", "3_1.U4(3).2_2", "3_1.U4(3).2_2’",
> "3_1.U4(3).(2^2)_{122}"],
> ["3_2.U4(3)", "3_2.U4(3).2_1", "3_2.U4(3).2_3", "3_2.U4(3).2_3’",
> "3_2.U4(3).(2^2)_{133}"],

Computations with the GAP Character Table Library 117

> ["L2(49)", "L2(49).2_1", "L2(49).2_2", "L2(49).2_3", "L2(49).2^2"],
> ["L2(81)", "L2(81).2_1", "L2(81).2_2", "L2(81).2_3", "L2(81).2^2"],
> ["L3(9)", "L3(9).2_1", "L3(9).2_2", "L3(9).2_3", "L3(9).2^2"],
> ["O8+(3)", "O8+(3).2_1", "O8+(3).2_2", "O8+(3).2_2’",
> "O8+(3).(2^2)_{122}"],
> ["O8-(3)", "O8-(3).2_1", "O8-(3).2_2", "O8-(3).2_3", "O8-(3).2^2"],
>];;

Analogously, the automorphism groups L3(4).D12 of L3(4) and U4(3).D8 of U4(3), and the sub-
group O+

8 (3).D8 of the automorphism group O+
8 (3).S4 have factor groups that are isomorphic with 22;

in these cases, we choose G = L3(4).3, G =U4(3).21, and G = O+
8 (3).21, respectively.

Also the group 22.L3(4).D12 has a factor group isomorphic with 22. Note that the character tables
of L3(4).D12 and 22.L3(4).D12 have been constructed already in Section 2.5.2.

The automorphism groups of L4(4) and U4(5) have the structure L4(4).22 and U4(5).22, respec-
tively; their tables are contained in the GAP Character Table Library but not in the Atlas.

Example
gap> Append(listGV4, [
> ["L3(4).3", "L3(4).6", "L3(4).3.2_2", "L3(4).3.2_3", "L3(4).D12"],
> ["2^2.L3(4).3", "2^2.L3(4).6", "2^2.L3(4).3.2_2", "2^2.L3(4).3.2_3",
> "2^2.L3(4).D12"],
> ["U4(3).2_1", "U4(3).4", "U4(3).(2^2)_{122}", "U4(3).(2^2)_{133}",
> "U4(3).D8"],
> ["O8+(3).2_1", "O8+(3).(2^2)_{111}", "O8+(3).(2^2)_{122}", "O8+(3).4",
> "O8+(3).D8"],
> ["L4(4)", "L4(4).2_1", "L4(4).2_2", "L4(4).2_3", "L4(4).2^2"],
> ["U4(5)", "U4(5).2_1", "U4(5).2_2", "U4(5).2_3", "U4(5).2^2"],
>]);

Now we proceed in two steps, the computation of the possible ordinary character tables from the
ordinary tables of the relevant subgroups, and then the computation of the Brauer tables from the
Brauer tables of the relevant subgroups and from the ordinary table of the group.

The following function first computes the possible triples of actions on the subgroups G.2i, us-
ing the function PossibleActionsForTypeGV4 (CTblLib: PossibleActionsForTypeGV4). Then
the union of the candidate tables for these actions is computed, this list is returned in the end. and
representatives of classes of permutation equivalent candidates are inspected further with consistency
checks. If there is a unique solution up to permutation equivalence, this table is compared with the
one that is contained in the GAP Character Table Library.

Example
gap> ConstructOrdinaryGV4Table:= function(tblG, tblsG2, name, lib)
> local acts, nam, poss, reps, i, trans;
>
> # Compute the possible actions for the ordinary tables.
> acts:= PossibleActionsForTypeGV4(tblG, tblsG2);
> # Compute the possible ordinary tables for the given actions.
> nam:= Concatenation("new", name);
> poss:= Concatenation(List(acts, triple ->
> PossibleCharacterTablesOfTypeGV4(tblG, tblsG2, triple, nam)));
> # Test the possibilities for permutation equivalence.
> reps:= RepresentativesCharacterTables(poss);

Computations with the GAP Character Table Library 118

> if 1 < Length(reps) then
> Print("#I ", name, ": ", Length(reps),
> " equivalence classes\n");
> elif Length(reps) = 0 then
> Print("#E ", name, ": no solution\n");
> else
> # Compare the computed table with the library table.
> if not IsCharacterTable(lib) then
> Print("#I no library table for ", name, "\n");
> PrintToLib(name, poss[1].table);
> for i in [1 .. 3] do
> Print(LibraryFusion(tblsG2[i],
> rec(name:= name, map:= poss[1].G2fusGV4[i])));
> od;
> else
> trans:= TransformingPermutationsCharacterTables(poss[1].table,
> lib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " differ\n");
> fi;
> # Compare the computed fusions with the stored ones.
> if List(poss[1].G2fusGV4, x -> OnTuples(x, trans.columns))
> <> List(tblsG2, x -> GetFusionMap(x, lib)) then
> Print("#E computed and stored fusions for ", name,
> " differ\n");
> fi;
> fi;
> fi;
> return poss;
> end;;

The following function computes, for all those prime divisors p of the group order in question such
that the p-modular Brauer tables of the subgroups G.2i are available, the possible p-modular Brauer
tables. If the solution is unique up to permutation equivalence, it is compared with the table that is
contained in the GAP Character Table Library.

It may happen (even in the case that the ordinary character table is unique up to permutation
equivalence) that some candidates for the ordinary character table are excluded due to information
provided by some p-modular table. In this case, a message is printed, and the ordinary character table
from the GAP Character Table Library is checked again under the additional restrictions.

Example
gap> ConstructModularGV4Tables:= function(tblG, tblsG2, ordposs,
> ordlibtblGV4)
> local name, modposs, primes, checkordinary, i, record, p, tmodp,
> t2modp, poss, modlib, trans, reps;
>
> if not IsCharacterTable(ordlibtblGV4) then
> Print("#I no ordinary library table ...\n");
> return [];
> fi;
> name:= Identifier(ordlibtblGV4);

Computations with the GAP Character Table Library 119

> modposs:= List(ordposs, x -> []);
> primes:= ShallowCopy(PrimeDivisors(Size(tblG)));
> ordposs:= ShallowCopy(ordposs);
> checkordinary:= false;
> for i in [1 .. Length(ordposs)] do
> record:= ordposs[i];
> for p in primes do
> tmodp := tblG mod p;
> t2modp:= List(tblsG2, t2 -> t2 mod p);
> if IsCharacterTable(tmodp) and
> ForAll(t2modp, IsCharacterTable) then
> poss:= PossibleCharacterTablesOfTypeGV4(tmodp, t2modp,
> record.table, record.G2fusGV4);
> poss:= RepresentativesCharacterTables(poss);
> if Length(poss) = 0 then
> Print("#I excluded cand. ", i, " (out of ",
> Length(ordposs), ") for ", name, " by ", p,
> "-mod. table\n");
> Unbind(ordposs[i]);
> Unbind(modposs[i]);
> checkordinary:= true;
> break;
> elif Length(poss) = 1 then
> # Compare the computed table with the library table.
> modlib:= ordlibtblGV4 mod p;
> if IsCharacterTable(modlib) then
> trans:= TransformingPermutationsCharacterTables(
> poss[1].table, modlib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ",
> name, " mod ", p, " differ\n");
> fi;
> else
> Print("#I no library table for ",
> name, " mod ", p, "\n");
> PrintToLib(name, poss[1].table);
> fi;
> else
> Print("#I ", name, " mod ", p, ": ", Length(poss),
> " equivalence classes\n");
> fi;
> Add(modposs[i], poss);
> elif i = 1 then
> Print("#I not all input tables for ", name, " mod ", p,
> " available\n");
> primes:= Difference(primes, [p]);
> fi;
> od;
> od;
> if checkordinary then
> # Test whether the ordinary table is admissible.
> ordposs:= Compacted(ordposs);

Computations with the GAP Character Table Library 120

> modposs:= Compacted(modposs);
> reps:= RepresentativesCharacterTables(ordposs);
> if 1 < Length(reps) then
> Print("#I ", name, ": ", Length(reps),
> " equivalence classes (ord. table)\n");
> elif Length(reps) = 0 then
> Print("#E ", name, ": no solution (ord. table)\n");
> else
> # Compare the computed table with the library table.
> trans:= TransformingPermutationsCharacterTables(
> ordposs[1].table, ordlibtblGV4);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " differ\n");
> fi;
> # Compare the computed fusions with the stored ones.
> if List(ordposs[1].G2fusGV4, x -> OnTuples(x, trans.columns))
> <> List(tblsG2, x -> GetFusionMap(x, ordlibtblGV4)) then
> Print("#E computed and stored fusions for ", name,
> " differ\n");
> fi;
> fi;
> fi;
> return rec(ordinary:= ordposs, modular:= modposs);
> end;;

Finally, here is the loop over the list of tables.
Example

gap> for input in listGV4 do
> tblG := CharacterTable(input[1]);
> tblsG2 := List(input{ [2 .. 4] }, CharacterTable);
> lib := CharacterTable(input[5]);
> poss := ConstructOrdinaryGV4Table(tblG, tblsG2, input[5], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> od;
#I excluded cand. 2 (out of 2) for L3(4).2^2 by 3-mod. table
#I excluded cand. 2 (out of 8) for 2^2.L3(4).2^2 by 7-mod. table
#I excluded cand. 3 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 4 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 5 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 6 (out of 8) for 2^2.L3(4).2^2 by 5-mod. table
#I excluded cand. 7 (out of 8) for 2^2.L3(4).2^2 by 7-mod. table
#I excluded cand. 2 (out of 2) for 3.L3(4).2^2 by 3-mod. table
#I excluded cand. 2 (out of 2) for L3(9).2^2 by 7-mod. table
#I not all input tables for O8+(3).(2^2)_{122} mod 3 available
#I not all input tables for O8-(3).2^2 mod 3 available
#I not all input tables for O8-(3).2^2 mod 5 available
#I not all input tables for O8-(3).2^2 mod 7 available
#I not all input tables for O8-(3).2^2 mod 13 available
#I not all input tables for O8-(3).2^2 mod 41 available
#I excluded cand. 2 (out of 2) for L3(4).D12 by 3-mod. table
#I excluded cand. 2 (out of 2) for 2^2.L3(4).D12 by 7-mod. table

Computations with the GAP Character Table Library 121

#I not all input tables for O8+(3).D8 mod 3 available
#I not all input tables for L4(4).2^2 mod 3 available
#I not all input tables for L4(4).2^2 mod 5 available
#I not all input tables for L4(4).2^2 mod 7 available
#I not all input tables for L4(4).2^2 mod 17 available
#I not all input tables for U4(5).2^2 mod 2 available
#I not all input tables for U4(5).2^2 mod 3 available
#I not all input tables for U4(5).2^2 mod 5 available
#I not all input tables for U4(5).2^2 mod 7 available
#I not all input tables for U4(5).2^2 mod 13 available

The groups 3.A6.22, 3.L3(4).22, and 32.U4(3).(22)133 have also the structure M.G.A, with M.G
equal to 3.A6.23, 3.L3(4).21, and 32.U4(3).23, respectively, and G.A equal to A6.22, L3(4).22, and
U4(3).(22)133, respectively (see Section 2.4.3).

Similarly, the group L3(4).D12 has also the structure G.S3, with G = L3(4).21, G.2 = L3(4).22,
and G.3 = L3(4).6, respectively (see Section 2.5.2).

2.6.3 The Character Table of S4(9).22 (September 2011)

The available functions yield two possibilities for the ordinary character table of S4(9).22.
Example

gap> tblG:= CharacterTable("S4(9)");;
gap> tblsG2:= List(["S4(9).2_1", "S4(9).2_2", "S4(9).2_3"],
> CharacterTable);;
gap> lib:= CharacterTable("S4(9).2^2");;
gap> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, "newS4(9).2^2", lib);;
#I newS4(9).2^2: 2 equivalence classes
gap> poss:= RepresentativesCharacterTables(poss);;

The two candidates differ w. r. t. the action of S4(9).22 on the classes of element order 80 in
S4(9).22. In the two possible tables, each element of order 80 is conjugate to its third power or to its
13-th power, respectively.

Example
gap> order80:= PositionsProperty(OrdersClassRepresentatives(tblsG2[2]),
> x -> x = 80);
[98, 99, 100, 101, 102, 103, 104, 105]
gap> List(poss, r -> r.G2fusGV4[2]{ order80 });
[[77, 77, 78, 79, 80, 78, 79, 80],

[77, 78, 79, 79, 77, 80, 80, 78]]
gap> PowerMap(tblsG2[2], 3){ order80 };
[99, 98, 103, 104, 105, 100, 101, 102]
gap> PowerMap(tblsG2[2], 13){ order80 };
[102, 105, 101, 100, 98, 104, 103, 99]

We claim that the first candidate is the correct one. For that, first note that S4(9).22 is the extension
of the simple group by a diagonal automorphism. (An easy way to see this is that for any subgroup of
S4(9) isomorphic with S2(81)∼= L2(81), the extension by a diagonal automorphism contains elements
of order 80 –this group is isomorphic with PGL(2,81)– and only S4(9).22 contains elements of order
80.)

Computations with the GAP Character Table Library 122

Example
gap> List(tblsG2, x -> 80 in OrdersClassRepresentatives(x));
[false, true, false]

Now the field automorphism of S4(9).22 maps each element x of order 80 in S4(9).22 to a conjugate
of x3.

Example
gap> tbl:= poss[1].table;;
gap> IsRecord(TransformingPermutationsCharacterTables(tbl, lib));
true

2.6.4 The Character Tables of Groups of the Type 2.L3(4).22 (June 2010)

The outer automorphism group of the group L3(4) is a dihedral group of order 12; its Sylow 2-
subgroups are Klein four groups, so there is a unique almost simple group H of the type L3(4).22,
up to isomorphism. In this section, we construct the character tables of the double covers of this group
with the approach from Section 2.3.3.

The group H has three subgroups of index two, of the types L3(4).21, L3(4).22, and L3(4).23,
respectively. So any double cover of H contains one subgroup of each of the types 2.L3(4).21,
2.L3(4).22, and 2.L3(4).23, and there are two isoclinic variants of each of these group to consider,
see Section 2.2.6. So we start with eight different inputs for the construction of the character tables of
double covers.

Example
gap> names:= List([1 .. 3],
> i -> Concatenation("2.L3(4).2_", String(i)));;
gap> tbls:= List(names, CharacterTable);
[CharacterTable("2.L3(4).2_1"), CharacterTable("2.L3(4).2_2"),

CharacterTable("2.L3(4).2_3")]
gap> isos:= List(names, nam -> CharacterTable(Concatenation(nam, "*")));
[CharacterTable("Isoclinic(2.L3(4).2_1)"),

CharacterTable("Isoclinic(2.L3(4).2_2)"),
CharacterTable("Isoclinic(2.L3(4).2_3)")]

gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "2.L3(4).(2^2)_{123}"],
> [tbls[1], isos[2], tbls[3], "2.L3(4).(2^2)_{12*3}"],
> [tbls[1], tbls[2], isos[3], "2.L3(4).(2^2)_{123*}"],
> [tbls[1], isos[2], isos[3], "2.L3(4).(2^2)_{12*3*}"],
> [isos[1], tbls[2], tbls[3], "2.L3(4).(2^2)_{1*23}"],
> [isos[1], isos[2], tbls[3], "2.L3(4).(2^2)_{1*2*3}"],
> [isos[1], tbls[2], isos[3], "2.L3(4).(2^2)_{1*23*}"],
> [isos[1], isos[2], isos[3], "2.L3(4).(2^2)_{1*2*3*}"]];;
gap> tblG:= CharacterTable("2.L3(4)");;
gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 3] };
> lib:= CharacterTable(input[4]);
> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> Append(result, RepresentativesCharacterTables(poss));
> od;

Computations with the GAP Character Table Library 123

#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 2 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 2.L3(4).(2^2)_{1*23*} by
5-mod. table
gap> result:= List(result, x -> x.table);
[CharacterTable("new2.L3(4).(2^2)_{123}"),

CharacterTable("new2.L3(4).(2^2)_{12*3}"),
CharacterTable("new2.L3(4).(2^2)_{123*}"),

Computations with the GAP Character Table Library 124

CharacterTable("new2.L3(4).(2^2)_{12*3*}"),
CharacterTable("new2.L3(4).(2^2)_{1*23}"),
CharacterTable("new2.L3(4).(2^2)_{1*2*3}"),
CharacterTable("new2.L3(4).(2^2)_{1*23*}"),
CharacterTable("new2.L3(4).(2^2)_{1*2*3*}")]

We get exactly one character table for each input. For each of these tables, there are three possi-
bilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out that
the eight solutions form two orbits under forming some isoclinic table. Tables in different orbits are
essentially different, already their numbers of conjugacy classes differ.

Example
gap> List(result, NrConjugacyClasses);
[39, 33, 33, 39, 33, 39, 39, 33]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[4, 7, 6]
gap> t:= result[2];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[3, 8, 5]

Up to now, it is not clear that the character tables we have constructed are really the character
tables of some groups. The existence of groups for the first orbit of character tables can be established
as follows.

The group U6(2).2 contains a maximal subgroup M of the type L3(4).22, see [CCN+85, p. 115].
Its derived subgroup M′ of the type L3(4) lies inside U6(2), and we claim that the preimage of M′

under the natural epimorphism from 2.U6(2) to U6(2) is a double cover of L3(4). Unfortunately, L3(4)
admits class fusions into 2.U6(2), so this criterion cannot be used.

Example
gap> l34:= CharacterTable("L3(4)");;
gap> u:= CharacterTable("U6(2)");;
gap> 2u:= CharacterTable("2.U6(2)");;
gap> cand:= PossibleClassFusions(l34, 2u);
[[1, 5, 12, 16, 22, 22, 23, 23, 41, 41],

[1, 5, 12, 22, 16, 22, 23, 23, 41, 41],
[1, 5, 12, 22, 22, 16, 23, 23, 41, 41]]

gap> OrdersClassRepresentatives(l34);
[1, 2, 3, 4, 4, 4, 5, 5, 7, 7]

Consider the three classes of elements of order four in L3(4). Under the possible fusions into
2.U6(2), they are mapped to the classes 16 and 22, which are preimages of the classes 10 and 14 (4C
and 4G) of U6(2). Note that the maximal subgroups of type L3(4).2 in U6(2) extend to L3(4).6 type

Computations with the GAP Character Table Library 125

subgroups in U6(2).3, and the three classes 4C, 4D, 4E form one orbit under the action of an outer
automorphism of order three of U6(2).

Example
gap> GetFusionMap(2u, u){ [16, 22] };
[10, 14]
gap> ClassNames(u, "ATLAS"){ [10, 14] };
["4C", "4G"]
gap> GetFusionMap(u, CharacterTable("U6(2).3"));
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 36, 36, 37, 38, 39, 40]

This means that any L3(4) type subgroup of U6(2) that extends to an L3(4).6 type subgroup in
U6(2).3 either contains elements from all three classes 4C, 4D, 4E of U6(2), or contains no element from
these classes. Thus we know that any double cover of U6(2).2 contains a double cover of L3(4).22.
Only the first of our result tables admits a class fusion into the table of 2.U6(2).2.

Example
gap> 2u2:= CharacterTable("2.U6(2).2");;
gap> fus:= List(result, x -> PossibleClassFusions(x, 2u2));;
gap> List(fus, Length);
[4, 0, 0, 0, 0, 0, 0, 0]

As a consequence, the fourth result table is established as that of a maximal subgroup of the group
isoclinic to 2.U6(2).2.

Example
gap> 2u2iso:= CharacterTableIsoclinic(2u2);;
gap> fus:= List(result, x -> PossibleClassFusions(x, 2u2iso));;
gap> List(fus, Length);
[0, 0, 0, 4, 0, 0, 0, 0]

Similarly, the group HS.2 contains a maximal subgroup M of the type L3(4).22, see [CCN+85, p.
80]. Its derived subgroup M′ of the type L3(4) lies inside HS, and the preimage of M′ under the natural
epimorphism from 2.HS to HS is a double cover of L3(4), because L3(4) does not admit a class fusion
into 2.HS.2.

Example
gap> h2:= CharacterTable("HS.2");;
gap> 2h2:= CharacterTable("2.HS.2");;
gap> PossibleClassFusions(l34, 2h2);
[]

Only the fifth of our result tables admits a class fusion into 2.HS.2, which means that
2.L3(4).(22)1∗23 is a subgroup of 2.HS.2, and the eighth result table –2.L3(4).(22)1∗2∗3∗– admits a
class fusion into the isoclinic variant of 2.HS.2 This shows the existence of groups for the tables from
the second orbit.

Example
gap> fus:= List(result, x -> PossibleClassFusions(x, 2h2));;
gap> List(fus, Length);
[0, 0, 0, 0, 4, 0, 0, 0]

Computations with the GAP Character Table Library 126

gap> 2h2iso:= CharacterTableIsoclinic(2h2);;
gap> fus:= List(result, x -> PossibleClassFusions(x, 2h2iso));;
gap> List(fus, Length);
[0, 0, 0, 0, 0, 0, 0, 4]

2.6.5 The Character Tables of Groups of the Type 6.L3(4).22 (October 2011)

We have two approaches for constructing the character tables of these groups.
First, we may regard them as normal products of the three normal subgroups of index two, each

of them having the structure 6.L3(4).2, and use the approach from Section 2.3.3, as we did in Sec-
tion 2.6.4 for the groups of the structure 2.L3(4).22.

Second, we may use the approach from Section 2.3.1. Note that the factor group L3(4).22 contains
each of the three groups L3(4).2i as a subgroup, for 1 ≤ i ≤ 3, and the groups of the type 6.L3(4).21
have a centre of order six, whereas the centres of the 6.L3(4).22 and 6.L3(4).23 type groups have order
two. For that, the character tables of the subgroups 6.L3(4).21 and 6.L3(4).2∗1 are needed, as well as
the character tables of the eight possible factor groups 2.L3(4).22; the latter tables are known from
Section 2.6.4.

We show both approaches. (The second approach is better suited for storing the character tables in
the Character Table Library, since the irreducible characters need not be stored, and since the Brauer
tables of the groups can be derived from the Brauer tables of the compound tables.)

Example
gap> tbls:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("6.L3(4).2_", i)));
[CharacterTable("6.L3(4).2_1"), CharacterTable("6.L3(4).2_2"),

CharacterTable("6.L3(4).2_3")]
gap> isos:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("6.L3(4).2_", i, "*")));
[CharacterTable("Isoclinic(6.L3(4).2_1)"),

CharacterTable("Isoclinic(6.L3(4).2_2)"),
CharacterTable("Isoclinic(6.L3(4).2_3)")]

gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "6.L3(4).(2^2)_{123}"],
> [tbls[1], isos[2], tbls[3], "6.L3(4).(2^2)_{12*3}"],
> [tbls[1], tbls[2], isos[3], "6.L3(4).(2^2)_{123*}"],
> [tbls[1], isos[2], isos[3], "6.L3(4).(2^2)_{12*3*}"],
> [isos[1], tbls[2], tbls[3], "6.L3(4).(2^2)_{1*23}"],
> [isos[1], isos[2], tbls[3], "6.L3(4).(2^2)_{1*2*3}"],
> [isos[1], tbls[2], isos[3], "6.L3(4).(2^2)_{1*23*}"],
> [isos[1], isos[2], isos[3], "6.L3(4).(2^2)_{1*2*3*}"]];;
gap> tblG:= CharacterTable("6.L3(4)");;
gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 3] };
> lib:= CharacterTable(input[4]);
> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> Append(result, RepresentativesCharacterTables(poss));
> od;
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table

Computations with the GAP Character Table Library 127

#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{12*3*} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 2 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 6.L3(4).(2^2)_{1*23*} by
5-mod. table
gap> result:= List(result, x -> x.table);
[CharacterTable("new6.L3(4).(2^2)_{123}"),

CharacterTable("new6.L3(4).(2^2)_{12*3}"),
CharacterTable("new6.L3(4).(2^2)_{123*}"),
CharacterTable("new6.L3(4).(2^2)_{12*3*}"),
CharacterTable("new6.L3(4).(2^2)_{1*23}"),

Computations with the GAP Character Table Library 128

CharacterTable("new6.L3(4).(2^2)_{1*2*3}"),
CharacterTable("new6.L3(4).(2^2)_{1*23*}"),
CharacterTable("new6.L3(4).(2^2)_{1*2*3*}")]

As in Section 2.6.4, we get exactly one character table for each input, and the eight solutions lie
in two orbits under isoclinism.

Example
gap> List(result, NrConjugacyClasses);
[59, 53, 53, 59, 53, 59, 59, 53]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[7, 6, 4]
gap> t:= result[2];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[8, 5, 3]

Up to now, it is not clear that the character tables we have constructed are really the character
tables of some groups. The existence of groups for the first orbit of character tables can be established
as follows.

We have shown in Section 2.6.4 that the maximal subgroups M of the type L3(4).22 in U6(2).2 lift
to double covers 2.L3(4).22 in 2.U6(2).2. The preimages of these groups under the natural epimor-
phism from 6.U6(2).2 have the structure 6.L3(4).22, where the derived subgroup is the six-fold cover
of L3(4); this follows from the fact that 6.U6(2) does not admit a class fusion from the double cover
2.L3(4).

Example
gap> 2l34:= CharacterTable("2.L3(4)");;
gap> 6u:= CharacterTable("6.U6(2)");;
gap> cand:= PossibleClassFusions(2l34, 6u);
[]

This establishes the first and the fourth result as character tables of subgroups of 6.U6(2) and its
isoclinic variant, respectively.

Example
gap> 6u2:= CharacterTable("6.U6(2).2");;
gap> fus:= List(result, x -> PossibleClassFusions(x, 6u2));;
gap> List(fus, Length);
[8, 0, 0, 0, 0, 0, 0, 0]
gap> 6u2iso:= CharacterTableIsoclinic(6u2);;
gap> fus:= List(result, x -> PossibleClassFusions(x, 6u2iso));;
gap> List(fus, Length);
[0, 0, 0, 8, 0, 0, 0, 0]

Computations with the GAP Character Table Library 129

Similarly, the group G2(4).2 contains a maximal subgroup M of the type 3.L3(4).22, see [CCN+85,
p. 97]. Its derived subgroup M′ of the type 3.L3(4) lies inside G2(4), and the preimage of M′ under
the natural epimorphism from 2.G2(4) to G2(4) is a double cover of 3.L3(4), because 3.L3(4) does
not admit a class fusion into 2.G2(4).2.

Example
gap> 3l34:= CharacterTable("3.L3(4)");;
gap> g2:= CharacterTable("G2(4).2");;
gap> 2g2:= CharacterTable("2.G2(4).2");;
gap> PossibleClassFusions(3l34, 2g2);
[]

Only the third and eighth of our result tables admit a class fusion into 2.G2(4).2 and its isoclinic
variant, respectively. This shows the existence of groups for the tables from the second orbit.

Example
gap> fus:= List(result, x -> PossibleClassFusions(x, 2g2));;
gap> List(fus, Length);
[0, 0, 16, 0, 0, 0, 0, 0]
gap> 2g2iso:= CharacterTableIsoclinic(2g2);;
gap> fus:= List(result, x -> PossibleClassFusions(x, 2g2iso));;
gap> List(fus, Length);
[0, 0, 0, 0, 0, 0, 0, 16]

Now we try the second approach and compare the results.
Example

gap> names:= ["L3(4).(2^2)_{123}", "L3(4).(2^2)_{12*3}",
> "L3(4).(2^2)_{123*}", "L3(4).(2^2)_{12*3*}"];;
gap> inputs1:= List(names, nam -> ["6.L3(4).2_1", "2.L3(4).2_1",
> Concatenation("2.", nam), Concatenation("6.", nam)]);;
gap> names:= List(names, nam -> ReplacedString(nam, "1", "1*"));;
gap> inputs2:= List(names, nam -> ["6.L3(4).2_1*", "2.L3(4).2_1*",
> Concatenation("2.", nam), Concatenation("6.", nam)]);;
gap> inputs:= Concatenation(inputs1, inputs2);
[["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123}",

"6.L3(4).(2^2)_{123}"],
["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{12*3}",

"6.L3(4).(2^2)_{12*3}"],
["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{123*}",

"6.L3(4).(2^2)_{123*}"],
["6.L3(4).2_1", "2.L3(4).2_1", "2.L3(4).(2^2)_{12*3*}",

"6.L3(4).(2^2)_{12*3*}"],
["6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*23}",

"6.L3(4).(2^2)_{1*23}"],
["6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*2*3}",

"6.L3(4).(2^2)_{1*2*3}"],
["6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*23*}",

"6.L3(4).(2^2)_{1*23*}"],
["6.L3(4).2_1*", "2.L3(4).2_1*", "2.L3(4).(2^2)_{1*2*3*}",

"6.L3(4).(2^2)_{1*2*3*}"]]
gap> result2:= [];;
gap> for input in inputs do
> tblMG := CharacterTable(input[1]);

Computations with the GAP Character Table Library 130

> tblG := CharacterTable(input[2]);
> tblGA := CharacterTable(input[3]);
> name := Concatenation("new", input[4]);
> lib := CharacterTable(input[4]);
> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
> Append(result2, poss);
> od;
gap> result2:= List(result2, x -> x.table);
[CharacterTable("new6.L3(4).(2^2)_{123}"),

CharacterTable("new6.L3(4).(2^2)_{12*3}"),
CharacterTable("new6.L3(4).(2^2)_{123*}"),
CharacterTable("new6.L3(4).(2^2)_{12*3*}"),
CharacterTable("new6.L3(4).(2^2)_{1*23}"),
CharacterTable("new6.L3(4).(2^2)_{1*2*3}"),
CharacterTable("new6.L3(4).(2^2)_{1*23*}"),
CharacterTable("new6.L3(4).(2^2)_{1*2*3*}")]

gap> trans:= List([1 .. 8], i ->
> TransformingPermutationsCharacterTables(result[i],
> result2[i]));;
gap> ForAll(trans, IsRecord);
true

2.6.6 The Character Tables of Groups of the Type 2.U4(3).22 (February 2012)

The outer automorphism group of the group U4(3) is a dihedral group of order 8. There are two almost
simple groups of the type U4(3).22, up to isomorphism, denoted as U4(3).(22)122 and U4(3).(22)133,
respectively. Note that U4(3).21 is the extension by the central involution of the outer automorphism
group of U4(3), the other two subgroups of index two in U4(3).(22)122 are U4(3).22 and U4(3).2′2,
respectively, and the other two subgroups of index two in U4(3).(22)133 are U4(3).23 and U4(3).2′3,
respectively.

Since Aut(U4(3)) possesses a double cover (see [CCN+85, p. 52]), double covers of U4(3).(22)122
and U4(3).(22)133 exist.

First we deal with the double covers of U4(3).(22)122. Any such group contains one subgroup
of the type 2.U4(3).21 and two subgroups of the type 2.U4(3).22, and there are two isoclinic variants
of each of these group to consider, see Section 2.2.6. Thus we start with six different inputs for the
construction of the character tables of double covers.

Example
gap> tbls:= List(["1", "2", "2’"], i ->
> CharacterTable(Concatenation("2.U4(3).2_", i)));;
gap> isos:= List(["1", "2", "2’"], i ->
> CharacterTable(Concatenation("Isoclinic(2.U4(3).2_", i, ")")));;
gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{122}"],
> [isos[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{1*22}"],
> [tbls[1], isos[2], tbls[3], "2.U4(3).(2^2)_{12*2}"],
> [isos[1], isos[2], tbls[3], "2.U4(3).(2^2)_{1*2*2}"],
> [tbls[1], isos[2], isos[3], "2.U4(3).(2^2)_{12*2*}"],
> [isos[1], isos[2], isos[3], "2.U4(3).(2^2)_{1*2*2*}"]];;
gap> tblG:= CharacterTable("2.U4(3)");;
gap> result:= [];;

Computations with the GAP Character Table Library 131

gap> for input in inputs do
> tblsG2:= input{ [1 .. 3] };
> lib:= CharacterTable(input[4]);
> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> Append(result, RepresentativesCharacterTables(poss));
> od;
gap> result:= List(result, x -> x.table);
[CharacterTable("new2.U4(3).(2^2)_{122}"),

CharacterTable("new2.U4(3).(2^2)_{1*22}"),
CharacterTable("new2.U4(3).(2^2)_{12*2}"),
CharacterTable("new2.U4(3).(2^2)_{1*2*2}"),
CharacterTable("new2.U4(3).(2^2)_{12*2*}"),
CharacterTable("new2.U4(3).(2^2)_{1*2*2*}")]

We get exactly one character table for each input. For each of these tables, there are three pos-
sibilities to form an isoclinic table, corresponding to the three subgroups of index two. It turns out
that the six solutions form two orbits under forming some isoclinic table. Tables in different orbits are
essentially different, already their numbers of conjugacy classes differ.

Example
gap> List(result, NrConjugacyClasses);
[87, 102, 102, 87, 87, 102]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[4, 4, 5]
gap> t:= result[2];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[3, 3, 6]

Up to now, it is not clear that the character tables we have constructed are really the character
tables of some groups. The existence of groups for the first orbit of character tables can be established
as follows.

The group O+
8 (3) contains maximal subgroups of the type 2.U4(3).22, see [CCN+85, p. 140].

Only the first of our result tables admits a class fusion into the table of O+
8 (3).

Example
gap> u:= CharacterTable("O8+(3)");;
gap> fus:= List(result, x -> PossibleClassFusions(x, u));;
gap> List(fus, Length);
[24, 0, 0, 0, 0, 0]

A table in the second orbit belongs to a maximal subgroup of O7(3).2, see [CCN+85, p. 109].

Computations with the GAP Character Table Library 132

Example
gap> u:= CharacterTable("O7(3).2");;
gap> fus:= List(result, x -> PossibleClassFusions(x, u));;
gap> List(fus, Length);
[0, 16, 0, 0, 0, 0]

Note that this subgroup of O7(3).2∼= SO(7,3) is the orthogonal group GO−6 (3).
Now we deal with the double covers of U4(3).(22)133. The constructions of the character tables

are completely analogous to those in the case of U4(3).(22)122.
Example

gap> tbls:= List(["1", "3", "3’"],
> i -> CharacterTable(Concatenation("2.U4(3).2_", i)));;
gap> isos:= List(["1", "3", "3’"], i ->
> CharacterTable(Concatenation("Isoclinic(2.U4(3).2_", i, ")")));;
gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{133}"],
> [isos[1], tbls[2], tbls[3], "2.U4(3).(2^2)_{1*33}"],
> [tbls[1], isos[2], tbls[3], "2.U4(3).(2^2)_{13*3}"],
> [isos[1], isos[2], tbls[3], "2.U4(3).(2^2)_{1*3*3}"],
> [tbls[1], isos[2], isos[3], "2.U4(3).(2^2)_{13*3*}"],
> [isos[1], isos[2], isos[3], "2.U4(3).(2^2)_{1*3*3*}"]];;
gap> tblG:= CharacterTable("2.U4(3)");;
gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 3] };
> lib:= CharacterTable(input[4]);
> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> Append(result, RepresentativesCharacterTables(poss));
> od;
#I excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{1*33} by
3-mod. table
#I excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{1*33} by
3-mod. table
#I excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{13*3} by
3-mod. table
#I excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{13*3} by
3-mod. table
#I excluded cand. 2 (out of 4) for 2.U4(3).(2^2)_{1*3*3*} by
3-mod. table
#I excluded cand. 3 (out of 4) for 2.U4(3).(2^2)_{1*3*3*} by
3-mod. table
gap> result:= List(result, x -> x.table);
[CharacterTable("new2.U4(3).(2^2)_{133}"),

CharacterTable("new2.U4(3).(2^2)_{1*33}"),
CharacterTable("new2.U4(3).(2^2)_{13*3}"),
CharacterTable("new2.U4(3).(2^2)_{1*3*3}"),
CharacterTable("new2.U4(3).(2^2)_{13*3*}"),
CharacterTable("new2.U4(3).(2^2)_{1*3*3*}")]

gap> List(result, NrConjugacyClasses);
[69, 72, 72, 69, 69, 72]
gap> t:= result[1];;

Computations with the GAP Character Table Library 133

gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[4, 4, 5]
gap> t:= result[2];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[3, 3, 6]

2.6.7 The Character Tables of Groups of the Type 41.L3(4).22 (October 2011)

The situation with 41.L3(4).22 is analogous to that with 6.L3(4).22, see Section 2.6.5.
Example

gap> tbls:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_1.L3(4).2_", i)));
[CharacterTable("4_1.L3(4).2_1"), CharacterTable("4_1.L3(4).2_2")

, CharacterTable("4_1.L3(4).2_3")]
gap> isos:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_1.L3(4).2_", i, "*")));
[CharacterTable("Isoclinic(4_1.L3(4).2_1)"),

CharacterTable("Isoclinic(4_1.L3(4).2_2)"),
CharacterTable("4_1.L3(4).2_3*")]

Note that the group 41.L3(4).23 has a centre of order four, so one cannot construct the isoclinic
variant by calling the one argument version of CharacterTableIsoclinic (Reference: Charac-
terTableIsoclinic).

Example
gap> List(tbls, ClassPositionsOfCentre);
[[1, 3], [1, 3], [1, 2, 3, 4]]
gap> IsRecord(TransformingPermutationsCharacterTables(tbls[3],
> CharacterTableIsoclinic(tbls[3])));
true

Again, we get eight different character tables, in two orbits.
Example

gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "4_1.L3(4).(2^2)_{123}"],
> [isos[1], tbls[2], tbls[3], "4_1.L3(4).(2^2)_{1*23}"],
> [tbls[1], isos[2], tbls[3], "4_1.L3(4).(2^2)_{12*3}"],
> [isos[1], isos[2], tbls[3], "4_1.L3(4).(2^2)_{1*2*3}"],
> [tbls[1], tbls[2], isos[3], "4_1.L3(4).(2^2)_{123*}"],
> [isos[1], tbls[2], isos[3], "4_1.L3(4).(2^2)_{1*23*}"],
> [tbls[1], isos[2], isos[3], "4_1.L3(4).(2^2)_{12*3*}"],
> [isos[1], isos[2], isos[3], "4_1.L3(4).(2^2)_{1*2*3*}"]];;
gap> tblG:= CharacterTable("4_1.L3(4)");;

Computations with the GAP Character Table Library 134

gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 3] };
> lib:= CharacterTable(input[4]);
> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> Append(result, RepresentativesCharacterTables(poss));
> od;
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{12*3} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
7-mod. table

Computations with the GAP Character Table Library 135

#I excluded cand. 6 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_1.L3(4).(2^2)_{1*2*3} by
5-mod. table
gap> result:= List(result, x -> x.table);
[CharacterTable("new4_1.L3(4).(2^2)_{123}"),

CharacterTable("new4_1.L3(4).(2^2)_{1*23}"),
CharacterTable("new4_1.L3(4).(2^2)_{12*3}"),
CharacterTable("new4_1.L3(4).(2^2)_{1*2*3}"),
CharacterTable("new4_1.L3(4).(2^2)_{123*}"),
CharacterTable("new4_1.L3(4).(2^2)_{1*23*}"),
CharacterTable("new4_1.L3(4).(2^2)_{12*3*}"),
CharacterTable("new4_1.L3(4).(2^2)_{1*2*3*}")]

gap> List(result, NrConjugacyClasses);
[48, 48, 48, 48, 42, 42, 42, 42]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[3, 2, 4]
gap> t:= result[5];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[7, 6, 8]

Note that only two out of the eight tables of the type 2.L3(4).22 occur as factors of the eight tables.
Example

gap> facts:= [CharacterTable("2.L3(4).(2^2)_{123}"),
> CharacterTable("2.L3(4).(2^2)_{123*}")];;
gap> factresults:= List(result, t -> t / ClassPositionsOfCentre(t));;
gap> List(factresults, t -> PositionProperty(facts, f ->
> IsRecord(TransformingPermutationsCharacterTables(t, f))));
[1, 1, 1, 1, 2, 2, 2, 2]

This is not surprising; note that for 1 ≤ i ≤ 2, the two isoclinic variants of 41.L3(4).2i have iso-
morphic factor groups of the type 2.L3(4).2i. (For i = 3, this is not the case.)

Example
gap> test:= [CharacterTable("4_1.L3(4).2_1"),
> CharacterTable("4_1.L3(4).2_1*")];;
gap> List(test, ClassPositionsOfCentre);
[[1, 3], [1, 3]]
gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;
gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true
gap> test:= [CharacterTable("4_1.L3(4).2_2"),
> CharacterTable("4_1.L3(4).2_2*")];;

Computations with the GAP Character Table Library 136

gap> List(test, ClassPositionsOfCentre);
[[1, 3], [1, 3]]
gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;
gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true

Now we try the second approach and compare the results. By the abovementioned asymmetry, it
is clear that the tables are not uniquely determined by the input data.

Example
gap> names:= ["L3(4).(2^2)_{123}", "L3(4).(2^2)_{1*23}",
> "L3(4).(2^2)_{12*3}", "L3(4).(2^2)_{1*2*3}"];;
gap> inputs1:= List(names, nam -> ["4_1.L3(4).2_3", "2.L3(4).2_3",
> Concatenation("2.", nam), Concatenation("4_1.", nam)]);;
gap> names:= List(names, nam -> ReplacedString(nam, "3}", "3*}"));;
gap> inputs2:= List(names, nam -> ["4_1.L3(4).2_3*", "2.L3(4).2_3*",
> Concatenation("2.", nam), Concatenation("4_1.", nam)]);;
gap> inputs:= Concatenation(inputs1, inputs2);
[["4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{123}",

"4_1.L3(4).(2^2)_{123}"],
["4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{1*23}",

"4_1.L3(4).(2^2)_{1*23}"],
["4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{12*3}",

"4_1.L3(4).(2^2)_{12*3}"],
["4_1.L3(4).2_3", "2.L3(4).2_3", "2.L3(4).(2^2)_{1*2*3}",

"4_1.L3(4).(2^2)_{1*2*3}"],
["4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{123*}",

"4_1.L3(4).(2^2)_{123*}"],
["4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{1*23*}",

"4_1.L3(4).(2^2)_{1*23*}"],
["4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{12*3*}",

"4_1.L3(4).(2^2)_{12*3*}"],
["4_1.L3(4).2_3*", "2.L3(4).2_3*", "2.L3(4).(2^2)_{1*2*3*}",

"4_1.L3(4).(2^2)_{1*2*3*}"]]
gap> result2:= [];;
gap> for input in inputs do
> tblMG := CharacterTable(input[1]);
> tblG := CharacterTable(input[2]);
> tblGA := CharacterTable(input[3]);
> name := Concatenation("new", input[4]);
> lib := CharacterTable(input[4]);
> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
> Append(result2, poss);
> od;
#E 4 possibilities for new4_1.L3(4).(2^2)_{123}
#E no solution for new4_1.L3(4).(2^2)_{1*23}
#E no solution for new4_1.L3(4).(2^2)_{12*3}
#E no solution for new4_1.L3(4).(2^2)_{1*2*3}
#E 4 possibilities for new4_1.L3(4).(2^2)_{123*}
#E no solution for new4_1.L3(4).(2^2)_{1*23*}
#E no solution for new4_1.L3(4).(2^2)_{12*3*}
#E no solution for new4_1.L3(4).(2^2)_{1*2*3*}
gap> Length(result2);

Computations with the GAP Character Table Library 137

8
gap> result2:= List(result2, x -> x.table);
[CharacterTable("new4_1.L3(4).(2^2)_{123}"),

CharacterTable("new4_1.L3(4).(2^2)_{123}"),
CharacterTable("new4_1.L3(4).(2^2)_{123}"),
CharacterTable("new4_1.L3(4).(2^2)_{123}"),
CharacterTable("new4_1.L3(4).(2^2)_{123*}"),
CharacterTable("new4_1.L3(4).(2^2)_{123*}"),
CharacterTable("new4_1.L3(4).(2^2)_{123*}"),
CharacterTable("new4_1.L3(4).(2^2)_{123*}")]

gap> List(result, t1 -> PositionsProperty(result2, t2 -> IsRecord(
> TransformingPermutationsCharacterTables(t1, t2))));
[[1], [4], [3], [2], [7], [6], [5], [8]]

At the moment, I do not know interesting groups that contain one of the 41.L3(4).22 type groups
and whose character tables are available.

2.6.8 The Character Tables of Groups of the Type 42.L3(4).22 (October 2011)

The situation with 42.L3(4).22 is analogous to that with 6.L3(4).22, see Section 2.6.5.
Example

gap> tbls:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_2.L3(4).2_", i)));
[CharacterTable("4_2.L3(4).2_1"), CharacterTable("4_2.L3(4).2_2")

, CharacterTable("4_2.L3(4).2_3")]
gap> isos:= List(["1", "2", "3"],
> i -> CharacterTable(Concatenation("4_2.L3(4).2_", i, "*")));
[CharacterTable("Isoclinic(4_2.L3(4).2_1)"),

CharacterTable("4_2.L3(4).2_2*"),
CharacterTable("Isoclinic(4_2.L3(4).2_3)")]

Note that the group 41.L3(4).22 has a centre of order four, so one cannot construct the isoclinic
variant not by calling the one argument version of CharacterTableIsoclinic (Reference: Char-
acterTableIsoclinic).

Example
gap> List(tbls, ClassPositionsOfCentre);
[[1, 3], [1, 2, 3, 4], [1, 3]]
gap> IsRecord(TransformingPermutationsCharacterTables(tbls[2],
> CharacterTableIsoclinic(tbls[2])));
true

Again, we get eight different character tables, in two orbits.
Example

gap> inputs:= [
> [tbls[1], tbls[2], tbls[3], "4_2.L3(4).(2^2)_{123}"],
> [isos[1], tbls[2], tbls[3], "4_2.L3(4).(2^2)_{1*23}"],
> [tbls[1], isos[2], tbls[3], "4_2.L3(4).(2^2)_{12*3}"],
> [tbls[1], tbls[2], isos[3], "4_2.L3(4).(2^2)_{123*}"],
> [isos[1], isos[2], tbls[3], "4_2.L3(4).(2^2)_{1*2*3}"],
> [isos[1], tbls[2], isos[3], "4_2.L3(4).(2^2)_{1*23*}"],

Computations with the GAP Character Table Library 138

> [tbls[1], isos[2], isos[3], "4_2.L3(4).(2^2)_{12*3*}"],
> [isos[1], isos[2], isos[3], "4_2.L3(4).(2^2)_{1*2*3*}"]];;
gap> tblG:= CharacterTable("4_2.L3(4)");;
gap> result:= [];;
gap> for input in inputs do
> tblsG2:= input{ [1 .. 3] };
> lib:= CharacterTable(input[4]);
> poss:= ConstructOrdinaryGV4Table(tblG, tblsG2, input[4], lib);
> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);
> Append(result, RepresentativesCharacterTables(poss));
> od;
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{123} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{123} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{1*23} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{123*} by
5-mod. table
#I excluded cand. 2 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 3 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 4 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by

Computations with the GAP Character Table Library 139

7-mod. table
#I excluded cand. 5 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
7-mod. table
#I excluded cand. 6 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
#I excluded cand. 7 (out of 8) for 4_2.L3(4).(2^2)_{1*23*} by
5-mod. table
gap> result:= List(result, x -> x.table);
[CharacterTable("new4_2.L3(4).(2^2)_{123}"),

CharacterTable("new4_2.L3(4).(2^2)_{1*23}"),
CharacterTable("new4_2.L3(4).(2^2)_{12*3}"),
CharacterTable("new4_2.L3(4).(2^2)_{123*}"),
CharacterTable("new4_2.L3(4).(2^2)_{1*2*3}"),
CharacterTable("new4_2.L3(4).(2^2)_{1*23*}"),
CharacterTable("new4_2.L3(4).(2^2)_{12*3*}"),
CharacterTable("new4_2.L3(4).(2^2)_{1*2*3*}")]

gap> List(result, NrConjugacyClasses);
[50, 50, 44, 50, 44, 50, 44, 44]
gap> t:= result[1];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[4, 2, 6]
gap> t:= result[3];;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(t),
> x -> Sum(SizesConjugacyClasses(t){ x }) = Size(t) / 2);;
gap> iso:= List(nsg, x -> CharacterTableIsoclinic(t, x));;
gap> List(iso, x -> PositionProperty(result, y ->
> TransformingPermutationsCharacterTables(x, y) <> fail));
[7, 5, 8]

Note that only two out of the eight tables of the type 2.L3(4).22 occur as factors of the eight tables.
Example

gap> facts:= [CharacterTable("2.L3(4).(2^2)_{123}"),
> CharacterTable("2.L3(4).(2^2)_{12*3}")];;
gap> factresults:= List(result, t -> t / ClassPositionsOfCentre(t));;
gap> List(factresults, t -> PositionProperty(facts, f ->
> IsRecord(TransformingPermutationsCharacterTables(t, f))));
[1, 1, 2, 1, 2, 1, 2, 2]

This is not surprising; note that for i ∈ {1,3}, the two isoclinic variants of 41.L3(4).2i have iso-
morphic factor groups of the type 2.L3(4).2i. (For i = 2, this is not the case.)

Example
gap> test:= [CharacterTable("4_2.L3(4).2_1"),
> CharacterTable("4_2.L3(4).2_1*")];;
gap> List(test, ClassPositionsOfCentre);
[[1, 3], [1, 3]]
gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;
gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));

Computations with the GAP Character Table Library 140

true
gap> test:= [CharacterTable("4_2.L3(4).2_3"),
> CharacterTable("4_2.L3(4).2_3*")];;
gap> List(test, ClassPositionsOfCentre);
[[1, 3], [1, 3]]
gap> fact:= List(test, t -> t / ClassPositionsOfCentre(t));;
gap> IsRecord(TransformingPermutationsCharacterTables(fact[1], fact[2]));
true

Now we try the second approach and compare the results. By the abovementioned asymmetry, it
is clear that the tables are not uniquely determined by the input data.

Example
gap> names:= ["L3(4).(2^2)_{123}", "L3(4).(2^2)_{1*23}",
> "L3(4).(2^2)_{123*}", "L3(4).(2^2)_{1*23*}"];;
gap> inputs1:= List(names, nam -> ["4_2.L3(4).2_2", "2.L3(4).2_2",
> Concatenation("2.", nam), Concatenation("4_2.", nam)]);;
gap> names:= List(names, nam -> ReplacedString(nam, "23", "2*3"));;
gap> inputs2:= List(names, nam -> ["4_2.L3(4).2_2*", "2.L3(4).2_2*",
> Concatenation("2.", nam), Concatenation("4_2.", nam)]);;
gap> inputs:= Concatenation(inputs1, inputs2);
[["4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{123}",

"4_2.L3(4).(2^2)_{123}"],
["4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{1*23}",

"4_2.L3(4).(2^2)_{1*23}"],
["4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{123*}",

"4_2.L3(4).(2^2)_{123*}"],
["4_2.L3(4).2_2", "2.L3(4).2_2", "2.L3(4).(2^2)_{1*23*}",

"4_2.L3(4).(2^2)_{1*23*}"],
["4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{12*3}",

"4_2.L3(4).(2^2)_{12*3}"],
["4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{1*2*3}",

"4_2.L3(4).(2^2)_{1*2*3}"],
["4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{12*3*}",

"4_2.L3(4).(2^2)_{12*3*}"],
["4_2.L3(4).2_2*", "2.L3(4).2_2*", "2.L3(4).(2^2)_{1*2*3*}",

"4_2.L3(4).(2^2)_{1*2*3*}"]]
gap> result2:= [];;
gap> for input in inputs do
> tblMG := CharacterTable(input[1]);
> tblG := CharacterTable(input[2]);
> tblGA := CharacterTable(input[3]);
> name := Concatenation("new", input[4]);
> lib := CharacterTable(input[4]);
> poss:= ConstructOrdinaryMGATable(tblMG, tblG, tblGA, name, lib);
> Append(result2, poss);
> od;
#E 4 possibilities for new4_2.L3(4).(2^2)_{123}
#E no solution for new4_2.L3(4).(2^2)_{1*23}
#E no solution for new4_2.L3(4).(2^2)_{123*}
#E no solution for new4_2.L3(4).(2^2)_{1*23*}
#E 4 possibilities for new4_2.L3(4).(2^2)_{12*3}
#E no solution for new4_2.L3(4).(2^2)_{1*2*3}

Computations with the GAP Character Table Library 141

#E no solution for new4_2.L3(4).(2^2)_{12*3*}
#E no solution for new4_2.L3(4).(2^2)_{1*2*3*}
gap> Length(result2);
8
gap> result2:= List(result2, x -> x.table);
[CharacterTable("new4_2.L3(4).(2^2)_{123}"),

CharacterTable("new4_2.L3(4).(2^2)_{123}"),
CharacterTable("new4_2.L3(4).(2^2)_{123}"),
CharacterTable("new4_2.L3(4).(2^2)_{123}"),
CharacterTable("new4_2.L3(4).(2^2)_{12*3}"),
CharacterTable("new4_2.L3(4).(2^2)_{12*3}"),
CharacterTable("new4_2.L3(4).(2^2)_{12*3}"),
CharacterTable("new4_2.L3(4).(2^2)_{12*3}")]

gap> List(result, t1 -> PositionsProperty(result2, t2 -> IsRecord(
> TransformingPermutationsCharacterTables(t1, t2))));
[[1], [4], [7], [3], [6], [2], [5], [8]]

The group ON.2 contains a maximal subgroup M of the type 42.L3(4).22, see [CCN+85, p. 132].
Only the third result table admits a class fusion into ON.2. This shows the existence of groups for the
tables from the second orbit.

Example
gap> on2:= CharacterTable("ON.2");;
gap> fus:= List(result, x -> PossibleClassFusions(x, on2));;
gap> List(fus, Length);
[0, 0, 16, 0, 0, 0, 0, 0]

2.6.9 The Character Table of Aut(L2(81))

The group Aut(L2(81)) ∼= L2(81).(2× 4) has the structure G.22 where G = L2(81).21. Here we get
two triples of possible actions on the tables of the groups G.2i, and one possible character table for
each triple.

Example
gap> input:= ["L2(81).2_1", "L2(81).4_1", "L2(81).4_2", "L2(81).2^2",
> "L2(81).(2x4)"];;
gap> tblG := CharacterTable(input[1]);;
gap> tblsG2 := List(input{ [2 .. 4] }, CharacterTable);;
gap> name := Concatenation("new", input[5]);;
gap> lib := CharacterTable(input[5]);;
gap> poss := ConstructOrdinaryGV4Table(tblG, tblsG2, name, lib);;
#I newL2(81).(2x4): 2 equivalence classes
gap> reps:= RepresentativesCharacterTables(poss);;
gap> Length(reps);
2

Due to the different underlying actions, the power maps of the two candidate tables differ.
Example

gap> ord:= OrdersClassRepresentatives(reps[1].table);;
gap> ord = OrdersClassRepresentatives(reps[2].table);
true
gap> pos:= Position(ord, 80);

Computations with the GAP Character Table Library 142

33
gap> PowerMap(reps[1].table, 3)[pos];
34
gap> PowerMap(reps[2].table, 3)[pos];
33

Aut(L2(81)) can be generated by PGL(2,81) = L2(81).22 and the Frobenius automorphism of
order four that is defined on GL(2,81) as the map that cubes the matrix entries. The elements of order
80 in Aut(L2(81)) are conjugates of diagonal matrices modulo scalar matrices, which are mapped to
their third powers by the Frobenius homomorphism. So the third power map of Aut(L2(81)) fixes the
classes of elements of order 80. In other words, the second of the two tables is the right one.

Example
gap> trans:= TransformingPermutationsCharacterTables(reps[2].table, lib);;
gap> IsRecord(trans);
true
gap> List(reps[2].G2fusGV4, x -> OnTuples(x, trans.columns))
> = List(tblsG2, x -> GetFusionMap(x, lib));
true
gap> ConstructModularGV4Tables(tblG, tblsG2, [reps[2]], lib);;
#I not all input tables for L2(81).(2x4) mod 41 available

2.6.10 The Character Table of O+
8 (3).2

2
111

The construction of the character table of the group O+
8 (3).2

2
111 is not as straightforward as the con-

structions shown in Section 2.6.2. Here we get 26 triples of actions on the tables of the three subgroups
G.2i of index two, but only one of them leads to candidates for the desired character table. Specifically,
we get 64 such candidates, in two equivalence classes w.r.t. permutation equivalence.

Example
gap> input:= ["O8+(3)", "O8+(3).2_1", "O8+(3).2_1’", "O8+(3).2_1’’",
> "O8+(3).(2^2)_{111}"];;
gap> tblG := CharacterTable(input[1]);;
gap> tblsG2 := List(input{ [2 .. 4] }, CharacterTable);;
gap> name := Concatenation("new", input[5]);;
gap> lib := CharacterTable(input[5]);;
gap> poss := ConstructOrdinaryGV4Table(tblG, tblsG2, name, lib);;
#I newO8+(3).(2^2)_{111}: 2 equivalence classes
gap> Length(poss);
64
gap> reps:= RepresentativesCharacterTables(poss);;
gap> Length(reps);
2

The two candidate tables differ only in four irreducible characters involving irrationalities on the
classes of element order 28. All three subgroups G.2i contain elements of order 28 that do not lie in the
simple group G; these classes are roots of the same (unique) class of element order 7. The centralizer
C of an order 7 element in G.22 has order 112 = 24 ·7, the intersection of C with G has the structure
22×7 since G contains three classes of cyclic subgroups of the order 14, and each of the intersections
of C with one of the subgroups G.2i has the structure 2×4×7, so the structure of C is 42×7∼= 4×28.

Computations with the GAP Character Table Library 143

Example
gap> t:= reps[1].table;;
gap> ord7:= Filtered([1 .. NrConjugacyClasses(t)],
> i -> OrdersClassRepresentatives(t)[i] = 7);
[37]
gap> SizesCentralizers(t){ ord7 };
[112]
gap> ord28:= Filtered([1 .. NrConjugacyClasses(t)],
> i -> OrdersClassRepresentatives(t)[i] = 28);
[112, 113, 114, 115, 161, 162, 163, 164, 210, 211, 212, 213]
gap> List(reps[1].G2fusGV4, x -> Intersection(ord28, x));
[[112, 113, 114, 115], [161, 162, 163, 164],

[210, 211, 212, 213]]
gap> sub:= CharacterTable("Cyclic", 28) * CharacterTable("Cyclic", 4);;
gap> List(reps, x -> Length(PossibleClassFusions(sub, x.table)));
[0, 96]

It turns out that only one of the two candidate tables admits a class fusion from the character table
of C, thus we have determined the ordinary character table of O+

8 (3).2
2
111. It coincides with the table

from the library.
Example

gap> trans:= TransformingPermutationsCharacterTables(reps[2].table, lib);;
gap> IsRecord(trans);
true
gap> List(reps[2].G2fusGV4, x -> OnTuples(x, trans.columns))
> = List(tblsG2, x -> GetFusionMap(x, lib));
true

(If we do not believe the statement about the structure of C then we can check all 14 groups of
order 112 that contain a central subgroup of order 7. A unique such group admits a class fusion into
at least one of the two candidate tables.)

The wrong candidate for the ordinary table cannot be excluded via conditions that are forced by
the construction of the p-modular tables of O+

8 (3).2
2
111. Thus we restrict the ordinary tables used for

this construction to those candidates that are equivalent to the correct table.
Example

gap> poss:= Filtered(poss,
> r -> TransformingPermutationsCharacterTables(r.table, lib)
> <> fail);;
gap> ConstructModularGV4Tables(tblG, tblsG2, poss, lib);;
#I not all input tables for O8+(3).(2^2)_{111} mod 3 available

So also the p-modular tables of O+
8 (3).2

2
111 can be computed this way, provided that the p-modular

tables of the index 2 subgroups are available.

2.7 Examples for the Type 22.G

We compute the character table of a group of the type 22.G from the character tables of the three
factor groups of the type 2.G, using the function PossibleCharacterTablesOfTypeV4G (CTblLib:
PossibleCharacterTablesOfTypeV4G), see Section 2.3.4.

Computations with the GAP Character Table Library 144

2.7.1 The Character Table of 22.Sz(8)

The three central involutions in 22.Sz(8) are permuted cyclicly by an outer automorphism α of order
three. In order to apply PossibleCharacterTablesOfTypeV4G (CTblLib: PossibleCharacterTa-
blesOfTypeV4G), we need the character table of the group 2.Sz(8) and the action on the classes of
Sz(8) that is induced by α .

The ordinary character table of G = Sz(8) admits exactly five table automorphisms of order di-
viding 3. Each of these possibilities leads to exactly one possible character table of 22.G, and the
five tables are permutation equivalent. From this point of view, we need not know which of the table
automorphisms are induced by outer group automorphisms of G.

Example
gap> t:= CharacterTable("Sz(8)");;
gap> 2t:= CharacterTable("2.Sz(8)");;
gap> aut:= AutomorphismsOfTable(t);;
gap> elms:= Set(Filtered(aut, x -> Order(x) in [1, 3]),
> SmallestGeneratorPerm);
[(), (9,10,11), (6,7,8), (6,7,8)(9,10,11), (6,7,8)(9,11,10)]
gap> poss:= List(elms,
> pi -> PossibleCharacterTablesOfTypeV4G(t, 2t, pi, "2^2.Sz(8)"));
[[CharacterTable("2^2.Sz(8)")], [CharacterTable("2^2.Sz(8)")]

, [CharacterTable("2^2.Sz(8)")],
[CharacterTable("2^2.Sz(8)")],
[CharacterTable("2^2.Sz(8)")]]

gap> reps:= RepresentativesCharacterTables(Concatenation(poss));
[CharacterTable("2^2.Sz(8)")]

The tables coincide with the one that is stored in the GAP library.
Example

gap> IsRecord(TransformingPermutationsCharacterTables(reps[1],
> CharacterTable("2^2.Sz(8)")));
true

The computation of the p-modular character table of 22.G from the p-modular character table of
2.G and the three factor fusions from 22.G to 2.G is straightforward, as is stated in Section 2.3.4. The
three fusions are stored on the tables returned by PossibleCharacterTablesOfTypeV4G (CTblLib:
PossibleCharacterTablesOfTypeV4G).

Example
gap> GetFusionMap(poss[1][1], 2t, "1");
[1, 1, 2, 2, 3, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12,

12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19]
gap> GetFusionMap(poss[1][1], 2t, "2");
[1, 2, 1, 2, 3, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12,

13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19]
gap> GetFusionMap(poss[1][1], 2t, "3");
[1, 2, 2, 1, 3, 4, 5, 6, 7, 7, 6, 8, 9, 9, 8, 10, 11, 11, 10, 12,

13, 13, 12, 14, 15, 15, 14, 16, 17, 17, 16, 18, 19, 19, 18]

The GAP library function BrauerTableOfTypeV4G (CTblLib: BrauerTableOfTypeV4G) can
be used to derive Brauer tables of 22.G. We have to compute the p-modular tables for prime divisors
p of |G|, that is, for p ∈ {2,5,7,13}.

Computations with the GAP Character Table Library 145

Example
gap> PrimeDivisors(Size(t));
[2, 5, 7, 13]

Clearly p = 2 is uninteresting from this point of view because the 2-modular table of 22.G can be
identified with the 2-modular table of G.

For each of the five ordinary tables (corresponding to the five possible table automorphisms of
G) constructed above, we get one candidate of a 5-modular table. However, these tables are not all
equivalent. There are two equivalence classes, and one of the two possibilities is inconsistent in the
sense that not all tensor products of irreducibles decompose into irreducibles.

Example
gap> cand:= List(poss, l -> BrauerTableOfTypeV4G(l[1], 2t mod 5,
> ConstructionInfoCharacterTable(l[1])[3]));
[BrauerTable("2^2.Sz(8)", 5), BrauerTable("2^2.Sz(8)", 5),

BrauerTable("2^2.Sz(8)", 5), BrauerTable("2^2.Sz(8)", 5),
BrauerTable("2^2.Sz(8)", 5)]

gap> Length(RepresentativesCharacterTables(cand));
2
gap> List(cand, CTblLib.Test.TensorDecomposition);
[false, true, false, true, true]
gap> Length(RepresentativesCharacterTables(cand{ [2, 4, 5] }));
1
gap> IsRecord(TransformingPermutationsCharacterTables(cand[2],
> CharacterTable("2^2.Sz(8)") mod 5));
true

This implies that only those table automorphisms of G can be induced by an outer group automor-
phism that move the classes of element order 13.

The 7-modular table of 22.G is uniquely determined, independent of the choice of the table auto-
morphism of G.

Example
gap> cand:= List(poss, l -> BrauerTableOfTypeV4G(l[1], 2t mod 7,
> ConstructionInfoCharacterTable(l[1])[3]));
[BrauerTable("2^2.Sz(8)", 7), BrauerTable("2^2.Sz(8)", 7),

BrauerTable("2^2.Sz(8)", 7), BrauerTable("2^2.Sz(8)", 7),
BrauerTable("2^2.Sz(8)", 7)]

gap> Length(RepresentativesCharacterTables(cand));
1
gap> IsRecord(TransformingPermutationsCharacterTables(cand[1],
> CharacterTable("2^2.Sz(8)") mod 7));
true

We get two candidates for the 13-modular table of 22.G, also if we consider only the three admis-
sible table automorphisms.

Example
gap> elms:= elms{ [2, 4, 5] };
[(9,10,11), (6,7,8)(9,10,11), (6,7,8)(9,11,10)]
gap> poss:= poss{ [2, 4, 5] };;
gap> cand:= List(poss, l -> BrauerTableOfTypeV4G(l[1], 2t mod 13,

Computations with the GAP Character Table Library 146

> ConstructionInfoCharacterTable(l[1])[3]));
[BrauerTable("2^2.Sz(8)", 13), BrauerTable("2^2.Sz(8)", 13),

BrauerTable("2^2.Sz(8)", 13)]
gap> Length(RepresentativesCharacterTables(cand));
2
gap> List(cand, CTblLib.Test.TensorDecomposition);
[true, true, true]

The action of the outer automorphism of order three of G can be read off from the 2-modular table
of G. Note that the ordinary and the 5-modular character table of G possess two independent table
automorphisms of order three, whereas the group of table automorphisms of the 2-modular table has
order three. (The reason is that the irrational values on the classes of the element orders 7 and 13
appear in the same irreducible 2-modular Brauer characters.)

Example
gap> mod2:= CharacterTable("Sz(8)") mod 2;
BrauerTable("Sz(8)", 2)
gap> AutomorphismsOfTable(mod2);
Group([(3,4,5)(6,7,8)])
gap> OrdersClassRepresentatives(mod2);
[1, 5, 7, 7, 7, 13, 13, 13]

This means that the first candidate is ruled out; this determines the 13-modular character table of
22.G.

Example
gap> Length(RepresentativesCharacterTables(cand{ [2, 3] }));
1
gap> IsRecord(TransformingPermutationsCharacterTables(cand[2],
> CharacterTable("2^2.Sz(8)") mod 13));
true

2.7.2 Atlas Tables of the Type 22.G (September 2005)

Besides 22.Sz(8) (cf. Section 2.7.1), 22.O+
8 (3) (cf. Section 2.7.3), and certain central extensions of

L3(4) (cf. Section 2.7.4), the following examples of central extensions of nearly simple Atlas groups
G by a Klein four group occur.

Example
gap> listV4G:= [
> ["2^2.L3(4)", "2.L3(4)", "L3(4)"],
> ["2^2.L3(4).2_1", "2.L3(4).2_1", "L3(4).2_1"],
> ["(2^2x3).L3(4)", "6.L3(4)", "3.L3(4)"],
> ["(2^2x3).L3(4).2_1", "6.L3(4).2_1", "3.L3(4).2_1"],
> ["2^2.O8+(2)", "2.O8+(2)", "O8+(2)"],
> ["2^2.U6(2)", "2.U6(2)", "U6(2)"],
> ["(2^2x3).U6(2)", "6.U6(2)", "3.U6(2)"],
> ["2^2.2E6(2)", "2.2E6(2)", "2E6(2)"],
> ["(2^2x3).2E6(2)", "6.2E6(2)", "3.2E6(2)"],
>];;

Computations with the GAP Character Table Library 147

(For the tables of (22×3).G, with G one of L3(4), U6(2), or 2E6(2), we could alternatively use the
tables of 22.G and 3.G, and the construction described in Chapter 3.)

The function for computing the candidates for the ordinary character tables is similar to the one
from Section 2.6.2.

Example
gap> ConstructOrdinaryV4GTable:= function(tblG, tbl2G, name, lib)
> local ord3, nam, poss, reps, trans;
>
> # Compute the possible actions for the ordinary tables.
> ord3:= Set(Filtered(AutomorphismsOfTable(tblG),
> x -> Order(x) = 3),
> SmallestGeneratorPerm);
> if 1 < Length(ord3) then
> Print("#I ", name,
> ": the action of the automorphism is not unique");
> fi;
> # Compute the possible ordinary tables for the given actions.
> nam:= Concatenation("new", name);
> poss:= Concatenation(List(ord3, pi ->
> PossibleCharacterTablesOfTypeV4G(tblG, tbl2G, pi, nam)));
> # Test the possibilities for permutation equivalence.
> reps:= RepresentativesCharacterTables(poss);
> if 1 < Length(reps) then
> Print("#I ", name, ": ", Length(reps),
> " equivalence classes\n");
> elif Length(reps) = 0 then
> Print("#E ", name, ": no solution\n");
> else
> # Compare the computed table with the library table.
> if not IsCharacterTable(lib) then
> Print("#I no library table for ", name, "\n");
> PrintToLib(name, poss[1].table);
> else
> trans:= TransformingPermutationsCharacterTables(reps[1], lib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " differ\n");
> fi;
> fi;
> fi;
> return poss;
> end;;

Concerning the Brauer tables, the same ambiguity problem may occur as in Section 2.6.2: Some
candidates for the ordinary table may be excluded due to information provided by some p-modular
table, see Section 2.7.1 for an easy example. Our strategy is analogous to the one used in Section 2.6.2.

Example
gap> ConstructModularV4GTables:= function(tblG, tbl2G, ordposs,
> ordlibtblV4G)
> local name, modposs, primes, checkordinary, i, p, tmodp, 2tmodp, aut,
> poss, modlib, trans, reps;

Computations with the GAP Character Table Library 148

>
> if not IsCharacterTable(ordlibtblV4G) then
> Print("#I no ordinary library table ...\n");
> return [];
> fi;
> name:= Identifier(ordlibtblV4G);
> modposs:= [];
> primes:= ShallowCopy(PrimeDivisors(Size(tblG)));
> ordposs:= ShallowCopy(ordposs);
> checkordinary:= false;
> for i in [1 .. Length(ordposs)] do
> modposs[i]:= [];
> for p in primes do
> tmodp := tblG mod p;
> 2tmodp:= tbl2G mod p;
> if IsCharacterTable(tmodp) and IsCharacterTable(2tmodp) then
> aut:= ConstructionInfoCharacterTable(ordposs[i])[3];
> poss:= BrauerTableOfTypeV4G(ordposs[i], 2tmodp, aut);
> if CTblLib.Test.TensorDecomposition(poss, false) = false then
> Print("#I excluded cand. ", i, " (out of ",
> Length(ordposs), ") for ", name, " by ", p,
> "-mod. table\n");
> Unbind(ordposs[i]);
> Unbind(modposs[i]);
> checkordinary:= true;
> break;
> fi;
> Add(modposs[i], poss);
> else
> Print("#I not all input tables for ", name, " mod ", p,
> " available\n");
> primes:= Difference(primes, [p]);
> fi;
> od;
> if IsBound(modposs[i]) then
> # Compare the computed Brauer tables with the library tables.
> for poss in modposs[i] do
> p:= UnderlyingCharacteristic(poss);
> modlib:= ordlibtblV4G mod p;
> if IsCharacterTable(modlib) then
> trans:= TransformingPermutationsCharacterTables(
> poss, modlib);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ",
> name, " mod ", p, " differ\n");
> fi;
> else
> Print("#I no library table for ",
> name, " mod ", p, "\n");
> PrintToLib(name, poss);
> fi;
> od;

Computations with the GAP Character Table Library 149

> fi;
> od;
> if checkordinary then
> # Test whether the ordinary table is admissible.
> ordposs:= Compacted(ordposs);
> modposs:= Compacted(modposs);
> reps:= RepresentativesCharacterTables(ordposs);
> if 1 < Length(reps) then
> Print("#I ", name, ": ", Length(reps),
> " equivalence classes (ord. table)\n");
> elif Length(reps) = 0 then
> Print("#E ", name, ": no solution (ord. table)\n");
> else
> # Compare the computed table with the library table.
> trans:= TransformingPermutationsCharacterTables(reps[1],
> ordlibtblV4G);
> if not IsRecord(trans) then
> Print("#E computed table and library table for ", name,
> " differ\n");
> fi;
> fi;
> fi;
> # Test the uniqueness of the Brauer tables.
> for poss in TransposedMat(modposs) do
> reps:= RepresentativesCharacterTables(poss);
> if Length(reps) <> 1 then
> Print("#I ", name, ": ", Length(reps), " candidates for the ",
> UnderlyingCharacteristic(reps[1]), "-modular table\n");
> fi;
> od;
> return rec(ordinary:= ordposs, modular:= modposs);
> end;;

In our examples, the action of the outer automorphism of order three on the classes of G turns out
to be uniquely determined by the table automorphisms of the character table of G.

Example
gap> for input in listV4G do
> tblG := CharacterTable(input[3]);
> tbl2G := CharacterTable(input[2]);
> lib := CharacterTable(input[1]);
> poss := ConstructOrdinaryV4GTable(tblG, tbl2G, input[1], lib);
> ConstructModularV4GTables(tblG, tbl2G, poss, lib);
> od;
#I excluded cand. 1 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 2 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 7 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 10 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 15 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 16 (out of 16) for 2^2.L3(4).2_1 by 7-mod. table
#I excluded cand. 1 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 2 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table
#I excluded cand. 7 (out of 16) for (2^2x3).L3(4).2_1 by 7-mod. table

Computations with the GAP Character Table Library 150

#I excluded cand. 10 (out of 16) for (2^2x3).L3(4).2_1 by
7-mod. table
#I excluded cand. 15 (out of 16) for (2^2x3).L3(4).2_1 by
7-mod. table
#I excluded cand. 16 (out of 16) for (2^2x3).L3(4).2_1 by
7-mod. table
#I not all input tables for 2^2.2E6(2) mod 2 available
#I not all input tables for 2^2.2E6(2) mod 3 available
#I not all input tables for 2^2.2E6(2) mod 5 available
#I not all input tables for 2^2.2E6(2) mod 7 available
#I not all input tables for (2^2x3).2E6(2) mod 2 available
#I not all input tables for (2^2x3).2E6(2) mod 3 available
#I not all input tables for (2^2x3).2E6(2) mod 5 available
#I not all input tables for (2^2x3).2E6(2) mod 7 available
#I not all input tables for (2^2x3).2E6(2) mod 11 available
#I not all input tables for (2^2x3).2E6(2) mod 13 available
#I not all input tables for (2^2x3).2E6(2) mod 17 available
#I not all input tables for (2^2x3).2E6(2) mod 19 available

2.7.3 The Character Table of 22.O+
8 (3) (March 2009)

When one tries to construct the character table of the central extensions of G = O+
8 (3) by a Klein four

group, in the same way as in Section 2.7.2, one notices that the order three automorphism that relates
the three central extensions of G by an involution is not uniquely determined.

Example
gap> entry:= ["2^2.O8+(3)", "2.O8+(3)", "O8+(3)"];;
gap> tblG:= CharacterTable(entry[3]);;
gap> aut:= AutomorphismsOfTable(tblG);;
gap> ord3:= Set(Filtered(aut, x -> Order(x) = 3),
> SmallestGeneratorPerm);;
gap> Length(ord3);
4

However, the table candidates one gets from the four possible automorphisms turn out to be all
equivalent, hence the character table of 22.O+

8 (3) can be constructed as follows.
Example

gap> poss:= [];;
gap> tbl2G:= CharacterTable(entry[2]);
CharacterTable("2.O8+(3)")
gap> for pi in ord3 do
> Append(poss,
> PossibleCharacterTablesOfTypeV4G(tblG, tbl2G, pi, entry[1]));
> od;
gap> Length(poss);
32
gap> poss:= RepresentativesCharacterTables(poss);;
gap> Length(poss);
1

The computed table coincides with the library table.

Computations with the GAP Character Table Library 151

Example
gap> lib:= CharacterTable(entry[1]);;
gap> if TransformingPermutationsCharacterTables(poss[1], lib) = fail then
> Print("#E differences for ", entry[1], "\n");
> fi;

2.7.4 The Character Table of the Schur Cover of L3(4) (September 2005)

The Schur cover of G= L3(4) has the structure (42×3).L3(4). Following [CCN+85, p. 23], we regard
the multiplier of G as

M = 〈a,b,c,d | [a,b] = [a,c] = [a,d] = [b,c] = [b,d] = [c,d] = a4 = b4 = c4 = d3 = abc〉,

and we will consider the automorphism α of M.G that acts as (a,b,c)(d) on M.
The subgroup lattice of the subgroup 〈a,b,c〉= 〈a,b〉 ∼= 42 of M looks as follows. (The subgroup

in the centre of the picture is the Klein four group 〈a2,b2,c2〉= 〈a2,b2〉.)

r〈a,b,c〉

r〈a,b2〉 r〈b,c2〉 r〈c,a2〉

rr〈a〉 r〈ab2〉 r〈b〉 r〈bc2〉 r〈c〉 r〈ca2〉

r
〈a2〉

r
〈b2〉

r
〈c2〉

r

�
��

�
��

HH
HHH

H

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

@
@
@
@
@
@�

�
�
�
�
�

H
HH

H
HH

��
���

�

@
@
@

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

(The symmetry w.r.t. α would be reflected better in a three dimensional model, with 〈a,b〉, 〈a2,b2〉,
and the trivial subgroup on a vertical symmetry axis, and with the remaining subgroups on three circles
such that α induces a rotation.)

The following is a 3D variant of the picture, which shows the symmetry of order three of the group
4×4. u

u
uu
u

u u
u uu

u
u

uu
u

@
@
@
@
@

E
E
E

�
�
�
�
�

�
�
�
�
�

Z
Z
Z
Z
Z

�
�
�
�
�
�

Z
Z
Z
Z
Z

�
�
�
�
�ZZ
Z
Z
Z

�
�
�
�
�

�
�
�
�
�
�

@
@
@
@
@

�
�
�
�
�

C
C
C

E
E
E

�
�
�
�
�

e
e
e
e
e

�
�
�
�
�

@
@
@
@
@

C
C
C

�
�
�
�
�

Z
Z
Z
Z
Z

We have (M/〈a〉).G ∼= (M/〈b〉).G ∼= (M/〈c〉).G ∼= 122.G and (M/〈ab2〉).G ∼= (M/〈bc2〉).G ∼=
(M/〈ca2〉).G∼= 121.G. This is because the action of G.22 fixes a, and swaps b and c; so b is inverted

Computations with the GAP Character Table Library 152

modulo 〈a〉 but fixed modulo 〈ab2〉, and the normal subgroup of order four in 42.G.22 is central but
that in 41.G.22 is not central.

The constructions of the character tables of 42.G and (42×3).G are essentially the same. We start
with the table of 42.G. It can be regarded as a central extension H = V.22.G of 22.G by a Klein four
group V . The three subgroups of order two in V are cyclicly permuted by the automorphism of M/〈d〉
induced by α , so the three factors by these subgroups are isomorphic groups F , say, with the structure
(2×4).G.

The group F itself is a central extension of 2.G by a Klein four group, but in this case the three
factor groups by the order two subgroups of the Klein four group are nonisomorphic groups, of the
types 41.G, 42.G, and 22.G, respectively. The GAP function PossibleCharacterTablesOfTypeV4G
(CTblLib: PossibleCharacterTablesOfTypeV4G) can be used to construct the character table of F
from the three factors. Note that in this case, no information about table automorphisms is required.

Example
gap> tblG:= CharacterTable("2.L3(4)");;
gap> tbls2G:= List(["4_1.L3(4)", "4_2.L3(4)", "2^2.L3(4)"],
> CharacterTable);;
gap> poss:= PossibleCharacterTablesOfTypeV4G(tblG, tbls2G, "(2x4).L3(4)");;
gap> Length(poss);
2
gap> reps:= RepresentativesCharacterTables(poss);
[CharacterTable("(2x4).L3(4)")]
gap> lib:= CharacterTable("(2x4).L3(4)");;
gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], lib));
true

In the second step, we construct the table of 42.G from that of (2× 4).G and the table automor-
phism of 22.G that is induced by α; it turns out that the group of table automorphisms of 22.G contains
a unique subgroup of order three.

Example
gap> tblG:= tbls2G[3];
CharacterTable("2^2.L3(4)")
gap> tbl2G:= lib;
CharacterTable("(2x4).L3(4)")
gap> aut:= AutomorphismsOfTable(tblG);;
gap> ord3:= Set(Filtered(aut, x -> Order(x) = 3),
> SmallestGeneratorPerm);
[(2,3,4)(6,7,8)(10,11,12)(13,15,17)(14,16,18)(20,21,22)(24,25,26)(28,

29,30)(32,33,34)]
gap> pi:= ord3[1];;
gap> poss:= PossibleCharacterTablesOfTypeV4G(tblG, tbl2G, pi, "4^2.L3(4)");;
gap> Length(poss);
4
gap> reps:= RepresentativesCharacterTables(poss);
[CharacterTable("4^2.L3(4)")]
gap> lib:= CharacterTable("4^2.L3(4)");;
gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], lib));
true

With the same approach, we compute the table of (2×12).G = 22.6.G from the tables of the three
nonisomorphic factor groups 121.G, 122.G, and (22×3).G, and we compute the table of (42×3).G =
22.(22×3).G from the three tables of the factor groups (2×12).G and the action induced by α .

Computations with the GAP Character Table Library 153

Example
gap> tblG:= CharacterTable("6.L3(4)");;
gap> tbls2G:= List(["12_1.L3(4)", "12_2.L3(4)", "(2^2x3).L3(4)"],
> CharacterTable);;
gap> poss:= PossibleCharacterTablesOfTypeV4G(tblG, tbls2G, "(2x12).L3(4)");;
gap> Length(poss);
2
gap> reps:= RepresentativesCharacterTables(poss);
[CharacterTable("(2x12).L3(4)")]
gap> lib:= CharacterTable("(2x12).L3(4)");;
gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], lib));
true
gap> tblG:= CharacterTable("(2^2x3).L3(4)");
CharacterTable("(2^2x3).L3(4)")
gap> tbl2G:= CharacterTable("(2x12).L3(4)");
CharacterTable("(2x12).L3(4)")
gap> aut:= AutomorphismsOfTable(tblG);;
gap> ord3:= Set(Filtered(aut, x -> Order(x) = 3),
> SmallestGeneratorPerm);
[(2,7,8)(3,4,10)(6,11,12)(14,19,20)(15,16,22)(18,23,24)(26,27,28)(29,

35,41)(30,37,43)(31,39,45)(32,36,42)(33,38,44)(34,40,46)(48,53,
54)(49,50,56)(52,57,58)(60,65,66)(61,62,68)(64,69,70)(72,77,
78)(73,74,80)(76,81,82)(84,89,90)(85,86,92)(88,93,94)]

gap> pi:= ord3[1];;
gap> poss:= PossibleCharacterTablesOfTypeV4G(tblG, tbl2G, pi,
> "(4^2x3).L3(4)");;
gap> Length(poss);
4
gap> reps:= RepresentativesCharacterTables(poss);
[CharacterTable("(4^2x3).L3(4)")]
gap> lib:= CharacterTable("(4^2x3).L3(4)");;
gap> IsRecord(TransformingPermutationsCharacterTables(reps[1], lib));
true

2.8 Examples of Extensions by p-singular Automorphisms

2.8.1 Some p-Modular Tables of Groups of the Type M.G.A

We show an alternative construction of p-modular tables of certain groups that have been met in
Section 2.4.3. Each entry in the GAP list listMGA contains the Identifier (Reference: Identifier
for tables of marks) values of character tables of groups of the types M.G, G, G.A, and M.G.A. For
each entry with |A| = p, a prime integer, we fetch the p-modular table of G and the ordinary table of
G.A, compute the action of G.A on the p-regular classes of G, and then compute the p-modular table
of G.A. Analogously, we compute the p-modular table of M.G.A from the p-modular table of M.G
and the ordinary table of M.G.A.

Example
gap> for input in listMGA do
> ordtblMG := CharacterTable(input[1]);
> ordtblG := CharacterTable(input[2]);
> ordtblGA := CharacterTable(input[3]);

Computations with the GAP Character Table Library 154

> ordtblMGA := CharacterTable(input[4]);
> p:= Size(ordtblGA) / Size(ordtblG);
> if IsPrimeInt(p) then
> modtblG:= ordtblG mod p;
> if modtblG <> fail then
> modtblGA := CharacterTableRegular(ordtblGA, p);
> SetIrr(modtblGA, IBrOfExtensionBySingularAutomorphism(modtblG,
> ordtblGA));
> modlibtblGA:= ordtblGA mod p;
> if modlibtblGA = fail then
> Print("#E ", p, "-modular table of ’", Identifier(ordtblGA),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblGA,
> modlibtblGA) = fail then
> Print("#E computed table and library table for ", input[3],
> " mod ", p, " differ\n");
> fi;
> fi;
> modtblMG:= ordtblMG mod p;
> if modtblMG <> fail then
> modtblMGA := CharacterTableRegular(ordtblMGA, p);
> SetIrr(modtblMGA, IBrOfExtensionBySingularAutomorphism(modtblMG,
> ordtblMGA));
> modlibtblMGA:= ordtblMGA mod p;
> if modlibtblMGA = fail then
> Print("#E ", p, "-modular table of ’", Identifier(ordtblMGA),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblMGA,
> modlibtblMGA) = fail then
> Print("#E computed table and library table for ", input[4],
> " mod ", p, " differ\n");
> fi;
> fi;
> fi;
> od;

2.8.2 Some p-Modular Tables of Groups of the Type G.S3

We show an alternative construction of 2- and 3-modular tables of certain groups that have been met in
Section 2.5.2. Each entry in the GAP list listGS3 contains the Identifier (Reference: Identifier
for tables of marks) values of character tables of groups of the types G, G.2, G.3, and G.S3. For each
entry, we fetch the 2-modular table of G and the ordinary table of G.2, compute the action of G.2 on
the 2-regular classes of G, and then compute the 2-modular table of G.2. Analogously, we compute the
3-modular table of G.3 from the 3-modular table of G and the ordinary table of G.3, and we compute
the 2-modular table of G.S3 from the 2-modular table of G.3 and the ordinary table of G.S3.

Example
gap> for input in listGS3 do
> modtblG:= CharacterTable(input[1]) mod 2;
> if modtblG <> fail then
> ordtblG2 := CharacterTable(input[2]);
> modtblG2 := CharacterTableRegular(ordtblG2, 2);

Computations with the GAP Character Table Library 155

> SetIrr(modtblG2, IBrOfExtensionBySingularAutomorphism(modtblG,
> ordtblG2));
> modlibtblG2:= ordtblG2 mod 2;
> if modlibtblG2 = fail then
> Print("#E 2-modular table of ’", Identifier(ordtblG2),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblG2,
> modlibtblG2) = fail then
> Print("#E computed table and library table for ", input[2],
> " mod 2 differ\n");
> fi;
> fi;
> modtblG:= CharacterTable(input[1]) mod 3;
> if modtblG <> fail then
> ordtblG3 := CharacterTable(input[3]);
> modtblG3 := CharacterTableRegular(ordtblG3, 3);
> SetIrr(modtblG3, IBrOfExtensionBySingularAutomorphism(modtblG,
> ordtblG3));
> modlibtblG3:= ordtblG3 mod 3;
> if modlibtblG3 = fail then
> Print("#E 3-modular table of ’", Identifier(ordtblG3),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblG3,
> modlibtblG3) = fail then
> Print("#E computed table and library table for ", input[3],
> " mod 3 differ\n");
> fi;
> fi;
> modtblG3:= CharacterTable(input[3]) mod 2;
> if modtblG3 <> fail then
> ordtblGS3 := CharacterTable(input[4]);
> modtblGS3 := CharacterTableRegular(ordtblGS3, 2);
> SetIrr(modtblGS3, IBrOfExtensionBySingularAutomorphism(modtblG3,
> ordtblGS3));
> modlibtblGS3:= ordtblGS3 mod 2;
> if modlibtblGS3 = fail then
> Print("#E 2-modular table of ’", Identifier(ordtblGS3),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblGS3,
> modlibtblGS3) = fail then
> Print("#E computed table and library table for ", input[4],
> " mod 2 differ\n");
> fi;
> fi;
> od;

2.8.3 2-Modular Tables of Groups of the Type G.22

We show an alternative construction of 2-modular tables of certain groups that have been met in
Section 2.6.2. Each entry in the GAP list listGV4 contains the Identifier (Reference: Identifier
for tables of marks) values of character tables of groups of the types G, G.21, G.22, G.23, and G.22.

Computations with the GAP Character Table Library 156

For each entry, we fetch the 2-modular table of G and the ordinary tables of the groups G.2i, and
compute the 2-modular tables of G.2i; Then we compute from this modular table and the ordinary
table of G.22 the 2-modular table of G.22.

Example
gap> for input in listGV4 do
> modtblG:= CharacterTable(input[1]) mod 2;
> if modtblG <> fail then
> ordtblsG2:= List(input{ [2 .. 4] }, CharacterTable);
> ordtblGV4:= CharacterTable(input[5]);
> for tblG2 in ordtblsG2 do
> modtblG2:= CharacterTableRegular(tblG2, 2);
> SetIrr(modtblG2, IBrOfExtensionBySingularAutomorphism(modtblG,
> tblG2));
> modlibtblG2:= tblG2 mod 2;
> if modlibtblG2 = fail then
> Print("#E 2-modular table of ’", Identifier(tblG2),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblG2,
> modlibtblG2) = fail then
> Print("#E computed table and library table for ",
> Identifier(tblG2), " mod 2 differ\n");
> fi;
> modtblGV4:= CharacterTableRegular(ordtblGV4, 2);
> SetIrr(modtblGV4, IBrOfExtensionBySingularAutomorphism(modtblG2,
> ordtblGV4));
> modlibtblGV4:= ordtblGV4 mod 2;
> if modlibtblGV4 = fail then
> Print("#E 2-modular table of ’", Identifier(ordtblGV4),
> "’ is missing\n");
> elif TransformingPermutationsCharacterTables(modtblGV4,
> ordtblGV4 mod 2) = fail then
> Print("#E computed table and library table for ", input[5],
> " mod 2 differ\n");
> fi;
> od;
> fi;
> od;

2.8.4 The 3-Modular Table of U3(8).32

The only example of an Atlas group of the structure G.33 is U3(8).32. Its 3-modular character table
can be constructed from the known 3-modular character table of any of its index 3 subgroups, plus the
action of U3(8).32 on the classes of this subgroup.

Example
gap> ordtblG3:= CharacterTable("U3(8).3^2");;
gap> modlibtblG3:= ordtblG3 mod 3;
BrauerTable("U3(8).3^2", 3)
gap> for nam in ["U3(8).3_1", "U3(8).3_2", "U3(8).3_3"] do
> modtblG:= CharacterTable(nam) mod 3;
> if modtblG = fail then
> Error("no 3-modular table of ", nam);

Computations with the GAP Character Table Library 157

> fi;
> modtblG3:= CharacterTableRegular(ordtblG3, 3);
> SetIrr(modtblG3, IBrOfExtensionBySingularAutomorphism(modtblG,
> ordtblG3));
> if TransformingPermutationsCharacterTables(modtblG3,
> modlibtblG3) = fail then
> Print("#E computed table and library table for ",
> Identifier(ordtblG3), " mod 3 differ\n");
> fi;
> od;

As expected, we get the same 3-modular table for any choice of the index 3 subgroup.
Note that all 3-modular Brauer characters of U3(8).32 lift to characteristic zero.

Example
gap> rest:= RestrictedClassFunctions(Irr(ordtblG3), modlibtblG3);;
gap> IsSubset(rest, Irr(modlibtblG3));
true

2.9 Examples of Subdirect Products of Index Two

Typical examples of this construction are those maximal subgroups of alternating groups An that ex-
tend in the corresponding symmetric groups Sn to direct products of the structures Sm× Sn−m, for
2 < m < n/2. Also certain subgroups of these maximal subgroups that have this structure can be
interesting, see Section 2.4.2.

2.9.1 Certain Dihedral Groups as Subdirect Products of Index Two

Also dihedral groups of order 2n with n divisible by at least two different primes have the required
structure: Let n = n1n2 with coprime n1, n2, and let the normal subgroups H1, H2 be cyclic subgroups
of order n1 and n2, respectively, inside the cyclic subgroup of index two. Then the factors G/N1, G/N2
are themselves dihedral groups.

So an example (with n1 = 3 and n2 = 5) is the construction of the dihedral group D30 as a subdirect
product of index two in the direct product D6×D10.

Example
gap> tblh1:= CharacterTable("C3");;
gap> tblg1:= CharacterTable("S3");;
gap> StoreFusion(tblh1, PossibleClassFusions(tblh1, tblg1)[1], tblg1);
gap> tblh2:= CharacterTable("C5");;
gap> tblg2:= CharacterTable("D10");;
gap> StoreFusion(tblh2, PossibleClassFusions(tblh2, tblg2)[1], tblg2);
gap> subdir:= CharacterTableOfIndexTwoSubdirectProduct(tblh1, tblg1,
> tblh2, tblg2, "D30");;
gap> IsRecord(TransformingPermutationsCharacterTables(subdir.table,
> CharacterTable("Dihedral", 30)));
true

Computations with the GAP Character Table Library 158

2.9.2 The Character Table of (D10×HN).2 < M (June 2008)

The sporadic simple Monster group contains maximal subgroups with the structure (D10×HN).2
(see [CCN+85, p. 234]), the factor group modulo D10 is the automorphism group HN.2 of HN, and
the factor group modulo HN is the Frobenius group 5 : 4 of order 20.

Example
gap> tblh1:= CharacterTable("D10");;
gap> tblg1:= CharacterTable("5:4");;
gap> tblh2:= CharacterTable("HN");;
gap> tblg2:= CharacterTable("HN.2");;
gap> subdir:= CharacterTableOfIndexTwoSubdirectProduct(tblh1, tblg1,
> tblh2, tblg2, "(D10xHN).2");;
gap> IsRecord(TransformingPermutationsCharacterTables(subdir.table,
> CharacterTable("(D10xHN).2")));
true
gap> m:= CharacterTable("M");;
gap> fus:= PossibleClassFusions(subdir.table, m);;
gap> Length(fus);
16
gap> Length(RepresentativesFusions(subdir.table, fus, m));
1

An alternative construction is the one described in Section 2.3.1, as (D10×HN).2 = M.G.A with
G = 2×HN, M.G = D10×HN, and G.A the subdirect product of HN.2 and a cyclic group of order
four (which can be constructed as the isoclinic variant of 2×HN.2, see Section 2.2.4).

Here is this construction:
Example

gap> c2:= CharacterTable("C2");;
gap> hn:= CharacterTable("HN");;
gap> g:= c2 * hn;;
gap> d10:= CharacterTable("D10");;
gap> mg:= d10 * hn;;
gap> nsg:= ClassPositionsOfNormalSubgroups(mg);
[[1], [1, 55 .. 109], [1, 55 .. 163], [1 .. 54],

[1 .. 162], [1 .. 216]]
gap> SizesConjugacyClasses(mg){ nsg[2] };
[1, 2, 2]
gap> g:= mg / nsg[2];
CharacterTable("D10xHN/[1, 55, 109]")
gap> help:= c2 * CharacterTable("HN.2");
CharacterTable("C2xHN.2")
gap> ga:= CharacterTableIsoclinic(help);
CharacterTable("Isoclinic(C2xHN.2)")
gap> gfusga:= PossibleClassFusions(g, ga);
[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 34, 35, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42,
43, 43, 44, 44, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 101, 102,
103, 103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 111,
112, 113, 114, 115, 115, 116, 117, 118, 118, 119, 120, 120,
121, 121, 122, 122],

Computations with the GAP Character Table Library 159

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 23, 24, 25, 25, 26, 27, 28, 29, 30, 31,
32, 32, 33, 33, 35, 34, 36, 37, 37, 38, 39, 40, 40, 41, 42, 42,
43, 43, 44, 44, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 89,
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 101, 102,
103, 103, 104, 105, 106, 107, 108, 109, 110, 110, 111, 111,
113, 112, 114, 115, 115, 116, 117, 118, 118, 119, 120, 120,
121, 121, 122, 122]]

gap> StoreFusion(g, gfusga[1], ga);
gap> acts:= PossibleActionsForTypeMGA(mg, g, ga);;
gap> Length(acts);
1
gap> poss:= PossibleCharacterTablesOfTypeMGA(mg, g, ga, acts[1],
> "(D10xHN).2");;
gap> Length(poss);
1
gap> IsRecord(TransformingPermutationsCharacterTables(poss[1].table,
> CharacterTable("(D10xHN).2")));
true

2.9.3 A Counterexample (August 2015)

A group G is called real if each of its elements is conjugate in G to its inverse. Equivalently, a group
is real if and only if all its character values are real. One might ask whether the Sylow 2-subgroup of
a real group is itself real. Counterexamples can be found by a search through GAP’s library of small
groups. Using the facts we have collected about index two subdirect products in Section 2.3.6, we can
demonstrate such a counterexample without using GAP.

Let H1 = A4, G1 = S4, H2 = C4, and G2 a nonabelian group of order 8, and consider the unique
index two subgroup G of G1×G2 that is different from H1×G2 and G1×H2.

Each irreducible character of G either extends to G1×G2 or it is induced from an irreducible
character of H1×H2. In the former case, the character is integer valued. Irrational values in the latter
case arise as follows.

Let χ be an irreducible character of H1×H2; then it is the product of irreducible characters χ1 and
χ2 of H1 and H2, respectively. If χ has irrational values then χ1 takes primitive third roots of unity
ω,ω2 on elements of order three in H1, or χ2 takes primitive fourth roots of unity ±i on elements of
order four in H2, or both. In the first two cases, inducing χ to G yields an integer valued character,
because each pair of Galois conjugate classes fuses in G on which χ takes irrational values. In the
last case, χ takes primitive 12-th roots of unity ±iω and ±iω2 on elements of order 12; since G fuses
the classes with the character values iω and −iω2, we get the character value iω− iω2 =−

√
3 in the

induced character χG. This means that this character is real valued. Hence G is real.
Now we consider a Sylow 2-subgroup of G. It has also the structure of a subdirect product, as

follows. Let H1 =V4, G1 = D8, and H2 and G2 as above, and consider the unique index two subgroup
G of G1×G2 that is different from H1×G2 and G1×H2.

As above, irrational values in an irreducible character of G arise only if this character is induced
from a character χ , say, that is the product of irreducible characters χ1 and χ2 of H1 and H2, re-
spectively. In this case, χ2 takes primitive fourth roots of unity ±i on elements of order four in H2.
Moreover, χ1 takes different values ±1 on the two classes of H1 that are fused in G if the induced
character has irrational values, and these values are ±2i. Hence the group G is not real.

Computations with the GAP Character Table Library 160

(In fact the above two groups of order 96 are the smallest real groups with non-real Sylow 2-
subgroup, and there are no other such groups of this order.)

Chapter 3

Constructing Character Tables of Central
Extensions in GAP

Date: February 19th, 2004
This chapter has three aims. First it shows how the GAP system [GAP21] can be utilized to con-

struct character tables of certain central extensions from known character tables; the GAP functions
used for that are part of the GAP Character Table Library [Bre24]. Second it documents several con-
structions of character tables which are contained in the GAP Character Table Library. Third it serves
as a testfile for the GAP functions.

A typo (wrong sign of ε5) in the picture in Section 3.1.4 has been corrected in 2013.

3.1 Coprime Central Extensions

In this section, we will deal with the following situation. Let H be a group, Z be a cyclic central
subgroup in H, and Z = Z1Z2 for subgroups Z1 and Z2 of coprime orders m and n, say. For the sake
of simplicity, suppose that both m and n are primes; the general case is then obtained by iterating the
construction process.

Our aim is to compute the character table of H from the character tables of H/Z1 and H/Z2. We
assume that the factor fusions from these tables to that of the common factor group H/Z are known.
Again for the sake of simplicity, we will take the character table of H/Z as an input. (See Section 3.2.4
for an example where two different orderings of classes and characters of H/Z arise from the tables
of H/Z1 and H/Z2.)

For example, the character table of H = 12.M22 can be computed from those of 6.M22 and 4.M22,
and the character table of 6.M22 can be computed from those of 3.M22 and 2.M22 (see Section 3.2.1).

3.1.1 The Character Table Head

The conjugacy classes and power maps of H are uniquely determined by the input data specified
above.

161

Computations with the GAP Character Table Library 162

r
rZ1 rZ2

r Z

rH

@
@

@

�
�
�

�
�
�

@
@

@ H/Z1

H

H/Z

H/Z2
�
�
���

@
@

@@I

�
�
���

@
@

@@I

Suppose that a class C of elements of H/Z has nC preimage classes in H/Z1 and mC preimage
classes in H/Z2; then nC is either 1 or n, and mC is either 1 or m. The preimage classes of C in H/Z1
and H/Z2 are parametrized by { j;0 ≤ j < nC} and {i;0 ≤ i < mC}, respectively, and the preimage
classes in H are parametrized by the pairs {(i, j);0≤ i < mC,0≤ j < nC}.

The centralizer orders of these classes in H are mCnC times the centralizer order of C in H/Z.
The factor fusion onto H/Z1 is then given by mapping the class with the parameter (i, j) to the

class with the parameter j; analogously, the factor fusion onto H/Z2 maps this class to the class with
the parameter i. To see this, let Z = 〈z〉, and set z1 = zn and z2 = zm. Now take an element g ∈ H for
which gZ lies in C. Then the elements gzi

1z j
2, 1 ≤ i ≤ mC, 1 ≤ j ≤ nC form a set of representatives

of the preimage classes of C in H. In H/Z1 and H/Z2, these elements map to gz j
2Z1, 1 ≤ j ≤ nC and

gzi
1Z2, 1 ≤ i ≤ mC, respectively, which are sets of representatives of the classes in question in these

groups.
For each prime p, the factor fusions determine the p-th power map of H from the p-th power maps

of H/Z1 and H/Z2. To see this, take a class C0 in H that is a preimage of the class C of H/Z, and let
K be the class of p-th powers of the elements in C. Then the image of C0 under the p-th power map
is one of the preimages of K. We know the images of C0 under the factor fusions to H/Z1 and H/Z2,
and thus also their images K1 and K2 under the p-th power maps of these groups. So the class of p-th
powers of the elements in C0 is the unique class that is mapped to K1 and K2 under the factor fusions.

The construction of the character table head of H from the input data specified above is imple-
mented by the GAP function CharacterTableOfCommonCentralExtension (CTblLib: Charac-
terTableOfCommonCentralExtension).

3.1.2 The Irreducible Characters

First of all, it should be said that it is not obvious how the irreducible characters of H can be computed
from the irreducible characters of H/Z1 and H/Z2. Clearly the irreducible characters of the two factor
groups can be inflated to H via the factor fusions, so we have to find those irreducibles that have
neither Z1 nor Z2 in their kernels.

For that, we use the following heuristic. Let εz be a complex primitive |z|-th root of unity. For
integers i, set Irrz,i(H) = {χ ∈ Irr(H); χ(z) = ε i

zχ(1)}. Then Irr(H) =
⋃|z|−1

i=0 Irrz,i(H), as a disjoint
union. If i is a multiple of m or n, respectively, then Irrz,i(H) consists of the inflations of certain
irreducible characters of H/Z1 or H/Z2, respectively. The remaining irreducible characters of H lie in
Irrz,i(H) with i coprime to |z|. These characters are algebraic conjugates of Irrz,1(H), so it suffices to
compute this subset; the conjugates are then derived as the last step.

Since Irrz,i(H)⊗ Irrz, j(H) ⊂ Z[Irrz,i+ j(H)] holds, we start with the tensor products of the known
irreducible characters in Irrz,i(H) and Irrz, j(H) with the property i+ j ≡ 1 mod mn.

Computations with the GAP Character Table Library 163

For example, if we have m= 2 and n= 3 then Irrz,3(H) consists of the inflations of those characters
in Irr(H/Z2) that are not characters of H/Z, and Irrz,4(H) consists of the inflations of certain characters
in Irr(H/Z1) that are not characters of H/Z. The tensor products of these sets of characters lie in the
span of Irrz,1(H).

In general these tensor products are reducible, but some of them may be in fact irreducible, so we
first take these irreducibles, and reduce the other tensor products with them. (If H is a direct product
of Z and H/Z then all missing irreducibles are obtained this way.)

Then we tensor algebraic conjugates of the known characters in the span of Irrz,1(H) with
characters in suitable sets Irrz,i(H), in order to get more characters in Irrz,1(H); for example,
Irrz,1(H)⊗ Irrz,0(H) is a subset of Z[Irrz,1(H)].

In the case m = 2 and n = 3, also Irrz,5(H)⊗ Irrz,2(H) yields linear combinations of Irrz,1(H).
Note that Irrz,5(H) consists of the complex conjugates of Irrz,1(H).

In the next step, we apply the LLL algorithm (implemented via the GAP function LLL (Reference:
LLL)) to the set of reducible characters in Z[Irrz,1(H)] which we got from the tensor products, and
hope to find irreducibles. In the examples shown below, this step yields all desired irreducible charac-
ters.

The GAP function CharacterTableOfCommonCentralExtension (CTblLib: Charac-
terTableOfCommonCentralExtension) implements the strategy sketched above.

3.1.3 Ordering of Conjugacy Classes

One “natural” choice for the ordering of the columns in the character table of H is given by respect-
ing the ordering of columns in the character table of H/Z, and taking the preimage of the class C
corresponding to the parameter (k mod mC,k mod nC) as the k-th class for C.

If the preimages of C in H/Z1 and H/Z2 have class representatives gZ1, gz2Z1, gz2
2Z1, . . . and

gZ2, gz1Z2, gz2
1Z2, . . ., respectively (in this ordering), then the above rule yields representatives of

preimages in H in the ordering g, g(z1z2), g(z1z2)
2,

In the case m = 2, n = 3, the following pattern arises for classes of H/Z that have m and n
preimages in H/Z1 and H/Z2, respectively. The vertices are labelled by the roots of unity with which
the values of the characters in the set Irrz,1(H) on the first preimage must be multiplied in order to
obtain the values on the given class; we have ω = exp(2πi/3).

1 G

1 −1 2.G

1 −ω ω2 −1 ω −ω2 6.G

1 ω ω2 3.G

1 G

H
HH

H
HH

HH

�
��

�
��

��
Z

Z
Z
Z
Z

�
�
�
��

��
���

���
���

���
���

�
�
�
�
�

Z
Z

Z
ZZ

XX
XXX

XXX
XXX

XXX
XXX

�
��

�
��

��

�
��

�
��

��

�
��

�
��

��

H
HH

H
HH

HH

H
HH

H
HH

HH

H
HH

H
HH

HH

�
�
�
�
�

Z
Z

Z
Z
Z

Computations with the GAP Character Table Library 164

3.1.4 Compatibility with Smaller Factor Groups

It may happen that a cyclic central subgroup Z0 of H contains Z properly. Then we choose a class
ordering relative to that in the factor group H/Z0, mainly because the Atlas tables of this type are
sorted this way.

The typical case is the character table of a central extension of the type 12.G that shall be con-
structed from the character tables of the groups of the types 4.G and 6.G; here we prefer to order the
preimages of a class in the smaller factor group of the type G according to the above rule. This results
in the following pattern, where ε = exp(2πi/12) holds (cf. Section “ATLAS Tables” in the manual of
the GAP Character Table Library).

1 G

1 −1 2.G

1 −i −1 i 4.G

1 ε7 −ω2 −i ω ε11 −1 ε ω2 i −ω ε5 12.G

1 −ω ω2 −1 ω −ω2 6.G

1 −1 2.G

1 G

HH
HH

H
HH

H

��
��

�
��
�

@
@
@@

��
��

��
��

��
��

PP
PP

PP
PP

PP
PP

�
�
��

J
J
JJ

HH
HH

H
HH

H

PP
PP

PP
PP

PP
PP

P

```
```

```
```

```
```

`̀

��
��

�
��
�

J
J
JJ

HH
HH

H
HH

H

��
��

��
��

��
��
�

��
��

�
��
�

�
�
�

�
�
��

"
"
"
"
""

��
��

�
��

��

��
��

��
��

��
��

���
���

���
���

���

XXX
XXX

XXX
XXX

XXX

PP
PP

PP
PP

PP
PP

HH
HH

H
HH

HH

b
b

b
b

bb

@
@

@@

B
B
B

�
�
�

�
�

Z
Z
Z
ZZ

XXXXXXXXXXXXXXXXX

Z
Z
Z
Z
Z

�
�

�
��

�����������������

��
���

���

HH
HHH

HHH

A more important aspect concerns the computation of the irreducible characters. Let Z0 = 〈z0〉.
Instead of computing Irrz,1(H), we compute the set Irrz0,1(H).

In the computation of the character table of a central extension of the type 12.G as mentioned
above, with |z0|= 12, we start with the characters

Irrz0,3(H)⊗ Irrz0,10(H)∪ Irrz0,4(H)⊗ Irrz0,9(H)⊆ Z[Irrz0,1(H)],

and later form tensor products involving algebraic conjugates of the characters in the span of Irrz0,1(H),
using that

Irrz0,1(H)⊗ Irrz0,0(H)∪ Irrz0,2(H)⊗ Irrz0,11(H)∪ Irrz0,5(H)⊗ Irrz0,8(H)∪ Irrz0,6(H)⊗ Irrz0,7(H)

is a subset of Z[Irrz0,1(H)].
Without that modification, the computation of irreducibles is significantly more involved.

Computations with the GAP Character Table Library 165

The GAP function CharacterTableOfCommonCentralExtension (CTblLib: Charac-
terTableOfCommonCentralExtension) chooses the class ordering relative to larger cyclic factor
groups, as in the above picture, and also uses the above refinement for the computation of irreducible
characters.

3.2 Examples

The following examples use the GAP Character Table Library, so we first load this package.
Example

gap> LoadPackage("ctbllib", false);
true

3.2.1 Central Extensions of Simple Atlas Groups

For the following groups, the Atlas contains the character tables of central extensions M.G of simple
groups G with |M| divisible by two different primes; in all these cases, we have M ∈ {6,12}.

(The entry concerning 6.2E6(2) has been added to the list after the character table of 3.2E6(2)
became available. This table has been computed by Frank Lübeck.)

Example
gap> list:= [
> # G m.G n.G mn.G
>
> ["A6", "2.A6", "3.A6", "6.A6"],
> ["A7", "2.A7", "3.A7", "6.A7"],
> ["L3(4)", "2.L3(4)", "3.L3(4)", "6.L3(4)"],
> ["2.L3(4)", "4_1.L3(4)", "6.L3(4)", "12_1.L3(4)"],
> ["2.L3(4)", "4_2.L3(4)", "6.L3(4)", "12_2.L3(4)"],
> ["M22", "2.M22", "3.M22", "6.M22"],
> ["2.M22", "4.M22", "6.M22", "12.M22"],
> ["U4(3)", "2.U4(3)", "3_1.U4(3)", "6_1.U4(3)"],
> ["U4(3)", "2.U4(3)", "3_2.U4(3)", "6_2.U4(3)"],
> ["2.U4(3)", "4.U4(3)", "6_1.U4(3)", "12_1.U4(3)"],
> ["2.U4(3)", "4.U4(3)", "6_2.U4(3)", "12_2.U4(3)"],
> ["O7(3)", "2.O7(3)", "3.O7(3)", "6.O7(3)"],
> ["U6(2)", "2.U6(2)", "3.U6(2)", "6.U6(2)"],
> ["Suz", "2.Suz", "3.Suz", "6.Suz"],
> ["Fi22", "2.Fi22", "3.Fi22", "6.Fi22"],
> ["2E6(2)", "2.2E6(2)", "3.2E6(2)", "6.2E6(2)"],
>];;

As was discussed in the sections 3.1.3 and 3.1.4, the class ordering of the result tables is the same
as that in the GAP library tables, so it is enough to check whether the set of characters in the computed
table coincides with the set of characters in the library table.

In order to list information about the progress, we set the relevant info level to 1.
Example

gap> SetInfoLevel(InfoCharacterTable, 1);
gap> for entry in list do
> id := entry[4];
> tblG := CharacterTable(entry[1]);

Computations with the GAP Character Table Library 166

> tblmG := CharacterTable(entry[2]);
> tblnG := CharacterTable(entry[3]);
> lib := CharacterTable(id);
> res:= CharacterTableOfCommonCentralExtension(tblG, tblmG, tblnG, id);
> if not res.IsComplete then
> Print("#E not complete: ", id, "\n");
> fi;
> if not IsSubset(Irr(lib), res.irreducibles) then
> Print("#E inconsistent: ", id, "\n");
> fi;
> od;
#I 6.A6: need 4 faithful irreducibles
#I 6.A6: 4 found by tensoring
#I 6.A7: need 5 faithful irreducibles
#I 6.A7: 5 found by tensoring
#I 6.L3(4): need 7 faithful irreducibles
#I 6.L3(4): 7 found by LLL
#I 12_1.L3(4): need 5 faithful irreducibles
#I 12_1.L3(4): 2 found by tensoring
#I 12_1.L3(4): 3 found by tensoring
#I 12_2.L3(4): need 6 faithful irreducibles
#I 12_2.L3(4): 6 found by LLL
#I 6.M22: need 10 faithful irreducibles
#I 6.M22: 1 found by tensoring
#I 6.M22: 9 found by LLL
#I 12.M22: need 7 faithful irreducibles
#I 12.M22: 7 found by LLL
#I 6_1.U4(3): need 15 faithful irreducibles
#I 6_1.U4(3): 1 found by tensoring
#I 6_1.U4(3): 14 found by LLL
#I 6_2.U4(3): need 12 faithful irreducibles
#I 6_2.U4(3): 12 found by LLL
#I 12_1.U4(3): need 12 faithful irreducibles
#I 12_1.U4(3): 4 found by tensoring
#I 12_1.U4(3): 8 found by tensoring
#I 12_2.U4(3): need 9 faithful irreducibles
#I 12_2.U4(3): 9 found by LLL
#I 6.O7(3): need 12 faithful irreducibles
#I 6.O7(3): 2 found by tensoring
#I 6.O7(3): 10 found by LLL
#I 6.U6(2): need 28 faithful irreducibles
#I 6.U6(2): 2 found by tensoring
#I 6.U6(2): 26 found by LLL
#I 6.Suz: need 29 faithful irreducibles
#I 6.Suz: 29 found by LLL
#I 6.Fi22: need 34 faithful irreducibles
#I 6.Fi22: 4 found by tensoring
#I 6.Fi22: 30 found by LLL
#I 6.2E6(2): need 60 faithful irreducibles
#I 6.2E6(2): 60 found by LLL
gap> SetInfoLevel(InfoCharacterTable, 0);

Computations with the GAP Character Table Library 167

We see that in all cases, the irreducible characters of the groups M.G are obtained by reducing
tensor products and applying the LLL algorithm.

3.2.2 Central Extensions of Other Atlas Groups

The following cases also fit to the pattern introduced above.
(The following examples were added in October 2006.)
The group (22×3).L3(4) can be viewed as a common central extension of its factor group 2.L3(4)

by the two groups 22.L3(4) and 6.L3(4).
Analogously, the group (42×3).L3(4) can be viewed as a common central extension of its factor

group (2×4).L3(4) by the two groups 42.L3(4) and (2×12).L3(4).
Finally, the group (2×12).L3(4) can be viewed as a common central extension of the factor group

22.L3(4) by the two groups (2×4).L3(4) and (22×3).L3(4).
The construction of the character tables of the involved factor groups 22.L3(4) and (2×4).L3(4),

as well as an alternative construction of the table of (2×12).L3(4) can be found in the sections 2.7.2
and 2.7.4.

Example
gap> list2:= [
> ["2.L3(4)", "2^2.L3(4)", "6.L3(4)", "(2^2x3).L3(4)"],
> ["2^2.L3(4)", "(2x4).L3(4)", "(2^2x3).L3(4)", "(2x12).L3(4)"],
> ["(2x4).L3(4)", "4^2.L3(4)", "(2x12).L3(4)", "(4^2x3).L3(4)"],
>];;

(The following examples were added in December 2010.)
The group (32×2).U4(3) can be viewed as a common central extension of its factor group 31.U4(3)

by the two groups 61.U4(3) and 32.U4(3), or as a common central extension of its factor group 32.U4(3)
by the two groups 62.U4(3) and 32.U4(3).

Analogously, the group (32×4).U4(3) can be viewed as a common central extension of its factor
group 61.U4(3) by the two groups 121.U4(3) and (32×2).U4(3), or as a common central extension of
its factor group 62.U4(3) by the two groups 122.U4(3) and (32×2).U4(3).

Example
gap> Append(list2, [
> ["3_1.U4(3)", "6_1.U4(3)", "3^2.U4(3)", "(3^2x2).U4(3)"],
> ["3_2.U4(3)", "6_2.U4(3)", "3^2.U4(3)", "(3^2x2).U4(3)"],
> ["6_1.U4(3)", "12_1.U4(3)", "(3^2x2).U4(3)", "(3^2x4).U4(3)"],
> ["6_2.U4(3)", "12_2.U4(3)", "(3^2x2).U4(3)", "(3^2x4).U4(3)"],
>]);
gap> SetInfoLevel(InfoCharacterTable, 1);
gap> for entry in list2 do
> id := entry[4];
> tblG := CharacterTable(entry[1]);
> tblmG := CharacterTable(entry[2]);
> tblnG := CharacterTable(entry[3]);
> lib := CharacterTable(id);
> res:= CharacterTableOfCommonCentralExtension(
> tblG, tblmG, tblnG, id);
> if not res.IsComplete then
> Print("#E not complete: ", id, "\n");
> fi;

Computations with the GAP Character Table Library 168

> if TransformingPermutationsCharacterTables(res.tblmnG, lib)
> = fail then
> Print("#E inconsistent: ", id, "\n");
> fi;
> od;
#I (2^2x3).L3(4): need 14 faithful irreducibles
#I (2^2x3).L3(4): 14 found by tensoring
#I (2x12).L3(4): need 11 faithful irreducibles
#I (2x12).L3(4): 7 found by tensoring
#I (2x12).L3(4): 4 found by LLL
#I (4^2x3).L3(4): need 22 faithful irreducibles
#I (4^2x3).L3(4): 14 found by tensoring
#I (4^2x3).L3(4): 8 found by LLL
#I (3^2x2).U4(3): need 39 faithful irreducibles
#I (3^2x2).U4(3): 27 found by tensoring
#I (3^2x2).U4(3): 12 found by LLL
#I (3^2x2).U4(3): need 42 faithful irreducibles
#I (3^2x2).U4(3): 2 found by tensoring
#I (3^2x2).U4(3): 40 found by LLL
#I (3^2x4).U4(3): need 30 faithful irreducibles
#I (3^2x4).U4(3): 6 found by tensoring
#I (3^2x4).U4(3): 8 found by tensoring
#I (3^2x4).U4(3): 16 found by LLL
#I (3^2x4).U4(3): need 33 faithful irreducibles
#I (3^2x4).U4(3): 9 found by tensoring
#I (3^2x4).U4(3): 18 found by tensoring
#I (3^2x4).U4(3): 6 found by further tensoring
gap> SetInfoLevel(InfoCharacterTable, 0);

3.2.3 Compatible Central Extensions of Maximal Subgroups

The GAP Character Table Library contains the character tables of all maximal subgroups of the groups
4.M22, 3.M22, 2.Suz, and 3.Suz. So we can use the approach from Section 3.1 for computing the
character tables of the maximal subgroups of 6.M22, 12.M22, and 6.Suz.

These tables are contained in the GAP Character Table Library. Several of the groups are direct
products, and the library tables of direct products are usually stored in the form of Kronecker products
of the tables of the factors, so the class ordering of the result tables does not necessarily coincide with
the class ordering in the library tables.

Example
gap> sublist:= list{ [6, 7, 14] };
[["M22", "2.M22", "3.M22", "6.M22"],

["2.M22", "4.M22", "6.M22", "12.M22"],
["Suz", "2.Suz", "3.Suz", "6.Suz"]]

gap> for entry in sublist do
> tblG := CharacterTable(entry[1]);
> tblmG := CharacterTable(entry[2]);
> tblnG := CharacterTable(entry[3]);
> lib := CharacterTable(entry[4]);
>
> maxesG := List(Maxes(tblG), CharacterTable);
> maxesmG := List(Maxes(tblmG), CharacterTable);

Computations with the GAP Character Table Library 169

> maxesnG := List(Maxes(tblnG), CharacterTable);
> maxeslib := List(Maxes(lib), CharacterTable);
>
> for i in [1 .. Length(maxesG)] do
> id:= Identifier(maxeslib[i]);
> res:= CharacterTableOfCommonCentralExtension(maxesG[i],
> maxesmG[i], maxesnG[i], id);
> if not res.IsComplete then
> Print("#E not complete: ", id, "\n");
> fi;
> if not IsSubset(Irr(maxeslib[i]), res.irreducibles) then
> trans:= TransformingPermutationsCharacterTables(maxeslib[i],
> res.tblmnG);
> if not IsRecord(trans) then
> Print("#E not transformable: ", id, "\n");
> fi;
> fi;
> od;
> od;

Since we get no output, all tables in question can be computed with the GAP functions, and
coincide (up to permutations of rows and columns) with the library tables.

3.2.4 The 2B Centralizer in 3.Fi′24 (January 2004)

As is stated in [CCN+85, p. 207], the 2B centralizer N0 in the sporadic simple Fischer group Fi′24
has the structure 21+12

+ .3U4(3).22. The character table of N0 is contained in the GAP Character Table
Library since the year 2000.

Our aim is to compute the character table of the preimage N of N0 in the central extension 3.Fi′24
of Fi′24; let Z1 denote the centre of 3.Fi′24.

Using the “dihedral group method” in the faithful permutation representation of degree 920808
for 3.Fi′24, we first compute a generating set of N. This group has three orbits of the lengths 774144,
145152, and 1512; the actions on the first two orbits are faithful, and the action on the orbit of length
1512 (which consists of the fixed points of the central involution of N) has kernel exactly the central
subgroup Z2, say, of order 2 in N.

Since the permutation representation on 1512 points is so small, it is straightforward to compute
the character table of N/Z2 using the implementation of Dixon’s algorithm in GAP; now this table is
part of the GAP Character Table Library.

Note that N is a central extension of N0/Z(N0) by the cyclic group Z = Z1Z2 of order 6, and that
we know the character tables of the groups N/Z1 and N/Z2. So we can apply the method described in
Section 3.1 for computing the character table of N.

First we fetch the input data.
Example

gap> tblmG := CharacterTable("F3+N2B");;
gap> tblG := tblmG / ClassPositionsOfCentre(tblmG);;
gap> tblnG := CharacterTable("2^12.3^2.U4(3).2_2’");;

The character tables of the library table of N0 and the character table of N/Z2 obtained from the
permutation group are not compatible in the sense that the tables of the factor groups modulo the
centres are not sorted compatibly, so we have to compute and store the fusion from tblnG to tblG.

Computations with the GAP Character Table Library 170

Example
gap> f2:= tblnG / ClassPositionsOfCentre(tblnG);;
gap> trans:= TransformingPermutationsCharacterTables(f2, tblG);;
gap> tblnGfustblG:= OnTuples(GetFusionMap(tblnG, f2),
> trans.columns);;
gap> StoreFusion(tblnG, tblnGfustblG, tblG);
gap> IsSubset(Irr(tblnG),
> List(Irr(tblG), x -> x{ tblnGfustblG }));
true

Now we apply CharacterTableOfCommonCentralExtension (CTblLib: CharacterTableOf-
CommonCentralExtension).

Example
gap> SetInfoLevel(InfoCharacterTable, 1);
gap> id:= "3.2^(1+12).3U4(3).2";;
gap> res:= CharacterTableOfCommonCentralExtension(
> tblG, tblmG, tblnG, id);;
#I 3.2^(1+12).3U4(3).2: need 36 faithful irreducibles
#I 3.2^(1+12).3U4(3).2: 16 found by tensoring
#I 3.2^(1+12).3U4(3).2: 20 found by LLL
gap> SetInfoLevel(InfoCharacterTable, 0);

So we have found all missing irreducibles of N. Let us check whether the result table coincides
with the table in the GAP Character Table Library.

Example
gap> lib:= CharacterTable("3.F3+N2B");;
gap> IsRecord(TransformingPermutationsCharacterTables(
> res.tblmnG, lib));
true

We were interested in the character table because N is a maximal subgroup of 3.Fi′24. So the class
fusion into the table of this group is an interesting information. We assume that the class fusion of N0
into Fi′24 is known, and compute only those possible class fusions that are compatible with this map.

Example
gap> 3f3p:= CharacterTable("3.F3+");;
gap> f3p:= CharacterTable("F3+");;
gap> approxfus:= CompositionMaps(
> InverseMap(GetFusionMap(3f3p, f3p)),
> CompositionMaps(GetFusionMap(tblmG, f3p),
> GetFusionMap(lib, tblmG)));;
gap> poss:= PossibleClassFusions(lib, 3f3p,
> rec(fusionmap:= approxfus));;
gap> Length(poss);
1

It turns out that only one map has this property. (Without the condition on the compatibility, we
would have got 128 possibilities, which form one orbit under table automorphisms.)

Chapter 4

GAP Computations Concerning
Hamiltonian Cycles in the Generating
Graphs of Finite Groups

Date: April 24th, 2012
This is a collection of examples showing how the GAP system [GAP21] can be used to compute

information about the generating graphs of finite groups. It includes all examples that were needed for
the computational results in [BGL+10].

The purpose of this writeup is twofold. On the one hand, the computations are documented this
way. On the other hand, the GAP code shown for the examples can be used as test input for automatic
checking of the data and the functions used.

A first version of this document, which was based on GAP 4.4.12, is available in the arXiv at
http://arxiv.org/abs/0911.5589v1 since November 2009. The differences between this file
and the current document are as follows.

• The format of the GAP output was adjusted to the changed behaviour of GAP 4.5.

• The records returned by IsomorphismTypeInfoFiniteSimpleGroup (Reference: Isomor-
phismTypeInfoFiniteSimpleGroup) contain a component "shortname" since GAP 4.11.

• The lower bounds computed for the sporadic simple Monster group in Section 4.4.2 have been
improved in two steps. First, the existence of exactly one class of maximal subgroups of the type
PSL(2,41) (see [NW13]) and the nonexistence of maximal subgroups with socle PSL(2,27)
(see [Wil10]) have been incorporated. Second, the classification of classes of maximal sub-
groups of the Monster has been completed in [DLP23]. As a consequence, the nonexistence
of maximal subgroups with socle Sz(8) and PSU(3,8) and the existence of exactly one class
of maximal subgroups with the isomorphism types PSL(2,13).2 and PSU(3,4).4 have been
proved. Note that still not all class fusions of the maximal subgroups are known, and we get
only candidates for some primitive permutation characters.

• The known information about the primitive permutation characters of the sporadic simple Mon-
ster group is available in the data file data/prim_perm_M.json of GAP’s library of character
tables since the release of CTblLib 1.3.3. The data from this file are used in Section 4.4.2 instead
of the explicit list that had been defined in the code in earlier versions.

171

http://arxiv.org/abs/0911.5589v1

Computations with the GAP Character Table Library 172

4.1 Overview

The purpose of this note is to document the GAP computations that were carried out in order to obtain
the computational results in [BGL+10].

In order to keep this note self-contained, we first describe the theory needed, in Section 4.2. The
translation of the relevant formulae into GAP functions can be found in Section 4.3. Then Section 4.4
describes the computations that only require (ordinary) character tables in the GAP Character Table
Library [Bre24]. Computations using also the groups are shown in Section 4.5.

The examples use the GAP Character Table Library and the GAP Library of Tables of Marks, so
we first load these packages in the required versions.

Example
gap> if not CompareVersionNumbers(GAPInfo.Version, "4.5") then
> Error("need GAP in version at least 4.5");
> fi;
gap> LoadPackage("ctbllib", "1.2", false);
true
gap> LoadPackage("tomlib", "1.1.1", false);
true

4.2 Theoretical Background

Let G be a finite noncyclic group and denote by G× the set of nonidentity elements in G. We define
the generating graph Γ(G) as the undirected graph on the vertex set G× by joining two elements
x,y ∈ G× by an edge if and only if 〈x,y〉 = G holds. For x ∈ G×, the vertex degree d(Γ,x) is |{y ∈
G×;〈x,y〉 = G}|. The closure cl(Γ) of the graph Γ with m vertices is defined as the graph with the
same vertex set as Γ, where the vertices x,y are joined by an edge if they are joined by an edge in Γ or
if d(Γ,x)+d(Γ,y)≥ m. We denote iterated closures by cl(i)(Γ) = cl(cl(i−1)(Γ)), where cl(0)(Γ) = Γ.

In the following, we will show that the generating graphs of the following groups contain a Hamil-
tonian cycle:

• Nonabelian simple groups of orders at most 107,

• groups G containing a unique minimal normal subgroup N such that N has order at most 106, N
is nonsolvable, and G/N is cyclic,

• sporadic simple groups and their automorphism groups.

Clearly the condition that G/N is cyclic for all nontrivial normal subgroups N of G is necessary
for Γ(G) being connected, and [BGL+10, Conjecture 1.6] states that this condition is also sufficient.
By [BGL+10, Proposition 1.1], this conjecture is true for all solvable groups, and the second entry in
the above list implies that this conjecture holds for all nonsolvable groups of order up to 106.

The question whether a graph Γ contains a Hamiltonian cycle (i. e., a closed path in Γ that visits
each vertex exactly once) can be answered using the following sufficient criteria (see [BGL+10]). Let
d1 ≤ d2 ≤ ·· · ≤ dm be the vertex degrees in Γ.

Pósa’s criterion:
If dk ≥ k+1 holds for 1≤ k < m/2 then Γ contains a Hamiltonian cycle.

Computations with the GAP Character Table Library 173

Chvátal’s criterion:
If dk ≥ k+1 or dm−k ≥ m− k holds for 1≤ k < m/2 then Γ contains a Hamiltonian cycle.

Closure criterion:
A graph contains a Hamiltonian cycle if and only if its closure contains a Hamiltonian cycle.

4.2.1 Character-Theoretic Lower Bounds for Vertex Degrees

Using character-theoretic methods similar to those used to obtain the results in [BGK08] (the compu-
tations for that paper are shown in [Breb]), we can compute lower bounds for the vertex degrees in
generating graphs, as follows.

Let R be a set of representatives of conjugacy classes of nonidentity elements in G, fix s ∈ G×, let
M(G,s) denote the set of those maximal subgroups of G that contain s, let M(G,s)/∼ denote a set of
representatives in M(G,s) w. r. t. conjugacy in G. For a subgroup M of G, the permutation character
1G

M is defined by
1G

M(g) := (|G| · |gG∩M|)/(|M| · |gG|),

where gG = {gx;x ∈G}, with gx = x−1gx, denotes the conjugacy class of g in G. So we have 1G
M(1) =

|G|/|M| and thus |gG∩M|= |gG| ·1G
M(g)/1G

M(1).
Doubly counting the set {(sx,My);x,y ∈G,sx ∈My} yields |MG| · |sG∩M|= |sG| · |{Mx;x ∈G,s ∈

Mx}| and thus |{Mx;x ∈ G,s ∈Mx}|= |MG| ·1G
M(s)/1G

M(1)≤ 1G
M(s). (If M is a maximal subgroup of

G then either M is normal in G or self-normalizing, and in the latter case the inequality is in fact an
equality.)

Let Π denote the multiset of primitive permutation characters of G, i. e., of the permutation char-
acters 1G

M where M ranges over representatives of the conjugacy classes of maximal subgroups of
G.

Define

δ (s,gG) := |gG| ·max

{
0,1− ∑

π∈Π

π(g) ·π(s)/π(1)

}
and d(s,gG) := |{x ∈ gG;〈s,x〉= G}|, the contribution of the class gG to the vertex degree of s. Then
we have d(Γ(G),s) = ∑x∈R d(s,xG) and

d(s,gG) = |gG|− |
⋃

M∈M (G,s)

{x ∈ gG;〈x,s〉 ⊆M}|

≥ max

{
0, |gG|− ∑

M∈M (G,s)
|gG∩M|

}

= |gG| ·max

{
0,1− ∑

M∈M (G,s)
1G

M(g)/1G
M(1)

}

≥ |gG| ·max

{
0,1− ∑

M∈M (G,s)/∼
1G

M(g) ·1G
M(s)/1G

M(1)

}
= δ (s,gG)

So δ (s) := ∑x∈R δ (s,xG) is a lower bound for the vertex degree of s; this bound can be computed
if Π is known.

Computations with the GAP Character Table Library 174

For computing the vertex degrees of the iterated closures of Γ(G), we define d(0)(s,gG) := d(s,gG)
and

d(i+1)(s,gG) :=
{
|gG| ; d(i)(Γ(G),s)+d(i)(Γ(G),g)≥ |G|−1
d(i)(s,gG) ; otherwise

.

and δ (i)(s) :=∑x∈R δ (i)(s,xG), a lower bound for d(cl(i)(Γ(G)),s) that can be computed if Π is known.

4.2.2 Checking the Criteria

Let us assume that we know lower bounds β (s) for the vertex degrees d(cl(i)(Γ(G)),s), for some fixed
i, and let us choose representatives s1,s2, . . . ,sl of the nonidentity conjugacy classes of G such that
β (s1)≤ β (s2)≤ ·· · ≤ β (sl) holds. Let ck = |sG

k | be the class lengths of these representatives.
Then the first c1 vertex degrees, ordered by increasing size, are larger than or equal to β (s1), the

next c2 vertex degrees are larger than or equal to β (s2), and so on.
Then the set of indices in the k-th nonidentity class of G for which Pósa’s criterion is not guaran-

teed by the given bounds is

{x;c1 + c2 + · · ·+ ck−1 < x≤ c1 + c2 + · · ·ck,x < (|G|−1)/2,β (sk)< x+1}.

This is an interval {Lk,Lk +1, . . . ,Uk} with

Lk = max{1+ c1 + c2 + · · ·+ ck−1,β (sk)}

and
Uk = min{c1 + c2 + · · ·+ ck,b|G|/2c−1} .

(Note that the generating graph has m = |G| − 1 vertices, and that x < m/2 is equivalent to x ≤
b|G|/2c−1.)

The generating graph Γ(G) satisfies Pósa’s criterion if all these intervals are empty, i. e., if Lk >Uk
holds for 1≤ k ≤ l.

The set of indices for which Chvátal’s criterion is not guaranteed is the intersection of

{m− k;1≤ m− k < m/2,dk < k}

with the set of indices for which Pósa’s criterion is not guaranteed.
Analogously to the above considerations, the set of indices m− x in the former set for which

Chvátal’s criterion is not guaranteed by the given bounds and such that x is an index in the k-th
nonidentity class of G is

{m− x;c1 + c2 + · · ·+ ck−1 < x≤ c1 + c2 + · · ·ck,1≤ m− x < (|G|−1)/2,β (sk)< x}.

This is again an interval {L′k,L′k +1, . . . ,U ′k} with

L′k = max{1,m− (c1 + c2 + · · ·+ ck)}

and
U ′k = min{m− (c1 + c2 + · · ·+ ck−1)−1,b|G|/2c−1,m−1−β (sk)} .

The generating graph Γ(G) satisfies Chvátal’s criterion if the union of the intervals {L′k,L′k+1, . . . ,U ′k},
for 1≤ k ≤ l is disjoint to the union of the intervals {Lk,Lk +1, . . . ,Uk}, for 1≤ k ≤ l.

Computations with the GAP Character Table Library 175

4.3 GAP Functions for the Computations

We describe two approaches to compute, for a given group G, vertex degrees for the generating graph
of G or lower bounds for them, by calculating exact vertex degrees from G itself (see Section 4.3.1)
or by deriving lower bounds for the vertex degrees using just character-theoretic information about
G and its subgroups (see Section 4.3.2). Finally, Section 4.3.3 deals with deriving lower bounds of
vertex degrees of iterated closures.

4.3.1 Computing Vertex Degrees from the Group

In this section, the task is to compute the vertex degrees d(s,gG) using explicit computations with the
group G.

The function IsGeneratorsOfTransPermGroup checks whether the permutations in the list list
generate the permutation group G, provided that G is transitive on its moved points. (Note that testing
the necessary condition that the elements in list generate a transitive group is usually much faster
than testing generation.) This function has been used already in [Breb].

Example
gap> IsGeneratorsOfTransPermGroup:= function(G, list)
> local S;
>
> if not IsTransitive(G) then
> Error("<G> must be transitive on its moved points");
> fi;
> S:= SubgroupNC(G, list);
>
> return IsTransitive(S, MovedPoints(G))
> and Size(S) = Size(G);
> end;;

The function VertexDegreesGeneratingGraph takes a transitive permutation group G (in order
to be allowed to use IsGeneratorsOfTransPermGroup), the list classes of conjugacy classes of
G (in order to prescribe an ordering of the classes), and a list normalsubgroups of proper normal
subgroups of G, and returns the matrix [d(s,gG)]s,g of vertex degrees, with rows and columns indexed
by nonidentity class representatives ordered as in the list classes. (The class containing the identity
element may be contained in classes.)

The following criteria are used in this function.

• The function tests the (non)generation only for representatives of CG(g)-CG(s)-double cosets,
where CG(g) := {x ∈ G;gx = xg} denotes the centralizer of g in G. Note that for c1 ∈ CG(g),
c2 ∈ CG(s), and a representative r ∈ G, we have 〈s,gc1rc2〉 = 〈s,gr〉c2 . If 〈s,gr〉 = G then the
double coset D =CG(g)rCG(s) contributes |D|/|CG(g)| to the vertex degree d(s,gG), otherwise
the contribution is zero.

• We have d(s,gG) · |CG(g)| = d(g,sG) · |CG(s)|. (To see this, either establish a bijection of the
above double cosets, or doubly count the edges between elements of the conjugacy classes of s
and g.)

• If 〈s1〉= 〈s2〉 and 〈g1〉= 〈g2〉 hold then we have d(s1,gG
1) = d(s2,gG

1) = d(s1,gG
2) = d(s2,gG

2),
so only one of these values must be computed.

Computations with the GAP Character Table Library 176

• If both s and g are contained in one of the normal subgroups given then d(s,gG) is zero.

• If G is not a dihedral group and both s and g are involutions then d(s,gG) is zero.
Example

gap> BindGlobal("VertexDegreesGeneratingGraph",
> function(G, classes, normalsubgroups)
> local nccl, matrix, cents, powers, normalsubgroupspos, i, j, g_i,
> nsg, g_j, gen, pair, d, pow;
>
> if not IsTransitive(G) then
> Error("<G> must be transitive on its moved points");
> fi;
>
> classes:= Filtered(classes,
> C -> Order(Representative(C)) <> 1);
> nccl:= Length(classes);
> matrix:= [];
> cents:= [];
> powers:= [];
> normalsubgroupspos:= [];
> for i in [1 .. nccl] do
> matrix[i]:= [];
> if IsBound(powers[i]) then
> # The i-th row equals the earlier row ’powers[i]’.
> for j in [1 .. i] do
> matrix[i][j]:= matrix[powers[i]][j];
> matrix[j][i]:= matrix[j][powers[i]];
> od;
> else
> # We have to compute the values.
> g_i:= Representative(classes[i]);
> nsg:= Filtered([1 .. Length(normalsubgroups)],
> i -> g_i in normalsubgroups[i]);
> normalsubgroupspos[i]:= nsg;
> cents[i]:= Centralizer(G, g_i);
> for j in [1 .. i] do
> g_j:= Representative(classes[j]);
> if IsBound(powers[j]) then
> matrix[i][j]:= matrix[i][powers[j]];
> matrix[j][i]:= matrix[powers[j]][i];
> elif not IsEmpty(Intersection(nsg, normalsubgroupspos[j]))
> or (Order(g_i) = 2 and Order(g_j) = 2
> and not IsDihedralGroup(G)) then
> matrix[i][j]:= 0;
> matrix[j][i]:= 0;
> else
> # Compute $d(g_i, g_j^G)$.
> gen:= 0;
> for pair in DoubleCosetRepsAndSizes(G, cents[j],
> cents[i]) do
> if IsGeneratorsOfTransPermGroup(G,
> [g_i, g_j^pair[1]]) then
> gen:= gen + pair[2];

Computations with the GAP Character Table Library 177

> fi;
> od;
> matrix[i][j]:= gen / Size(cents[j]);
> if i <> j then
> matrix[j][i]:= gen / Size(cents[i]);
> fi;
> fi;
> od;
>
> # For later, provide information about algebraic conjugacy.
> for d in Difference(PrimeResidues(Order(g_i)), [1]) do
> pow:= g_i^d;
> for j in [i+1 .. nccl] do
> if not IsBound(powers[j]) and pow in classes[j] then
> powers[j]:= i;
> break;
> fi;
> od;
> od;
> fi;
> od;
>
> return matrix;
> end);

4.3.2 Computing Lower Bounds for Vertex Degrees

In this section, the task is to compute the lower bounds δ (s,gG) for the vertex degrees d(s,gG) using
character-theoretic methods.

We provide GAP functions for computing the multiset Π of the primitive permutation characters
of a given group G and for computing the lower bounds δ (s,gG) from Π.

For many almost simple groups, the GAP libraries of character tables and of tables of marks con-
tain information for quickly computing the primitive permutation characters of the group in question.
Therefore, the function PrimitivePermutationCharacters takes as its argument not the group G
but its character table T , say. (This function is shown already in [Breb].)

If T is contained in the GAP Character Table Library (see [Bre24]) then the complete set of prim-
itive permutation characters can be easily computed if the character tables of all maximal subgroups
and their class fusions into T are known (in this case, we check whether the attribute Maxes (CTblLib:
Maxes) of T is bound) or if the table of marks of G and the class fusion from T into this table of marks
are known (in this case, we check whether the attribute FusionToTom (CTblLib: FusionToTom) of
T is bound). If the attribute UnderlyingGroup (Reference: UnderlyingGroup for tables of marks)
of T is bound then the group stored as the value of this attribute can be used to compute the primitive
permutation characters. The latter happens if T was computed from the group G; for tables in the
GAP Character Table Library, this is not the case by default.

The GAP function PrimitivePermutationCharacters tries to compute the primitive permu-
tation characters of a group using this information; it returns the required list of characters if this can
be computed this way, otherwise fail is returned. (For convenience, we use the GAP mechanism of
attributes in order to store the permutation characters in the character table object once they have been
computed.)

Computations with the GAP Character Table Library 178

Example
gap> DeclareAttribute("PrimitivePermutationCharacters",
> IsCharacterTable);
gap> InstallOtherMethod(PrimitivePermutationCharacters,
> [IsCharacterTable],
> function(tbl)
> local maxes, i, fus, poss, tom, G;
>
> if HasMaxes(tbl) then
> maxes:= List(Maxes(tbl), CharacterTable);
> for i in [1 .. Length(maxes)] do
> fus:= GetFusionMap(maxes[i], tbl);
> if fus = fail then
> fus:= PossibleClassFusions(maxes[i], tbl);
> poss:= Set(fus,
> map -> InducedClassFunctionsByFusionMap(
> maxes[i], tbl,
> [TrivialCharacter(maxes[i])], map)[1]);
> if Length(poss) = 1 then
> maxes[i]:= poss[1];
> else
> return fail;
> fi;
> else
> maxes[i]:= TrivialCharacter(maxes[i])^tbl;
> fi;
> od;
> return maxes;
> elif HasFusionToTom(tbl) then
> tom:= TableOfMarks(tbl);
> maxes:= MaximalSubgroupsTom(tom);
> return PermCharsTom(tbl, tom){ maxes[1] };
> elif HasUnderlyingGroup(tbl) then
> G:= UnderlyingGroup(tbl);
> return List(MaximalSubgroupClassReps(G),
> M -> TrivialCharacter(M)^tbl);
> fi;
>
> return fail;
> end);

The next function computes the lower bounds δ (s,gG) from the two lists classlengths of con-
jugacy class lengths of the group G and prim of all primitive permutation characters of G. (The first
entry in classlengths is assumed to represent the class containing the identity element of G.) The
return value is the matrix that contains in row i and column j the value δ (s,gG), where s and g are in
the conjugacy classes represented by the (i+1)-st and (j+1)-st column of tbl, respectively. So the
row sums of this matrix are the values δ (s).

Example
gap> LowerBoundsVertexDegrees:= function(classlengths, prim)
> local sizes, nccl;
>

Computations with the GAP Character Table Library 179

> nccl:= Length(classlengths);
> return List([2 .. nccl],
> i -> List([2 .. nccl],
> j -> Maximum(0, classlengths[j] - Sum(prim,
> pi -> classlengths[j] * pi[j] * pi[i]
> / pi[1]))));
> end;;

4.3.3 Evaluating the (Lower Bounds for the) Vertex Degrees

In this section, the task is to compute (lower bounds for) the vertex degrees of iterated closures of a
generating graph from (lower bounds for) the vertex degrees of the graph itself, and then to check the
criteria of Pósa and Chvátal.

The arguments of all functions defined in this section are the list classlengths of conjugacy
class lengths for the group G (including the class of the identity element, in the first position)
and a matrix bounds of the values d(i)(s,gG) or δ (i)(s,gG), with rows and columns indexed by
nonidentity class representatives s and g, respectively. Such a matrix is returned by the functions
VertexDegreesGeneratingGraph or LowerBoundsVertexDegrees, respectively.

The function LowerBoundsVertexDegreesOfClosure returns the corresponding matrix of the
values d(i+1)(s,gG) or δ (i+1)(s,gG), respectively.

Example
gap> LowerBoundsVertexDegreesOfClosure:= function(classlengths, bounds)
> local delta, newbounds, size, i, j;
>
> delta:= List(bounds, Sum);
> newbounds:= List(bounds, ShallowCopy);
> size:= Sum(classlengths);
> for i in [1 .. Length(bounds)] do
> for j in [1 .. Length(bounds)] do
> if delta[i] + delta[j] >= size - 1 then
> newbounds[i][j]:= classlengths[j+1];
> fi;
> od;
> od;
>
> return newbounds;
> end;;

Once the values d(i)(s,gG) or δ (i)(s,gG) are known, we can check whether Pósa’s or Chvátal’s
criterion is satisfied for the graph cl(i)(Γ(G)), using the function CheckCriteriaOfPosaAndChvatal
shown below. (Of course a negative result is meaningless in the case that only lower bounds for the
vertex degrees are used.)

The idea is to compute the row sums of the given matrix, and to compute the intervals {Lk,Lk +
1, . . . ,Uk} and {L′k,L′k +1, . . . ,U ′k} that were introduced in Section 4.2.2.

The function CheckCriteriaOfPosaAndChvatal returns, given the list of class lengths of G and
the matrix of (bounds for the) vertex degrees, a record with the components badForPosa (the list of
those pairs [Lk,Uk] with the property Lk ≤Uk), badForChvatal (the list of pairs of lower and upper
bounds of nonempty intervals where Chvátal’s criterion may be violated), and data (the sorted list of
triples [δ (gk), |gG

k |, ι(k)], where ι(k) is the row and column position of gk in the matrix bounds). The

Computations with the GAP Character Table Library 180

ordering of class lengths must of course be compatible with the ordering of rows and columns of the
matrix, and the identity element of G must belong to the first entry in the list of class lengths.

Example
gap> CheckCriteriaOfPosaAndChvatal:= function(classlengths, bounds)
> local size, degs, addinterval, badForPosa, badForChvatal1, pos,
> half, i, low1, upp2, upp1, low2, badForChvatal, interval1,
> interval2;
>
> size:= Sum(classlengths);
> degs:= List([2 .. Length(classlengths)],
> i -> [Sum(bounds[i-1]), classlengths[i], i]);
> Sort(degs);
>
> addinterval:= function(intervals, low, upp)
> if low <= upp then
> Add(intervals, [low, upp]);
> fi;
> end;
>
> badForPosa:= [];
> badForChvatal1:= [];
> pos:= 1;
> half:= Int(size / 2) - 1;
> for i in [1 .. Length(degs)] do
> # We have pos = c_1 + c_2 + \cdots + c_{i-1} + 1
> low1:= Maximum(pos, degs[i][1]); # L_i
> upp2:= Minimum(half, size-1-pos, size-1-degs[i][1]); # U’_i
> pos:= pos + degs[i][2];
> upp1:= Minimum(half, pos-1); # U_i
> low2:= Maximum(1, size-pos); # L’_i
> addinterval(badForPosa, low1, upp1);
> addinterval(badForChvatal1, low2, upp2);
> od;
>
> # Intersect intervals.
> badForChvatal:= [];
> for interval1 in badForPosa do
> for interval2 in badForChvatal1 do
> addinterval(badForChvatal,
> Maximum(interval1[1], interval2[1]),
> Minimum(interval1[2], interval2[2]));
> od;
> od;
>
> return rec(badForPosa:= badForPosa,
> badForChvatal:= Set(badForChvatal),
> data:= degs);
> end;;

Finally, the function HamiltonianCycleInfo assumes that the matrix bounds contains lower
bounds for the vertex degrees in the generating graph Γ, and returns a string that describes the minimal

Computations with the GAP Character Table Library 181

i with the property that the given bounds suffice to show that cl(i)(Γ) satisfies Pósa’s or Chvátal’s
criterion, if such a closure exists. If no closure has this property, the string "no decision" is returned.

Example
gap> HamiltonianCycleInfo:= function(classlengths, bounds)
> local i, result, res, oldbounds;
>
> i:= 0;
> result:= rec(Posa:= fail, Chvatal:= fail);
> repeat
> res:= CheckCriteriaOfPosaAndChvatal(classlengths, bounds);
> if result.Posa = fail and IsEmpty(res.badForPosa) then
> result.Posa:= i;
> fi;
> if result.Chvatal = fail and IsEmpty(res.badForChvatal) then
> result.Chvatal:= i;
> fi;
> i:= i+1;
> oldbounds:= bounds;
> bounds:= LowerBoundsVertexDegreesOfClosure(classlengths,
> bounds);
> until oldbounds = bounds;
>
> if result.Posa <> fail then
> if result.Posa <> result.Chvatal then
> return Concatenation(
> "Chvatal for ", Ordinal(result.Chvatal), " closure, ",
> "Posa for ", Ordinal(result.Posa), " closure");
> else
> return Concatenation("Posa for ", Ordinal(result.Posa),
> " closure");
> fi;
> elif result.Chvatal <> fail then
> return Concatenation("Chvatal for ", Ordinal(result.Chvatal),
> " closure");
> else
> return "no decision";
> fi;
> end;;

4.4 Character-Theoretic Computations

In this section, we apply the functions introduced in Section 4.3 to character tables of almost simple
groups that are available in the GAP Character Table Library.

Our first examples are the sporadic simple groups, in Section 4.4.1, then their automorphism
groups are considered in Section 4.4.3. Small alternating and symmetric groups are treated in Sec-
tion 4.4.4.

For our convenience, we provide a small function that takes as its argument only the character
table in question, and returns a string, either "no prim. perm. characters" or the return value
of HamiltonianCycleInfo for the bounds computed from the primitive permutation characters.

Computations with the GAP Character Table Library 182

Example
gap> HamiltonianCycleInfoFromCharacterTable:= function(tbl)
> local prim, classlengths, bounds;
>
> prim:= PrimitivePermutationCharacters(tbl);
> if prim = fail then
> return "no prim. perm. characters";
> fi;
> classlengths:= SizesConjugacyClasses(tbl);
> bounds:= LowerBoundsVertexDegrees(classlengths, prim);
> return HamiltonianCycleInfo(classlengths, bounds);
> end;;

4.4.1 Sporadic Simple Groups, except the Monster

The GAP Character Table Library contains the tables of maximal subgroups of all sporadic simple
groups except M.

So the function PrimitivePermutationCharacters can be used to compute all primitive per-
mutation characters for 25 of the 26 sporadic simple groups.

Example
gap> spornames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);
["B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He",

"J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23",
"M24", "McL", "ON", "Ru", "Suz", "Th"]

gap> for tbl in List(spornames, CharacterTable) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> if info <> "Posa for 0th closure" then
> Print(Identifier(tbl), ": ", info, "\n");
> fi;
> od;
M: no prim. perm. characters

It turns out that only for the Monster group, the information available in the GAP Character Table
Library is not sufficient to prove that the generating graph contains a Hamiltonian cycle.

4.4.2 The Monster

Currently we do not know all primitive permutation characters of the Monster group M. The classes
of maximal subgroups are classified in [DLP23], but not all their character tables are known, and for
some of those with known character table, the permutation character is not uniquely determined by
the character tables involved. However, we can compute upper bounds for the values of the primitive
permutation characters 1M

S from the possible class fusions from S into M if the character table of S
is known. For the other subgroups S, the permutation characters 1M

S have been computed with other
methods. Using this information, we will show that the generating graph of M satisfies Pósa’s criterion.

The list primdata defined below has length 46. The entry at position i is a list of length one
or two. If primdata[i] has length one then its unique entry is the identifier of the library character
table of the i-th maximal subgroup of M. If primdata[i] has length two then its entries are a string
describing the structure of the i-th maximal subgroup S of M and the permutation character 1M

S .

Computations with the GAP Character Table Library 183

(The construction of the explicitly given characters in this list will be documented elsewhere.
Some of the constructions can be found in Section 8.16.)

Example
gap> dir:= DirectoriesPackageLibrary("ctbllib", "data");;
gap> filename:= Filename(dir, "prim_perm_M.json");;
gap> primdata:= EvalString(StringFile(filename))[2];;
gap> Length(primdata);
46
gap> m:= CharacterTable("M");;

We compute upper bounds for the permutation character values in the cases where the charac-
ters are not given explicitly. (We could improve this by using additional information about the class
fusions, but this will not be necessary.)

Example
gap> s:= "dummy";; # Avoid a message about an unbound variable ...
gap> poss:= "dummy";; # Avoid a message about an unbound variable ...
gap> for entry in primdata do
> if not IsBound(entry[2]) then
> s:= CharacterTable(entry[1]);
> poss:= Set(PossibleClassFusions(s, m),
> x -> InducedClassFunctionsByFusionMap(s, m,
> [TrivialCharacter(s)], x)[1]);
> entry[2]:= List([1 .. NrConjugacyClasses(m)],
> i -> Maximum(List(poss, x -> x[i])));
> fi;
> od;

Now we estimate the lower bounds δ (s,gG) introduced in Section 4.3.2. Let M denote a set of
representatives of the classes of maximal subgroups of M. Then

δ (s,gG) = |sG|− |sG| · ∑
S∈M

1M
S (s) ·1M

S (g)/1M
S (1),

hence δ (s) can be computed from the corresponding primitive permutation characters, and a lower
bound for δ (s) can be computed from the upper bounds for the characters 1G

S which are given by the
list primdata.

This means that modifying the output of LowerBoundsVertexDegrees as follows really yields
lower bounds for the vertex degrees.

Example
gap> prim:= List(primdata, x -> x[2]);;
gap> classlengths:= SizesConjugacyClasses(m);;
gap> bounds:= LowerBoundsVertexDegrees(classlengths, prim);;

Now we sum up the bounds for the individual classes. It turns out that the minimal vertex degree
is more than 99.99998 percent of |M|. This proves that the generating graph of the Monster satisfies
Pósa’s criterion.

Example
gap> degs:= List(bounds, Sum);;
gap> Int(100000000 * Minimum(degs) / Size(m));
99999987

Computations with the GAP Character Table Library 184

Without the results from [DLP23], we can argue as follows. (This was the situation in earlier
versions of this example file.)

According to [NW13], any maximal subgroup of the Monster is either among the 44 known classes
from the above list except L2(13).2 and U3(4).4, or it is an almost simple group whose socle is one of
L2(13), Sz(8), U3(4), and U3(8).

We show that the elements of such subgroups are contained in the union of 55 conjugacy classes
of the Monster that cover less than one percent of the elements in the Monster. For that, we compute
the possible class fusions from the abovementioned simple groups S into the Monster, and then the
possible class fusions from the automorphic extensions of S into the Monster, using the possible class
fusions of S. (This approach is faster than computing each class fusion from scratch.)

After the following computations, the list badclasses will contain the positions of all those
classes of M that may contain elements in some of the hypothetical maximal subgroups.

For each simple group in question, we enter the identifiers of the character tables of the auto-
morphic extensions that can occur. Note that the automorphism groups of the four groups have the
structures L2(13).2, Sz(8).3, U3(4).4, and U3(8).(3× S3), respectively. We need not consider the
groups U3(8).32 and U3(8).(3×S3) because already U3(8).32 does not admit an embedding into M,
and we need not consider the group U3(8).S3 because its set of elements is covered by its subgroups
of the types U3(8).2 and U3(8).32.

Example
gap> PossibleClassFusions(CharacterTable("U3(8).3_2"), m);
[]
gap> badclasses:= [];;
gap> names:= [
> ["L2(13)", "L2(13).2"],
> ["Sz(8)", "Sz(8).3"],
> ["U3(4)", "U3(4).2", "U3(4).4"],
> ["U3(8)", "U3(8).2", "U3(8).3_1", "U3(8).3_2", "U3(8).3_3",
> "U3(8).6"],
>];;
gap> for list in names do
> t:= CharacterTable(list[1]);
> tfusm:= PossibleClassFusions(t, m);
> UniteSet(badclasses, Flat(tfusm));
> for nam in list{ [2 .. Length(list)] } do
> ext:= CharacterTable(nam);
> for map1 in PossibleClassFusions(t, ext) do
> inv:= InverseMap(map1);
> for map2 in tfusm do
> init:= CompositionMaps(map2, inv);
> UniteSet(badclasses, Flat(PossibleClassFusions(ext, m,
> rec(fusionmap:= init))));
> od;
> od;
> od;
> od;
gap> badclasses;
[1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22,

24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46,
48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 63, 70, 72, 73, 78,
82, 85, 86]

Computations with the GAP Character Table Library 185

gap> Length(badclasses);
55
gap> bad:= Sum(classlengths{ badclasses }) / Size(m);;
gap> Int(10000 * bad);
97

In the original version of this file, also hypothetical maximal subgroups with socle L2(27) had
been considered. As a consequence, the list badclasses computed above had length 59 in the original
version; the list contained also the classes at the positions 90,94,95, and 96, that is, the classes 26B,
28B, 28C, 28D. The proportion bad of elements in the classes of M described by badclasses was
about 2.05 percent of |M|, compared to the about 0.98 percent in the current version.

Now we estimate the lower bounds δ (s,gG) introduced in Section 4.3.2. Let B denote the union
of the classes described by badclasses, and let M denote a set of representatives of the 44 known
classes of maximal subgroups of M.

If s /∈B then
δ (s,gG) = |sG|− |sG| · ∑

S∈M
1M

S (s) ·1M
S (g)/1M

S (1),

hence δ (s) can be computed from the corresponding primitive permutation characters, and a lower
bound for δ (s) can be computed from the upper bounds for the characters 1G

S which are given by the
list primdata.

If s ∈B then the above equation for δ (s,gG) holds at least for g /∈B, so ∑g∈R\B δ (s,gG) is a
lower bound for δ (s). So primdata yields a lower bound for δ (s) also for s ∈B, by ignoring the
pairs (s,g) where both s and g lie in B.

This means that modifying the output of LowerBoundsVertexDegrees as follows really yields
lower bounds for the vertex degrees. (Note that the row and column positions in the matrix returned
by LowerBoundsVertexDegrees are shifted by one, compared to badclasses.)

Example
gap> prim:= List(primdata, x -> x[2]);;
gap> badpos:= Difference(badclasses, [1]) - 1;;
gap> bounds:= LowerBoundsVertexDegrees(classlengths, prim);;
gap> for i in badpos do
> for j in badpos do
> bounds[i][j]:= 0;
> od;
> od;

Now we sum up the bounds for the individual classes. It turns out that the minimal vertex degree
is more than 99 percent of |M|. This proves that the generating graph of the Monster satisfies Pósa’s
criterion.

(And the minimal vertex degree of elements outside B is more than 99.99998 percent of |M|.)
In the original version of this file, we got only 97.95 percent of |M| as the lower bound for the

minimal vertex degree. The bound for elements outside B was the same in the original version. The
fact that the maximal subgroups of type L2(41) had been ignored in the original version did not affect
the lower bound for the minimal vertex degree.

Example
gap> degs:= List(bounds, Sum);;
gap> Int(10000 * Minimum(degs) / Size(m));
9902

Computations with the GAP Character Table Library 186

gap> goodpos:= Difference([1 .. NrConjugacyClasses(m) - 1],
> badpos);;
gap> Int(100000000 * Minimum(degs{ goodpos }) / Size(m));
99999987

4.4.3 Nonsimple Automorphism Groups of Sporadic Simple Groups

Next we consider the nonsimple automorphism groups of the sporadic simple groups. Nontrivial outer
automorphisms exist exactly in 12 cases, and then the simple group has index 2 in its automorphism
group. The character tables of the groups and their maximal subgroups are available in GAP.

Example
gap> spornames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);;
gap> sporautnames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false,
> OfThose, AutomorphismGroup);;
gap> sporautnames:= Difference(sporautnames, spornames);
["F3+.2", "Fi22.2", "HN.2", "HS.2", "He.2", "J2.2", "J3.2", "M12.2",

"M22.2", "McL.2", "ON.2", "Suz.2"]
gap> for tbl in List(sporautnames, CharacterTable) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> Print(Identifier(tbl), ": ", info, "\n");
> od;
F3+.2: Chvatal for 0th closure, Posa for 1st closure
Fi22.2: Chvatal for 0th closure, Posa for 1st closure
HN.2: Chvatal for 0th closure, Posa for 1st closure
HS.2: Chvatal for 1st closure, Posa for 2nd closure
He.2: Chvatal for 0th closure, Posa for 1st closure
J2.2: Chvatal for 0th closure, Posa for 1st closure
J3.2: Chvatal for 0th closure, Posa for 1st closure
M12.2: Chvatal for 0th closure, Posa for 1st closure
M22.2: Posa for 1st closure
McL.2: Chvatal for 0th closure, Posa for 1st closure
ON.2: Chvatal for 0th closure, Posa for 1st closure
Suz.2: Chvatal for 0th closure, Posa for 1st closure

4.4.4 Alternating and Symmetric Groups An, Sn, for 5≤ n≤ 13

For alternating and symmetric groups An and Sn, respectively, with 5 ≤ n ≤ 13, the table of marks
or the character tables of the group and all its maximal subgroups are available in GAP. So we can
compute the character-theoretic bounds for vertex degrees.

Example
gap> for tbl in List([5 .. 13], i -> CharacterTable(
> Concatenation("A", String(i)))) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> if info <> "Posa for 0th closure" then
> Print(Identifier(tbl), ": ", info, "\n");
> fi;
> od;

Computations with the GAP Character Table Library 187

No messages are printed, so the generating graphs of the alternating groups in question satisfy
Pósa’s criterion.

Example
gap> for tbl in List([5 .. 13], i -> CharacterTable(
> Concatenation("S", String(i)))) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> Print(Identifier(tbl), ": ", info, "\n");
> od;
A5.2: no decision
A6.2_1: Chvatal for 4th closure, Posa for 5th closure
A7.2: Posa for 1st closure
A8.2: Chvatal for 2nd closure, Posa for 3rd closure
A9.2: Chvatal for 2nd closure, Posa for 3rd closure
A10.2: Chvatal for 2nd closure, Posa for 3rd closure
A11.2: Posa for 1st closure
A12.2: Chvatal for 2nd closure, Posa for 3rd closure
A13.2: Posa for 1st closure

We see that sufficiently large closures of the generating graphs of the symmetric groups in question
satisfy Pósa’s criterion, except that the bounds for the symmetric group S5 are not sufficient for the
proof. In Section 4.5.2, it is shown that the 2nd closure of the generating graph of S5 satisfies Pósa’s
criterion.

(We could find slightly better bounds derived only from character tables which suffice to prove
that the generating graph for S5 contains a Hamiltonian cycle, but this seems to be not worth while.)

4.5 Computations With Groups

We prove in Section 4.5.1 that the generating graphs of the nonabelian simple groups of order up
to 106 satisfy Pósa’s criterion, and that the same holds for those nonabelian simple groups of order
between 106 and 107 that are not isomorphic with some PSL(2,q). (In Section 4.6, it is shown that the
generating graph of PSL(2,q) satifies Pósa’s criterion for any prime power q.) Nonsimple nonsolvable
groups of order up to 106 are treated in Section 4.5.2.

(We could increase the bounds 106 and 107 with more computations, using the same methods.)
For our convenience, we provide a small function that takes as its argument only the group in

question, and returns a string, the return value of HamiltonianCycleInfo for the vertex degrees
computed from the group. (In order to speed up the computations, the function computes the proper
normal subgroups that contain the derived subgroup of the given group, and enters the list of these
groups as the third argument of VertexDegreesGeneratingGraph.)

Example
gap> HamiltonianCycleInfoFromGroup:= function(G)
> local ccl, nsg, der, degrees, classlengths;
> ccl:= ConjugacyClasses(G);
> if IsPerfect(G) then
> nsg:= [];
> else
> der:= DerivedSubgroup(G);
> nsg:= Concatenation([der],
> IntermediateSubgroups(G, der).subgroups);
> fi;

Computations with the GAP Character Table Library 188

> degrees:= VertexDegreesGeneratingGraph(G, ccl, nsg);
> classlengths:= List(ccl, Size);
> return HamiltonianCycleInfo(classlengths, degrees);
> end;;

4.5.1 Nonabelian Simple Groups of Order up to 107

Representatives of the 56 isomorphism types of nonabelian simple groups of order up to 106 can be
accessed in GAP with the function AllSmallNonabelianSimpleGroups.

Example
gap> grps:= AllSmallNonabelianSimpleGroups([1 .. 10^6]);;
gap> Length(grps);
56
gap> List(grps, StructureDescription);
["A5", "PSL(3,2)", "A6", "PSL(2,8)", "PSL(2,11)", "PSL(2,13)",

"PSL(2,17)", "A7", "PSL(2,19)", "PSL(2,16)", "PSL(3,3)",
"PSU(3,3)", "PSL(2,23)", "PSL(2,25)", "M11", "PSL(2,27)",
"PSL(2,29)", "PSL(2,31)", "A8", "PSL(3,4)", "PSL(2,37)", "O(5,3)",
"Sz(8)", "PSL(2,32)", "PSL(2,41)", "PSL(2,43)", "PSL(2,47)",
"PSL(2,49)", "PSU(3,4)", "PSL(2,53)", "M12", "PSL(2,59)",
"PSL(2,61)", "PSU(3,5)", "PSL(2,67)", "J1", "PSL(2,71)", "A9",
"PSL(2,73)", "PSL(2,79)", "PSL(2,64)", "PSL(2,81)", "PSL(2,83)",
"PSL(2,89)", "PSL(3,5)", "M22", "PSL(2,97)", "PSL(2,101)",
"PSL(2,103)", "HJ", "PSL(2,107)", "PSL(2,109)", "PSL(2,113)",
"PSL(2,121)", "PSL(2,125)", "O(5,4)"]

gap> for g in grps do
> info:= HamiltonianCycleInfoFromGroup(g);
> if info <> "Posa for 0th closure" then
> Print(StructureDescription(g), ": ", info, "\n");
> fi;
> od;

Nothing is printed during these computations, so the generating graphs of all processed groups
satisfy Pósa’s criterion.

(On my notebook, the above computations needed about 6300 seconds of CPU time.)
For simple groups of order larger than 106, there is not such an easy way (yet) to access repre-

sentatives for each isomorphism type. Therefore, first we compute the orders of nonabelian simple
groups between 106 and 107.

Example
gap> orders:= Filtered([10^6+4, 10^6+8 .. 10^7],
> n -> IsomorphismTypeInfoFiniteSimpleGroup(n) <> fail);
[1024128, 1123980, 1285608, 1342740, 1451520, 1653900, 1721400,

1814400, 1876896, 1934868, 2097024, 2165292, 2328648, 2413320,
2588772, 2867580, 2964780, 3265920, 3483840, 3594432, 3822588,
3940200, 4245696, 4680000, 4696860, 5515776, 5544672, 5663616,
5848428, 6004380, 6065280, 6324552, 6825840, 6998640, 7174332,
7906500, 8487168, 9095592, 9732420, 9951120, 9999360]

gap> Length(orders);
41
gap> info:= List(orders, IsomorphismTypeInfoFiniteSimpleGroup);;

Computations with the GAP Character Table Library 189

gap> Number(info, x -> IsBound(x.series) and x.series = "L"
> and x.parameter[1] = 2);
31

We see that there are 31 groups of the type PSL(2,q) and 10 other nonabelian simple groups with
order in the range from 106 to 107. The former groups can be ignored because the generating graphs
of any group PSL(2,q) satisfies Pósa’s criterion, see Section 4.6. For the latter groups, we can apply
the character-theoretic method to prove that the generating graph satisfies Pósa’s criterion.

Example
gap> info:= Filtered(info, x -> not IsBound(x.series) or
> x.series <> "L" or x.parameter[1] <> 2);
[rec(name := "B(3,2) = O(7,2) ~ C(3,2) = S(6,2)",

parameter := [3, 2], series := "B", shortname := "S6(2)"),
rec(name := "A(10)", parameter := 10, series := "A",

shortname := "A10"),
rec(name := "A(2,7) = L(3,7) ", parameter := [3, 7],

series := "L", shortname := "L3(7)"),
rec(name := "2A(3,3) = U(4,3) ~ 2D(3,3) = O-(6,3)",

parameter := [3, 3], series := "2A", shortname := "U4(3)"),
rec(name := "G(2,3)", parameter := 3, series := "G",

shortname := "G2(3)"),
rec(name := "B(2,5) = O(5,5) ~ C(2,5) = S(4,5)",

parameter := [2, 5], series := "B", shortname := "S4(5)"),
rec(name := "2A(2,8) = U(3,8)", parameter := [2, 8],

series := "2A", shortname := "U3(8)"),
rec(name := "2A(2,7) = U(3,7)", parameter := [2, 7],

series := "2A", shortname := "U3(7)"),
rec(name := "A(3,3) = L(4,3) ~ D(3,3) = O+(6,3) ",

parameter := [4, 3], series := "L", shortname := "L4(3)"),
rec(name := "A(4,2) = L(5,2) ", parameter := [5, 2],

series := "L", shortname := "L5(2)")]
gap> names:= ["S6(2)", "A10", "L3(7)", "U4(3)", "G2(3)", "S4(5)",
> "U3(8)", "U3(7)", "L4(3)", "L5(2)"];;
gap> for tbl in List(names, CharacterTable) do
> info:= HamiltonianCycleInfoFromCharacterTable(tbl);
> if info <> "Posa for 0th closure" then
> Print(Identifier(tbl), ": ", info, "\n");
> fi;
> od;

4.5.2 Nonsimple Groups with Nonsolvable Socle of Order at most 106

Let G be a nonsolvable group such that G/N is cyclic for all nontrivial normal subgroups N of G. Then
the socle Soc(G) of G is the unique minimal normal subgroup. Moreover, Soc(G) is nonsolvable and
thus a direct product of isomorphic nonabelian simple groups, and G is isomorphic to a subgroup of
Aut(Soc(G)).

In order to deal with all such groups G for which additionally |Soc(G)| ≤ 106 holds, it is sufficient
to run over the simple groups S of order up to 106 and to consider those subgroups G of Aut(Sn), with
|S|n ≤ 106, for which Inn(G) is the unique minimal normal subgroup and G/Inn(G) is cyclic.

Computations with the GAP Character Table Library 190

We show that for each such group, a sufficient closure of the generating graph satisfies Pósa’s
criterion.

Example
gap> grps:= AllSmallNonabelianSimpleGroups([1 .. 10^6]);;
gap> epi:= "dummy";; # Avoid a message about an unbound variable ...
gap> for simple in grps do
> for n in [1 .. LogInt(10^6, Size(simple))] do
> # Compute the n-fold direct product S^n.
> soc:= CallFuncList(DirectProduct,
> ListWithIdenticalEntries(n, simple));
> # Compute Aut(S^n) as a permutation group.
> aut:= Image(IsomorphismPermGroup(AutomorphismGroup(soc)));
> aut:= Image(SmallerDegreePermutationRepresentation(aut));
> # Compute class representatives of subgroups of
> # Aut(S^n)/Inn(S^n).
> socle:= Socle(aut);
> epi:= NaturalHomomorphismByNormalSubgroup(aut, socle);
> # Compute the candidates for G. (By the above computations,
> # we need not consider simple groups.)
> reps:= List(ConjugacyClassesSubgroups(Image(epi)),
> Representative);
> reps:= Filtered(reps, x -> IsCyclic(x) and Size(x) <> 1);
> greps:= Filtered(List(reps, x -> PreImages(epi, x)),
> x -> Length(MinimalNormalSubgroups(x)) = 1);
> for g in greps do
> # We have to deal with a *transitive* permutation group.
> # (Each group in question acts faithfully on an orbit.)
> if not IsTransitive(g) then
> g:= First(List(Orbits(g, MovedPoints(g)),
> x -> Action(g, x)),
> x -> Size(x) = Size(g));
> fi;
> # Check this group G.
> info:= HamiltonianCycleInfoFromGroup(g);
> Print(Name(simple), "^", n, ".", Size(g) / Size(soc),
> ": ", info, "\n");
> od;
> od;
> od;
A5^1.2: Posa for 2nd closure
A5^2.2: Posa for 0th closure
A5^2.4: Posa for 0th closure
A5^3.3: Posa for 0th closure
A5^3.6: Chvatal for 1st closure, Posa for 2nd closure
PSL(2,7)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,7)^2.2: Posa for 0th closure
PSL(2,7)^2.4: Posa for 0th closure
A6^1.2: Chvatal for 0th closure, Posa for 1st closure
A6^1.2: Chvatal for 4th closure, Posa for 5th closure
A6^1.2: Chvatal for 0th closure, Posa for 1st closure
A6^2.2: Posa for 0th closure
A6^2.4: Posa for 0th closure
A6^2.4: Posa for 0th closure

Computations with the GAP Character Table Library 191

A6^2.4: Posa for 0th closure
PSL(2,8)^1.3: Posa for 0th closure
PSL(2,8)^2.2: Posa for 0th closure
PSL(2,8)^2.6: Chvatal for 0th closure, Posa for 1st closure
PSL(2,11)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,11)^2.2: Posa for 0th closure
PSL(2,11)^2.4: Posa for 0th closure
PSL(2,13)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,17)^1.2: Chvatal for 0th closure, Posa for 1st closure
A7^1.2: Posa for 1st closure
PSL(2,19)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,16)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,16)^1.4: Chvatal for 0th closure, Posa for 1st closure
PSL(3,3)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSU(3,3)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,23)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,25)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,25)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,25)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,27)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,27)^1.3: Posa for 0th closure
PSL(2,27)^1.6: Chvatal for 0th closure, Posa for 1st closure
PSL(2,29)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,31)^1.2: Chvatal for 0th closure, Posa for 1st closure
A8^1.2: Chvatal for 2nd closure, Posa for 3rd closure
PSL(3,4)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(3,4)^1.2: Chvatal for 1st closure, Posa for 2nd closure
PSL(3,4)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(3,4)^1.3: Posa for 0th closure
PSL(3,4)^1.6: Chvatal for 0th closure, Posa for 1st closure
PSL(2,37)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSp(4,3)^1.2: Chvatal for 1st closure, Posa for 2nd closure
Sz(8)^1.3: Posa for 0th closure
PSL(2,32)^1.5: Posa for 0th closure
PSL(2,41)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,43)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,47)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,49)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,49)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,49)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSU(3,4)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSU(3,4)^1.4: Chvatal for 0th closure, Posa for 1st closure
PSL(2,53)^1.2: Chvatal for 0th closure, Posa for 1st closure
M12^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,59)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,61)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSU(3,5)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSU(3,5)^1.3: Posa for 0th closure
PSL(2,67)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,71)^1.2: Chvatal for 0th closure, Posa for 1st closure
A9^1.2: Chvatal for 2nd closure, Posa for 3rd closure
PSL(2,73)^1.2: Chvatal for 0th closure, Posa for 1st closure

Computations with the GAP Character Table Library 192

PSL(2,79)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,64)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,64)^1.3: Posa for 0th closure
PSL(2,64)^1.6: Chvatal for 0th closure, Posa for 1st closure
PSL(2,81)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,81)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,81)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,81)^1.4: Chvatal for 0th closure, Posa for 1st closure
PSL(2,81)^1.4: Chvatal for 0th closure, Posa for 1st closure
PSL(2,83)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,89)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(3,5)^1.2: Chvatal for 0th closure, Posa for 1st closure
M22^1.2: Posa for 1st closure
PSL(2,97)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,101)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,103)^1.2: Chvatal for 0th closure, Posa for 1st closure
J_2^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,107)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,109)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,113)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,121)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,121)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,121)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,125)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSL(2,125)^1.3: Posa for 0th closure
PSL(2,125)^1.6: Chvatal for 0th closure, Posa for 1st closure
PSp(4,4)^1.2: Chvatal for 0th closure, Posa for 1st closure
PSp(4,4)^1.4: Posa for 0th closure

4.6 The Groups PSL(2,q)

We show that the generating graph of any group PSL(2,q), for q ≥ 2, satisfies Pósa’s criterion.
Throughout this section, let q = p f for a prime integer p, and G = PSL(2,q). Set k = gcd(q−1,2).

Lemma 1: (see [Hup67, II., § 8]) The subgroups of G are

(1) cyclic groups of order dividing (q± 1)/k, and their normalizers, which are dihedral groups of
order 2(q±1)/k,

(2) subgroups of Sylow p normalizers, which are semidirect products of elementary abelian groups
of order q with cyclic groups of order (q−1)/k,

(3) subgroups isomorphic with PSL(2, pm) if m divides f , and isomorphic with PGL(2, pm) if 2m
divides f ,

(4) subgroups isomorphic with A4, S4, or A5, for appropriate values of q.

G contains exactly one conjugacy class of cyclic subgroups of each of the orders (q− 1)/k and
(q+ 1)/k, and each nonidentity element of G is contained in exactly one of these subgroups or in
exactly one Sylow p subgroup of G.

We estimate the number of elements that are contained in subgroups of type (3).

Computations with the GAP Character Table Library 193

Lemma 2: Let ns f (q) denote the number of those nonidentity elements in G that are contained
in proper subgroups of type (3). Then ns f (q) ≤ q2(2p(

√
q− 1)/(p− 1)− 1). If f is a prime then

ns f (q)≤ (2p−1)q2 holds, and if p = q then we have of course ns f (q) = 0.
Proof: The group PGL(2, pm) is equal to PSL(2, pm) for p = 2, and contains PSL(2, pm) as a

subgroup of index two if p 6= 2. So the largest element order in PGL(2, pm) is at most pm +1. Let C
be a cyclic subgroup of order (q+ ε)/k in G, for ε ∈ {±1}. The intersection of C with any subgroup
of G isomorphic with PGL(2, pm) or PSL(2, pm) is contained in the union of the unique subgroups
of the orders gcd(|C|, pm + 1) and gcd(|C|, pm− 1) in C. So C contains at most 2pm− 2 nonidentity
elements that can lie inside subgroups isomorphic with PGL(2, pm) or PSL(2, pm). Hence C contains
at most ∑m(2pm− 2) nonidentity elements in proper subgroups of type (3), where m runs over the
proper divisors of f . This sum is bounded from above by ∑

f/2
m=1(2pm−2)≤ 2p(

√
q−1)/(p−1)−2.

The numbers of cyclic subgroups of the orders (q + ε)/k in G are q(q− ε)/2, so G contains
altogether q2 such cyclic subgroups. They contain at most q2(2p(

√
q− 1)/(p− 1)− 2) elements

inside proper subgroups of the type (3).
All elements of order p in G are contained in subgroups of type (3), and there are exactly q2− 1

such elements. This yields the claimed bound for ns f (q). The better bound for the case that f is a
prime follows from ∑m(2pm−2) = 2p−2 if m ranges over the proper divisors of f . �

Using these bounds, we see that the vertex degree of any element in G that does not lie in sub-
groups of type (4) is larger than |G|/2. (In fact we could use the calculations below to derive a better
asymptotic bound, but this is not an issue here.)

Lemma 3: Let s ∈ G be an element of order larger than 5. Then |{g ∈ G;〈g,s〉= G}|> |G|/2.
Proof: First suppose that the order of s divides (q+1)/k or (q−1)/k. If g∈G such that U = 〈s,g〉

is a proper subgroup of G then U ≤ NG(〈s〉) or U lies in a Sylow p normalizer of G or U lies in
a subgroup of type (3). Since s is contained in at most two Sylow p normalizers (each Sylow p
normalizer contains q cyclic subgroups of order (q− 1)/k, and G contains q+ 1 Sylow normalizers
and q(q+ 1)/2 cyclic subgroups of order (q− 1)/k), the number of g ∈ G with the property that
〈s,g〉6=G is at most N = 2(q+ 1)/k + 2q(q− 1)/k + ns f (q) = 2(q2 + 1)/k + ns f (q); for s of order
equal to (q+1)/k or (q−1)/k, we can set N = 2(q2 +1)/k.

Any element s of order p (larger than 5), lies only in a unique Sylow p normalizer and in subgroups
of type (3), so the bound N holds also in this case.

For f = 1, N is smaller than |G|/2 = q(q2− 1)/(2k) if q ≥ 5. (The statement of the lemma is
trivially true for q≤ 5.)

For primes f , N is smaller than |G|/2 if q2(q−8p)> q+4 holds, which is true for p f > 8p. Only
the following values of p f with prime f do not satisfy this condition: 22 and 32 (where no element of
order larger than 5 exists), 23 (where only elements of order equal to q± 1 must be considered), 52

and 72 (where ns f (q)< (p−1)q(q+1) because in these cases the cyclic subgroups of order (q+1)/k
cannot contain nonidentity elements in subgroups of type (3)).

Finally, if f is not a prime then N is smaller than |G|/2 if q2(q− 8p(
√

q− 1)/(p− 1)) > q+ 4
holds, which is true for q ≥ 256. The only values of p f with non-prime f that do not satisfy this
condition are 24, 26, and 34. In all three cases, we have in fact N < |G|/2, where we have to use the
better bound ns f (q)< 16q2 in the third case. �

In order to show that the generating graph of G satisfies Pósa’s criterion, it suffices to show that
the vertex degrees of involutions is larger than the number of involutions, and that the vertex degrees
of elements of orders 2, 3, 4, and 5 are larger than the number of elements whose order is at most 5.

Lemma 4: Let n(q,m) denote the number of elements of order m in G, and let ϕ(m) denote the
number of prime residues modulo m.

Computations with the GAP Character Table Library 194

• We have n(q,2) = q2−1 if q is even and n(q,2)≤ q(q+1)/2 if q is odd.

• For m ∈ {3,4,5}, we have n(q,m)≤ ϕ(m)q(q+1)/2.

• We have n(q,(q+1)/k) = ϕ((q+1)/k)q(q−1)/2.

Lemma 5: If q > 11 then each involution in G has vertex degree larger than n(q,2).
If ϕ((q + 1)/k) ≥ 12 then each element of order 3, 4, or 5 has vertex degree larger than

∑
5
m=2 n(q,m).

Proof: Let s ∈G of order at most 5. For each element g ∈G of order (q+1)/k, U = 〈g,s〉 is either
G or contained in the dihedral group of order 2(q+1)/k that normalizes 〈g〉.

If s is an involution then the number of such dihedral groups that contain s is at most (q+ 3)/2,
and at least n(q,(q+1)/k)−ϕ((q+1)/k)(q+3)/2 = ϕ((q+1)/k)(q2−2q−3)/2 elements of order
(q+ 1)/k contribute to the vertex degree of s. This number is larger than q2− 1 ≥ n(q,2) if q > 11
(and hence ϕ((q+1)/k)≥ 3) holds.

If s is an element of order 3, 4, or 5 then U 6=G means that s ∈ 〈g〉, so at least n(q,(q+1)/k)−4
elements of order (q+1)/k contribute to the vertex degree of s. This number is larger than 5q(q+1)>
∑

5
m=2 n(q,m) if ϕ((q+1)/k)≥ 12. �

It remains to deal with the values q where ϕ((q+1)/k)< 12, that is, (q+1)/k≤ 30. We compute
that the statement of Lemma 5 is true also for prime powers q with 11 < q≤ 59.

Example
gap> TestL2q:= function(t)
> local name, orders, nccl, cl, prim, bds, n, ord;
>
> name:= Identifier(t);
> orders:= OrdersClassRepresentatives(t);
> nccl:= Length(orders);
> cl:= SizesConjugacyClasses(t);
> prim:= PrimitivePermutationCharacters(t);
> bds:= List(LowerBoundsVertexDegrees(cl, prim), Sum);
> n:= List([1 .. 5], i -> Sum(cl{ Filtered([1 .. nccl],
> x -> orders[x] = i) }));
> if ForAny(Filtered([1 .. nccl], i -> orders[i] > 5),
> i -> bds[i-1] <= Size(t) / 2) then
> Error("problem with large orders for ", name);
> elif ForAny(Filtered([1 .. nccl], i -> orders[i] = 2),
> i -> bds[i-1] <= n[2]) then
> Error("problem with order 2 for ", name, "\n");
> elif ForAny(Filtered([1 .. nccl],
> i -> orders[i] in [3 .. 5]),
> i -> bds[i-1] <= Sum(n{ [2 .. 5] })) then
> Error("problem with order in [3 .. 5] for ", name);
> fi;
> end;;
gap> for q in Filtered([13 .. 59], IsPrimePowerInt) do
> TestL2q(CharacterTable(
> Concatenation("L2(", String(q), ")")));
> od;

For 2 ≤ q ≤ 11, the statement of Lemma 5 is not true but Pósa’s criterion is satisfied for the
generating graphs of the groups PSL(2,q) with 2≤ q≤ 11.

Computations with the GAP Character Table Library 195

Example
gap> for q in Filtered([2 .. 11], IsPrimePowerInt) do
> info:= HamiltonianCycleInfoFromGroup(PSL(2, q));
> if info <> "Posa for 0th closure" then
> Print(q, ": ", info, "\n");
> fi;
> od;

Chapter 5

GAP Computations with O+
8 (5).S3 and

O+
8 (2).S3

Date: October 08th, 2006
This chapter shows how to construct a representation of the automorphic extension G of the simple

group S = O+
8 (5) by a symmetric group on three points, together with an embedding of the normalizer

H of an O+
8 (2) type subgroup of O+

8 (5).
As an application, it is shown that the permutation representation of G on the cosets of H has a

base of length two. This question arose in [BGS11].

5.1 Overview

Let S denote the simple group O+
8 (5)∼= PΩ+(8,5), that is, the nonabelian simple group that occurs as

a composition factor of the general orthogonal group GO+(8,5) of 8×8 matrices over the field with
five elements.

The outer automorphism group of S is isomorphic to the symmetric group on four points. Let G
be an automorphic extension of S by the symmetric group on three points. By [Kle87], the group S
contains a maximal subgroup M of the type O+

8 (2) such that the normalizer H, say, of M in G is an
automorphic extension of M by a symmetric group on three points. (In fact, H is isomorphic to the
full automorphism group of O+

8 (2).)
Let S.2 and S.3 denote intermediate subgroups between S and G, in which S has the indices 2 and

3, respectively. Analogously, let M.2 = H ∩S.2 and M.3 = H ∩S.3.
In Section 5.2, we use the following approach to construct representations of M.2 and S.2.

By [CCN+85, p. 85], the Weyl group W of type E8 is a double cover of M.2, and the reduction of its
rational 8-dimensional representation modulo 5 embeds into the general orthogonal group GO+(8,5),
which has the structure 2.O+

8 (5).2
2. Then the actions of GO+(8,5) and of an isomorphic image of W

in GO+(8,5) on 1-spaces in the natural module of GO+(8,5) yield M.2 as a subgroup of (a supergroup
of) S.2, where both groups are represented as permutation groups on N = 19656 points.

In Section 5.3, first we use GAP to compute the automorphism group of M. Then we take an outer
automorphism α of M, of order three, and extend α to an automorphism of S. Concretely, we compute
the images of generating sets of S and M under α and α2. This yields permutation representations of
S.3 and its subgroup M.3 on 3N = 58968 points.

In Section 5.4, we put the above information together, in order to construct permutation represen-
tations of G and M, on 3N points.

196

Computations with the GAP Character Table Library 197

As an application, it is shown in Section 5.5 that the permutation representation of G on the cosets
of H has a base of length two; this question arose in [BGS11].

In two appendices, it is discussed how to derive a part of this result from the permutation character
(1G

H)H (see Section 5.6), and a file containing the data used in the earlier sections is described (see
Section 5.7).

5.2 Constructing Representations of M.2 and S.2

5.2.1 A Matrix Representation of the Weyl Group of Type E8

Following the recipe listed in [CCN+85, p. 85, Section Weyl], we can generate the Weyl group W of
type E8 as a group of rational 8×8 matrices generated by the reflections in the vectors

(±1/2,±1/2,0,0,0,0,0,0)

plus the vectors obtained from these by permuting the coordinates, plus those those vectors of the form

(±1/2,±1/2,±1/2,±1/2,±1/2,±1/2,±1/2,±1/2)

that have an even number of negative signs. (Clearly it is sufficient to consider only one vector form a
pair ±v.)

Example
gap> rootvectors:= [];;
gap> for i in Combinations([1 .. 8], 2) do
> v:= 0 * [1 .. 8];
> v{i}:= [1, 1];
> Add(rootvectors, v);
> v:= 0 * [1 .. 8];
> v{i}:= [1, -1];
> Add(rootvectors, v);
> od;
gap> Append(rootvectors,
> 1/2 * Filtered(Tuples([-1, 1], 8),
> x -> x[1] = 1 and Number(x, y -> y = 1) mod 2 = 0));
gap> we8:= Group(List(rootvectors, ReflectionMat));
<matrix group with 120 generators>

5.2.2 Embedding the Weyl group of Type E8 into GO+(8,5)

The elements in the group constructed above respect the symmetric bilinear form that is given by the
identity matrix.

Example
gap> I:= IdentityMat(8);;
gap> ForAll(GeneratorsOfGroup(we8), x -> x * TransposedMat(x) = I);
true

So the reduction of the matrices modulo 5 yields a group W ∗ of orthogonal matrices w. r. t. the
identity matrix. The group GO+(8,5) returned by the GAP function GO (Reference: GO) leaves a
different bilinear form invariant.

Computations with the GAP Character Table Library 198

Example
gap> largegroup:= GO(1,8,5);;
gap> Display(InvariantBilinearForm(largegroup).matrix);
. 1
1
. . 2
. . . 2
. . . . 2 . . .
. 2 . .
. 2 .
. 2

In order to conjugate W ∗ into this group, we need a 2×2 matrix T over the field with five elements
with the property that T T tr is half of the upper left 2×2 matrix in the above matrix.

Example
gap> T:= [[1, 2], [4, 2]] * One(GF(5));;
gap> Display(2 * T * TransposedMat(T));
. 1
1 .

gap> I:= IdentityMat(8, GF(5));;
gap> I{ [1, 2] }{ [1, 2] }:= T;;
gap> conj:= List(GeneratorsOfGroup(we8), x -> I * x * I^-1);;
gap> IsSubset(largegroup, conj);
true

5.2.3 Compatible Generators of M, M.2, S, and S.2

For the next computations, we switch from the natural matrix representation of GO+(8,5) to a permu-
tation representation of PGO+(8,5), of degree N = 19656, which is given by the action of GO+(8,5)
on the smallest orbit of 1-spaces in its natural module.

Example
gap> orbs:= OrbitsDomain(largegroup, NormedRowVectors(GF(5)^8),
> OnLines);;
gap> List(orbs, Length);
[39000, 39000, 19656]
gap> N:= Length(orbs[3]);
19656
gap> orbN:= SortedList(orbs[3]);;
gap> largepermgroup:= Action(largegroup, orbN, OnLines);;

In the same way, permutation representations of the subgroup M.2∼=SO+(8,2) and of its derived
subgroup M are obtained. But first we compute a smaller generating set of the simple group M, using
a permutation representation on 120 points.

Example
gap> orbwe8:= SortedList(Orbit(we8, rootvectors[1], OnLines));;
gap> Length(orbwe8);
120
gap> we8_to_m2:= ActionHomomorphism(we8, orbwe8, OnLines);;
gap> m2_120:= Image(we8_to_m2);;
gap> m_120:= DerivedSubgroup(m2_120);;

Computations with the GAP Character Table Library 199

gap> sml:= SmallGeneratingSet(m_120);; Length(sml);
2
gap> gens_m:= List(sml, x -> PreImagesRepresentative(we8_to_m2, x));;

Now we compute the actions of M and M.2 on the above orbit of length N. For generating M.2,
we choose an element bN ∈M.2\M, which is obtained from the action of a matrix b ∈ 2.M.2\2.M.

Example
gap> gens_m_N:= List(gens_m,
> x -> Permutation(I * x * I^-1, orbN, OnLines));;
gap> m_N:= Group(gens_m_N);;
gap> b:= I * we8.1 * I^-1;;
gap> DeterminantMat(b);
Z(5)^2
gap> b_N:= Permutation(b, orbN, OnLines);;
gap> m2_N:= ClosureGroup(m_N, b_N);;

(Note that M.2 is not contained in PSO+(8,5), since the determinant of b is −1 in the field with
five elements.)

The group S is the derived subgroup of PSO+(8,5), and S.2 is generated by S together with bN .
Example

gap> s_N:= DerivedSubgroup(largepermgroup);;
gap> s2_N:= ClosureGroup(s_N, b_N);;

5.3 Constructing Representations of M.3 and S.3

5.3.1 The Action of M.3 on M

Let α be an automorphism of M, of order three. Then a representation of the semidirect product M.3
of M by 〈α〉 can be constructed as follows.

If M is given by a matrix representation then we map g ∈M to the block diagonal matrix g
gα

g(α
2)

 ,
and we represent α by the block permutation matrix I

I
I

 ,
where I is the identity element in M.

We need the action of α on M. More precisely, we need images of the chosen generators of M
under α and α2.

The group M is small enough for asking GAP to compute its automorphism group, which is
isomorphic with O+

8 (2).S3; for that, we use the degree 120 permutation representation constructed in
Section 5.2.3.

Computations with the GAP Character Table Library 200

Example
gap> aut_m:= AutomorphismGroup(m_120);;

We pick an outer automorphism α of order three.
Example

gap> nice_aut_m:= NiceMonomorphism(aut_m);;
gap> der:= DerivedSubgroup(Image(nice_aut_m));;
gap> der2:= DerivedSubgroup(der);;
gap> repeat x:= Random(der);
> ord:= Order(x);
> until ord mod 3 = 0 and ord mod 9 <> 0 and not x in der2;
gap> x:= x^(ord / 3);;
gap> alpha_120:= PreImagesRepresentative(nice_aut_m, x);;

Next we compute the images of the generators sml under α and α2, and the corresponding ele-
ments in the action of M on N points.

Example
gap> sml_alpha:= List(sml, x -> Image(alpha_120, x));;
gap> sml_alpha_2:= List(sml_alpha, x -> Image(alpha_120, x));;
gap> gens_m_alpha:= List(sml_alpha,
> x -> PreImagesRepresentative(we8_to_m2, x));;
gap> gens_m_alpha_2:= List(sml_alpha_2,
> x -> PreImagesRepresentative(we8_to_m2, x));;
gap> gens_m_N_alpha:= List(gens_m_alpha,
> x -> Permutation(I * x * I^-1, orbN, OnLines));;
gap> gens_m_N_alpha_2:= List(gens_m_alpha_2,
> x -> Permutation(I * x * I^-1, orbN, OnLines));;

Finally, we use the construction descibed in the beginning of this section, and obtain a permutation
representation of M.3 on 3N = 58968 points.

Example
gap> alpha_3N:= PermList(Concatenation([[1 .. N] + 2*N,
> [1 .. N],
> [1 .. N] + N]));;
gap> gens_m_3N:= List([1 .. Length(gens_m_N)],
> i -> gens_m_N[i] *
> (gens_m_N_alpha[i]^alpha_3N) *
> (gens_m_N_alpha_2[i]^(alpha_3N^2)));;
gap> m_3N:= Group(gens_m_3N);;
gap> m3_3N:= ClosureGroup(m_3N, alpha_3N);;

5.3.2 The Action of S.3 on S

Our approach is to extend the automorphism α of M to S; we can do this because in the full automor-
phism group of S, any O+

8 (2) type subgroup extends to a group of the type O+
8 (2).3, and this extension

lies in a subgroup of the type O+
8 (5).3 (see [Kle87]).

The group M is maximal in S, so S is generated by M together with any element s ∈ S\M. Having
fixed such an element s, what we have to is to find the images of s under the automorphisms that
extend α and α2.

Computations with the GAP Character Table Library 201

For that, we first choose x ∈M such that CS(x) is a small group that is not contained in M. Then
we choose s ∈CS(x)\M, and using that sα must lie in CS(CM(s)α), we then check which elements of
this small subgroup can be the desired image.

Each element x of order nine in M has a root s of order 63 in S, and CS(x) has order 189. For
suitable such x, exactly one element y∈CS(CM(s)α) has order 63 and satisfies the necessary conditions
that the orders of the products of s and the generators of M are equal to the orders of the product of y
and the images of these generators under α . In other words, we have sα = y.

Example
gap> alpha:= GroupHomomorphismByImagesNC(m_N, m_N,
> gens_m_N, gens_m_N_alpha);;
gap> CheapTestForHomomorphism:= function(gens, genimages, x, cand)
> return Order(x) = Order(cand) and
> ForAll([1 .. Length(gens)],
> i -> Order(gens[i] * x) = Order(genimages[i] * cand));
> end;;
gap> repeat
> repeat
> x:= Random(m_N);
> until Order(x) = 9;
> c_s:= Centralizer(s_N, x);
> repeat
> s:= Random(c_s);
> until Order(s) = 63;
> c_m_alpha:= Images(alpha, Centralizer(m_N, s));
> good:= Filtered(Elements(Centralizer(s_N, c_m_alpha)),
> x -> CheapTestForHomomorphism(gens_m_N,
> gens_m_N_alpha, s, x));
> until Length(good) = 1;
gap> s_alpha:= good[1];;
gap> c_m_alpha_2:= Images(alpha, c_m_alpha);;
gap> good:= Filtered(Elements(Centralizer(s_N, c_m_alpha_2)),
> x -> CheapTestForHomomorphism(gens_m_N_alpha, gens_m_N_alpha_2,
> s_alpha, x));;
gap> s_alpha_2:= good[1];;

Using the notation of the previous section, this means that the permutation representation of M.3
on 3N points can be extended to S.3 by choosing the permutation corresponding to the block diagonal
matrix  s

sα

s(α
2)

 ,
as an additional generator.

Example
gap> outer:= s * (s_alpha^alpha_3N) * (s_alpha_2^(alpha_3N^2));;
gap> s3_3N:= ClosureGroup(m3_3N, outer);;

(And of course we have S = 〈M,s〉, which yields generators for S that are compatible with those
of M.)

Example
gap> s_3N:= ClosureGroup(m_3N, outer);;

Computations with the GAP Character Table Library 202

5.4 Constructing Compatible Generators of H and G

After having constructed compatible representations of M.2 and G.2 on N points (see Section 5.2.3)
and of M.3 and S.3 on 3N points (see Section 5.3.2), the last construction step is to find a permutation
on 3N points with the following properties:

• The induced automorphism β of M extends to M.3 such that the automorphism α of M is
inverted, modulo inner automorphisms of M.

• The action on the first N points coincides with that of the element bN ∈ M.2 \M that was
constructed in Section 5.2.3.

Using the notation of the previous sections, we represent β by a block matrix b
bd

bg

 ,
where b describes the action of β on M (on N points), g describes the inner automorphism γ of M that
is defined by the condition βα = α2βγ , and d describes γγα .

So we compute an element in M that induces the conjugation automorphism γ , and its image
under α . We do this in the representation of M on 120 points, and carry over the result to the repre-
sentation on N points, via the rational matrix representation; this approach had been used already in
Section 5.2.3.

Example
gap> b_120:= Permutation(we8.1, orbwe8, OnLines);;
gap> g_120:= RepresentativeAction(m_120,
> List(sml_alpha_2, x -> x^b_120),
> List(sml, x -> (x^b_120)^alpha_120), OnTuples);;
gap> g_120_alpha:= g_120^alpha_120;;
gap> g_N:= Permutation(I * PreImagesRepresentative(we8_to_m2, g_120)
> * I^-1, orbN, OnLines);;
gap> g_N_alpha:= Permutation(I * PreImagesRepresentative(we8_to_m2,
> g_120_alpha) * I^-1, orbN, OnLines);;
gap> inv:= PermList(Concatenation(
> ListPerm(b_N),
> ListPerm(b_N * g_N) + 2*N,
> ListPerm(b_N * g_N * g_N_alpha) + N));;

So we have constructed compatible generators for H and G.
Example

gap> h:= ClosureGroup(m3_3N, inv);;
gap> g:= ClosureGroup(s3_3N, inv);;

5.5 Application: Regular Orbits of H on G/H

We want to show that H has regular orbits on the right cosets G/H. The stabilizer in H of the coset
Hg is H ∩Hg, so we compute that there are elements s ∈ S with the property |H ∩Hs|= 1.

(Of course this implies that also in the permutation representations of the subgroups S, S.2, and
S.3 of G on the cosets of the intersection with H, the point stabilizers have regular orbits.)

Computations with the GAP Character Table Library 203

Example
gap> repeat
> conj:= Random(s_3N);
> inter:= Intersection(h, h^conj);
> until Size(inter) = 1;

Eventually GAP will return from this loop, so there are elements s with the required property.
(Computing one such intersection takes about six minutes on a 2.5 GHz Pentium 4, so one may

have to be a bit patient.)

5.6 Appendix: The Permutation Character (1G
H)H

As an alternative to the computation of |H ∩Hs| for suitable s ∈ S, we can try to derive information
from the permutation character (1G

H)H . Unfortunately, there seems to be no easy way to prove the
existence of regular H-orbits on G/H (cf. Section 5.5) only by means of this character.

However, it is not difficult to show that regular orbits of M, M.2, and M.3 exist. For that, we
compute (1G

H)H , by computing class representatives of H, their centralizer orders in G, and the class
fusion of H-classes in G.

We want to compute the class representatives in a small permutation representation of H; this
could be done using the degree 360 representation that was implicitly constructed above, but it is
technically easier to use a degree 405 representation that is obtained from the degree 58968 represen-
tation by the action of H on blocks in an orbit of length 22680. (One could get this also using the
GAP function SmallerDegreePermutationRepresentation (Reference: SmallerDegreePermu-
tationRepresentation).)

Example
gap> orbs:= Orbits(h, MovedPoints(h));;
gap> List(orbs, Length);
[22680, 36288]
gap> orb:= orbs[1];;
gap> bl:= Blocks(h, orb);; Length(bl[1]);
2
gap> actbl:= Action(h, bl, OnSets);;
gap> bll:= Blocks(actbl, MovedPoints(actbl));; Length(bll);
405
gap> oneblock:= Union(bl{ bll[1] });;
gap> orb:= SortedList(Orbit(h, oneblock, OnSets));;
gap> acthom:= ActionHomomorphism(h, orb, OnSets);;
gap> ccl:= ConjugacyClasses(Image(acthom));;
gap> reps:= List(ccl, x -> PreImagesRepresentative(acthom,
> Representative(x)));;

Then we carry back class representatives to the degree 58968 representation, and compute the
class fusion and the centralizer orders in G.

Example
gap> reps:= List(ccl, x -> PreImagesRepresentative(acthom,
> Representative(x)));;
gap> fusion:= [];;
gap> centralizers:= [];;
gap> fusreps:= [];;

Computations with the GAP Character Table Library 204

gap> for i in [1 .. Length(reps)] do
> found:= false;
> cen:= Size(Centralizer(g, reps[i]));
> for j in [1 .. Length(fusreps)] do
> if cen = centralizers[j] and
> IsConjugate(g, fusreps[j], reps[i]) then
> fusion[i]:= j;
> found:= true;
> break;
> fi;
> od;
> if not found then
> Add(fusreps, reps[i]);
> Add(fusion, Length(fusreps));
> Add(centralizers, cen);
> fi;
> od;

Next we compute the permutation character values, using the formula

(1H)
G(g) = (|CG(g)|∑

h
|hH |)/|H|,

where the summation runs over class representatives h ∈ H that are G-conjugate to g.
Example

gap> pi:= 0 * [1 .. Length(fusreps)];;
gap> for i in [1 .. Length(ccl)] do
> pi[fusion[i]]:= pi[fusion[i]] + centralizers[fusion[i]] *
> Size(ccl[i]);
> od;
gap> pi:= pi{ fusion } / Size(h);;

In order to write the permutation character w.r.t. the ordering of classes in the GAP character
table, we use the GAP function CompatibleConjugacyClasses (Reference: CompatibleConju-
gacyClasses).

Example
gap> tblh:= CharacterTable("O8+(2).S3");;
gap> map:= CompatibleConjugacyClasses(Image(acthom), ccl, tblh);;
gap> pi:= pi{ map };
[51162109375, 69375, 1259375, 69375, 568750, 1750, 4000, 375, 135,

975, 135, 625, 150, 650, 30, 72, 80, 72, 27, 27, 3, 7, 25, 30, 6,
12, 25, 484375, 1750, 375, 375, 30, 40, 15, 15, 15, 6, 6, 3, 3, 3,
157421875, 121875, 4875, 475, 75, 3875, 475, 13000, 1750, 300, 400,
30, 60, 15, 15, 15, 125, 10, 30, 4, 8, 6, 9, 7, 5, 6, 5]

Now we consider the restrictions of this permutation character to M, M.2, and M.3. Note that
(1G

H)M = (1S
M)M, (1G

H)M.2 = (1S.2
M.2)M.2, and (1G

H)M.3 = (1S.3
M.3)M.3.

Example
gap> tblm2:= CharacterTable("O8+(2).2");;
gap> tblm3:= CharacterTable("O8+(2).3");;

Computations with the GAP Character Table Library 205

gap> tblm:= CharacterTable("O8+(2)");;
gap> pi_m2:= pi{ GetFusionMap(tblm2, tblh) };;
gap> pi_m3:= pi{ GetFusionMap(tblm3, tblh) };;
gap> pi_m:= pi_m3{ GetFusionMap(tblm, tblm3) };;

The permutation character (1S
M)M decomposes into 483 transitive permutation characters, and reg-

ular M-orbits on S/M correspond to regular constituents in this decomposition. If there is no regular
transitive constituent in (1S

M)M then the largest degree of a transitive constituent is |M|/2; but then the
degree of 1S

M is less than 483|M|/2, which is smaller than [S : M].
Example

gap> n:= ScalarProduct(tblm, pi_m, TrivialCharacter(tblm));
483
gap> n * Size(tblm) / 2;
42065049600
gap> pi[1];
51162109375

For the case of M.2 < S.2, this argument turns out to be not sufficient. So we first compute a lower
bound on the number of regular M-orbits on S/M. For involutions g ∈ M, the number of transitive
constituents 1M

〈g〉 in (1S
M)M is at most the integral part of 1S

M(g)/1M
〈g〉(g) = 2 ·1S

M(g)/|CM(g)|; from this
we compute that there are at most 208 such constituents.

Example
gap> inv:= Filtered([1 .. NrConjugacyClasses(tblm)],
> i -> OrdersClassRepresentatives(tblm)[i] = 2);
[2, 3, 4, 5, 6]
gap> n2:= List(inv,
> i -> Int(2 * pi_m[i] / SizesCentralizers(tblm)[i]));
[1, 54, 54, 54, 45]
gap> Sum(n2);
208

As a consequence, M has at least 148 regular orbits on S/M.
Example

gap> First([1 .. 483],
> i -> i * Size(tblm) + 208 * Size(tblm) / 2
> + (483 - i - 208 - 1) * Size(tblm) / 3 + 1 >= pi[1]);
148

Now we consider the action of M.2 on S.2/M.2. If M.2 has no regular orbit then the 148 regular
orbits of M must arise from the restriction of transitive constituents 1M.2

U to M with |U | = 2 and such
that U is not contained in M. (This follows from the fact that the restriction of a transitive constituent
of (1S.2

M.2)M.2 to M is either itself a transitive constituent of (1S
M)M or the sum of two such constituents;

the latter case occurs if and only if the point stabilizer is contained in M.) However, the number of
these constituents is at most 134.

Example
gap> inv:= Filtered([1 .. NrConjugacyClasses(tblm2)],
> i -> OrdersClassRepresentatives(tblm2)[i] = 2 and
> not i in ClassPositionsOfDerivedSubgroup(tblm2));

Computations with the GAP Character Table Library 206

[41, 42]
gap> n2:= List(inv,
> i -> Int(2 * pi_m2[i] / SizesCentralizers(tblm2)[i]));
[108, 26]
gap> Sum(n2);
134

Finally, we consider the action of M.3 on S.3/M.3. We compute that (1S.3
M.3)M.3 has 205 transitive

constituents, and at most 69 of them can be induced from subgroups of order two. This is already
sufficient to show that there must be regular constituents.

Example
gap> n:= ScalarProduct(tblm3, pi_m3, TrivialCharacter(tblm3));
205
gap> inv:= Filtered([1 .. NrConjugacyClasses(tblm3)],
> i -> OrdersClassRepresentatives(tblm3)[i] = 2);
[2, 3, 4]
gap> n2:= List(inv,
> i -> Int(2 * pi_m3[i] / SizesCentralizers(tblm3)[i]));
[0, 54, 15]
gap> Sum(n2);
69
gap> 69 * Size(tblm3) / 2 + (n - 69 - 1) * Size(tblm3) / 3 + 1;
41542502401
gap> pi[1];
51162109375

5.7 Appendix: The Data File

The file o8p2s3_o8p5s3.g that can be found at
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/data/o8p2s3_o8p5s3.g
contains the relevant data used in the above computations. This covers the representations for the

groups and the permutation character of O+
8 (2).S3 computed in Section 5.6.

Reading the file into GAP will define a global variable o8p2s3_o8p5s3_data, a record with the
following components.

pi the list of values of the permutation character of G = O+
8 (5).S3 on the cosets of its subgroup

H = O+
8 (2).S3, restricted to H, corresponding to the ordering of classes in the character table of

H in the GAP Character Table Library (this table has the Identifier (Reference: Identifier
for tables of marks) value "O8+(2).3.2"),

dim8Q
a record with generators for 2.M and 2.M.2, matrices of dimension eight over the Rationals,

deg120
a record with generators for M and M.2, permutations of degree 120,

deg360
a record with generators for M, M.2, M.3, and H, permutations of degree 360,

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/data/o8p2s3_o8p5s3.g

Computations with the GAP Character Table Library 207

dim8f5
a record with generators for 2.M, 2.M.2, 2.S, and 2.S.2, matrices of dimension eight over the
field with five elements,

deg19656
a record with generators for M, M.2, S, and S.2, permutations of degree 19656,

deg58968
a record with generators for M, M.2, M.3, H, S, S.2, S.3, and G, permutations of degree 58968,

seed405
a block whose H-orbit in the representation on 58968 points, w.r.t. the action OnSets
(Reference: OnSets), yields a representation of H on 405 points.

For each of the permutation representations, we have (where applicable)

M ∼= 〈a1,a2〉,
M.2 ∼= 〈a1,a2,b〉,
M.3 ∼= 〈a1,a2, t〉,
H ∼= 〈a1,a2, t,b〉,
S ∼= 〈a1,a2,c〉,
S.2 ∼= 〈a1,a2,c,b〉,
S.3 ∼= 〈a1,a2,c, t〉,
G ∼= 〈a1,a2,c, t,b〉,

where a1,a2,b, t,c are the values of the record components a1, a2, b, t, and c.
Analogously, for the matrix representations, we have (where applicable)

2.M ∼= 〈a1,a2〉,
2.M.2 ∼= 〈a1,a2,b〉,
2.S ∼= 〈a1,a2,c〉,
2.S.2 ∼= 〈a1,a2,c,b〉,

Additional components are used for deriving the representations from initial data, as in the con-
structions in the previous sections.

For example, most of the permutations needed arise as the induced actions of matrices on orbits of
vectors; these orbits are computed when the file is read, and are then stored in the components orb120
and orb19656.

The file o8p2s3_o8p5s3.g does not contain the generators explicitly, but it is self-contained in
the sense that only a few GAP functions are actually needed to produce the data; for example, it should
not be difficult to translate the contents of the file into the language of other computer algebra systems.

Advantages of this way to store the data are that the relations between the representations become
explicit, and also that only very little space is needed to describe the representations –the size of the
file is less than 10 kB, whereas storing (explicitly) one of the permutations on 58968 points requires
already about 350 kB.

Chapter 6

Solvable Subgroups of Maximal Order in
Sporadic Simple Groups

Date: May 14th, 2012
We determine the orders of solvable subgroups of maximal orders in sporadic simple groups and

their automorphism groups, using the information in the Atlas of Finite Groups [CCN+85] and the
GAP system [GAP21], in particular its Character Table Library [Bre24] and its library of Tables of
Marks [MNP19].

We also determine the conjugacy classes of these solvable subgroups in the big group, and the
maximal overgroups.

A first version of this document, which was based on GAP 4.4.10, had been accessible in the web
since August 2006. The differences to the current version are as follows.

• The format of the GAP output was adjusted to the changed behaviour of GAP 4.5.

• The (too wide) table of results was split into two tables, the first one lists the orders and indices
of the subgroups, the second one lists the structure of subgroups and the maximal overgroups.

• The distribution of the solvable subgroups of maximal orders in the Baby Monster group and
the Monster group to conjugacy classes is now proved.

• The sporadic simple Monster group has exactly one class of maximal subgroups of the type
PSL(2,41) (see [NW13]), and has no maximal subgroups which have the socle PSL(2,27)
(see [Wil10]). This does not affect the arguments in Section 6.4.14, but some statements in this
section had to be corrected.

6.1 The Result

The tables I and II list information about solvable subgroups of maximal order in sporadic simple
groups and their automorphism groups. The first column in each table gives the names of the almost
simple groups G, in alphabetical order. The remaining columns of Table I contain the order and the
index of a solvable subgroup S of maximal order in G, the value log|G|(|S|), and the page number in the
Atlas [CCN+85] where the information about maximal subgroups of G is listed. The second and third
columns of Table II show a structure description of S and the structures of the maximal subgroups that
contain S; the value “S” in the third column means that S is itself maximal in G. The fourth and fifth

208

Computations with the GAP Character Table Library 209

columns list the pages in the Atlas with the information about the maximal subgroups of G and the
section in this note with the proof of the table row, respectively. In the fourth column, page numbers
in brackets refer to the Atlas pages with information about the maximal subgroups of nonsolvable
quotients of the maximal subgroups of G listed in the third column.

Note that in the case of nonmaximal subgroups S, we do not claim to describe the module structure
of S in the third column of the table; we have kept the Atlas description of the normal subgroups of
the maximal overgroups of S. For example, the subgroup S listed for Co2 is contained in maximal
subgroups of the types 21+8

+ : S6(2) and 24+10(S4×S3), so S has normal subgroups of the orders 2, 24,
29, 214, and 216; more Atlas conformal notations would be 2[14](S4×S3) or 2[16](S3×S3).

As a corollary (see Section 6.5), we read off the following.
Corollary:
Exactly the following almost simple groups G with sporadic simple socle contain a solvable sub-

group S with the property |S|2 ≥ |G|.

Fi23,J2,J2.2,M11,M12,M22.2.

The existence of the subgroups S of G with the structure and the order stated in Table I and II
follows from the Atlas: It is obvious in the cases where S is maximal in G, and in the other cases, the
Atlas information about a nonsolvable factor group of a maximal subgroup of G suffices.

In order to show that the table rows for the group G are correct, we have to show the following.

• G does not contain solvable subgroups of order larger than |S|.

• G contain exactly the conjugacy classes of solvable subgroups of order |S| that are listed in the
second column of Table II.

• S is contained exactly in the maximal subgroups listed in the third column of Table II.

Remark:

• Each of the groups M12 and He contains two classes of isomorphic solvable subgroups of max-
imal order.

• Each of the groups Ru, T h, and M contains two classes of nonisomorphic solvable subgroups of
maximal order.

• The solvable subgroups of maximal order in McL.2 have the structure 31+4
+ : 4S4, the subgroups

are maximal in the maximal subgroups of the structures 31+4
+ : 4S5 and U4(3).23 in McL.2. Note

that the Atlas claims another structure for these maximal subgroups of U4(3).23, see [CCN+85,
p. 52].

• The solvable subgroups of maximal order in Co3 are the normalizers of Sylow 3-subgroups of
Co3.

Computations with the GAP Character Table Library 210

G |S| |G/S| log|G|(|S|) p.

M11 144 55 0.5536 18
M12 432 220 0.5294 33
M12.2 432 440 0.4992 33
J1 168 1045 0.4243 36
M22 576 770 0.4888 39
M22.2 1152 770 0.5147 39
J2 1152 525 0.5295 42
J2.2 2304 525 0.5527 42
M23 1152 8855 0.4368 71
HS 2000 22176 0.4316 80
HS.2 4000 22176 0.4532 80
J3 1944 25840 0.4270 82
J3.2 3888 25840 0.4486 82
M24 13824 17710 0.4935 96
McL 11664 77000 0.4542 100
McL.2 23328 77000 0.4719 100
He 13824 291550 0.4310 104
He.2 18432 437325 0.4305 104
Ru 49152 2968875 0.4202 126
Suz 139968 3203200 0.4416 131
Suz.2 279936 3203200 0.4557 131
O′N 25920 17778376 0.3784 132
O′N.2 51840 17778376 0.3940 132
Co3 69984 7084000 0.4142 134
Co2 2359296 17931375 0.4676 154
Fi22 5038848 12812800 0.4853 163
Fi22.2 10077696 12812800 0.4963 163
HN 2000000 136515456 0.4364 166
HN.2 4000000 136515456 0.4479 166
Ly 900000 57516865560 0.3562 174
T h 944784 96049408000 0.3523 177
Fi23 3265173504 1252451200 0.5111 177
Co1 84934656 48952653750 0.4258 183
J4 28311552 3065023459190 0.3737 190
Fi′24 29386561536 42713595724800 0.4343 207
Fi′24.2 58773123072 42713595724800 0.4413 207
B 29686813949952 139953768303693093750 0.4007 217
M 2849934139195392 283521437805098363752

344287234566406250 0.2866 234

Table: Table I: Solvable subgroups of maximal order – orders and indices

Computations with the GAP Character Table Library 211

G S Max. overgroups [CCN+85] see
M11 32 : Q8.2 S 18 6.3
M12 32 : 2S4 S 33 6.3

32 : 2S4 S 33 6.3
M12.2 32 : 2S4 M12 33 6.3
J1 23 : 7 : 3 S 36 6.3
M22 24 : 32 : 4 24 : A6 39 (4) 6.3
M22.2 24 : 32 : D8 24 : S6 39 (4) 6.3
J2 22+4 : (3×S3) S 42 6.3
J2.2 22+4 : (S3×S3) S 42 6.3
M23 24 : (3×A4) : 2 24 : (3×A5) : 2, 71 (2) 6.3

24 : A7 (10)
HS 51+2

+ : 8 : 2 U3(5).2 80 (34) 6.3
U3(5).2 6.3

HS.2 51+2
+ : [25] S 80 (34) 6.3

J3 32.31+2
+ : 8 S 82 6.3

J3.2 32.31+2
+ : QD16 S 82 6.3

M24 26 : 31+2
+ : D8 26 : 3.S6 96 (4) 6.3

McL 31+4
+ : 2S4 31+4

+ : 2S5, 100 (2) 6.3
U4(3) (52) 6.3

McL.2 31+4
+ : 4S4 31+4

+ : 4S5, 100 (2) 6.3
U4(3).23 (52) 6.3

He 26 : 31+2
+ : D8 26 : 3.S6 104 (4) 6.3

26 : 31+2
+ : D8 26 : 3.S6 (4) 6.3

He.2 24+4.(S3×S3).2 S 104 6.3
Ru 2.24+6 : S4 23+8 : L3(2), 126 (3) 6.4.1

2.24+6 : S5 (2)
23+8 : S4 23+8 : L3(2), (3) 6.4.1

Suz 32+4 : 2(A4×22).2 S 131 6.4.2
Suz.2 32+4 : 2(S4×D8) S 131 6.4.2
O′N 34 : 21+4

− D10 S 132 6.4.3
O′N.2 34 : 21+4

− .(5 : 4) S 132 6.4.3
Co3 31+4

+ : 4.32 : D8 31+4
+ : 4S6 134 (4) 6.3

35 : (2×M11) (18)
Co2 24+10(S4×S3) 21+8

+ : S6(2), 154 (46) 6.4.4
24+10(S5×S3) (2)

Fi22 31+6
+ : 23+4 : 32 : 2 S 163 6.4.5

Fi22.2 31+6
+ : 23+4 : (S3×S3) S 163 6.4.5

HN 51+4
+ : 21+4

− .5.4 S 166 6.4.6
HN.2 51+4

+ : (4Y 21+4
− .5.4) S 166 6.4.6

Ly 51+4
+ : 4.32 : D8 51+4

+ : 4S6 174 (4) 6.4.7
T h [39].2S4 S 177 6.4.8

32.[37].2S4 S
Fi23 31+8

+ .21+6
− .31+2

+ .2S4 S 177 6.4.9
Co1 24+12.(S3×31+2

+ : D8) 24+12.(S3×3S6) 183 6.4.10

Computations with the GAP Character Table Library 212

Table: Table II: Solvable subgroups of maximal order – structures and overgroups

G S Max. overgroups [CCN+85] see
J4 211 : 26 : 31+2

+ : D8 211 : M24, 190 (96) 6.4.11
21+12
+ .3M22 : 2 (39)

Fi′24 31+10
+ : 21+6

− : 31+2
+ : 2S4 31+10

+ : U5(2) : 2 207 (73) 6.4.12
Fi′24.2 31+10

+ : (2×21+6
− : 31+2

+ : 2S4) 31+10
+ : (2×U5(2) : 2) 207 (73) 6.4.12

B 22+10+20(24 : 32 : D8×S3) 22+10+20(M22 : 2×S3), 217 (39) 6.4.13
29+16S8(2) (123)

M 21+2+6+12+18.(S4×31+2
+ : D8) 2[39].(L3(2)×3S6), 234 (3, 4) 6.4.14

21+24
+ .Co1 (183)

22+1+6+12+18.(S4×31+2
+ : D8) 2[39].(L3(2)×3S6), (3, 4) 6.4.14

22+11+22.(M24×S3) (96)

Table: Table II: Solvable subgroups of maximal order – structures and overgroups (continued)

6.2 The Approach

We combine the information in the Atlas [CCN+85] with explicit computations using the GAP
system [GAP21], in particular its Character Table Library [Bre24] and its library of Tables of
Marks [MNP19]. First we load these two packages.

Example
gap> LoadPackage("CTblLib", "1.2", false);
true
gap> LoadPackage("TomLib", false);
true

The orders of solvable subgroups of maximal order will be collected in a global record MaxSolv.
Example

gap> MaxSolv:= rec();;

6.2.1 Use the Table of Marks

If the GAP library of Tables of Marks [MNP19] contains the table of marks of a group G then we
can easily inspect all conjugacy classes of subgroups of G. The following small GAP function can be
used for that. It returns false if the table of marks of the group with the name name is not available,
and the list [name, n, super] otherwise, where n is the maximal order of solvable subgroups of
G, and super is a list of lists; for each conjugacy class of solvable subgroups S of order n, super
contains the list of orders of representatives M of the classes of maximal subgroups of G such that M
contains a conjugate of S.

Note that a subgroup in the i-th class of a table of marks contains a subgroup in the j-th class if
and only if the entry in the position (i, j) of the table of marks is nonzero. For tables of marks objects
in GAP, this is the case if and only if j is contained in the i-th row of the list that is stored as the value
of the attribute SubsTom of the table of marks object; for this test, one need not unpack the matrix of
marks.

Computations with the GAP Character Table Library 213

Example
gap> MaximalSolvableSubgroupInfoFromTom:= function(name)
> local tom, # table of marks for ‘name’
> n, # maximal order of a solvable subgroup
> maxsubs, # numbers of the classes of subgroups of order ‘n’
> orders, # list of orders of the classes of subgroups
> i, # loop over the classes of subgroups
> maxes, # list of positions of the classes of max. subgroups
> subs, # ‘SubsTom’ value
> cont; # list of list of positions of max. subgroups
>
> tom:= TableOfMarks(name);
> if tom = fail then
> return false;
> fi;
> n:= 1;
> maxsubs:= [];
> orders:= OrdersTom(tom);
> for i in [1 .. Length(orders)] do
> if IsSolvableTom(tom, i) then
> if orders[i] = n then
> Add(maxsubs, i);
> elif orders[i] > n then
> n:= orders[i];
> maxsubs:= [i];
> fi;
> fi;
> od;
> maxes:= MaximalSubgroupsTom(tom)[1];
> subs:= SubsTom(tom);
> cont:= List(maxsubs, j -> Filtered(maxes, i -> j in subs[i]));
>
> return [name, n, List(cont, l -> orders{ l })];
> end;;

6.2.2 Use Information from the Character Table Library

The GAP Character Table Library contains the character tables of all maximal subgroups of sporadic
simple groups, except for the Monster group. This information can be used as follows.

We start, for a sporadic simple group G, with a known solvable subgroup of order n, say, in G. In
order to show that G contains no solvable subgroup of larger order, it suffices to show that no maximal
subgroup of G contains a larger solvable subgroup.

The point is that usually the orders of the maximal subgroups of G are not much larger than n, and
that a maximal subgroup M contains a solvable subgroup of order n only if the factor group of M by
its largest solvable normal subgroup N contains a solvable subgroup of order n/|N|. This reduces the
question to relatively small groups.

What we can check automatically from the character table of M/N is whether M/N can contain
subgroups (solvable or not) of indices between five and |M|/n, by computing possible permutation
characters of these degrees. (Note that a solvable subgroup of a nonsolvable group has index at least
five. This lower bound could be improved for example by considering the smallest degree of a non-

Computations with the GAP Character Table Library 214

trivial character, but this is not an issue here.)
Then we are left with a –hopefully short– list of maximal subgroups of G, together with upper

bounds on the indices of possible solvable subgroups; excluding these possibilities then yields that the
initially chosen solvable subgroup of G is indeed the largest one.

The following GAP function can be used to compute this information for the character table tblM
of M and a given order minorder. It returns false if M cannot contain a solvable subgroup of order
at least minorder, otherwise a list [tblM, m, k] where m is the maximal index of a subgroup
that has order at least minorder, and k is the minimal index of a possible subgroup of M (a proper
subgroup if M is nonsolvable), according to the GAP function PermChars (Reference: PermChars).

Example
gap> SolvableSubgroupInfoFromCharacterTable:= function(tblM, minorder)
> local maxindex, # index of subgroups of order ‘minorder’
> N, # class positions describing a solvable normal subgroup
> fact, # character table of the factor by ‘N’
> classes, # class sizes in ‘fact’
> nsg, # list of class positions of normal subgroups
> i; # loop over the possible indices
>
> maxindex:= Int(Size(tblM) / minorder);
> if maxindex = 0 then
> return false;
> elif IsSolvableCharacterTable(tblM) then
> return [tblM, maxindex, 1];
> elif maxindex < 5 then
> return false;
> fi;
>
> N:= [1];
> fact:= tblM;
> repeat
> fact:= fact / N;
> classes:= SizesConjugacyClasses(fact);
> nsg:= Difference(ClassPositionsOfNormalSubgroups(fact), [[1]]);
> N:= First(nsg, x -> IsPrimePowerInt(Sum(classes{ x })));
> until N = fail;
>
> for i in Filtered(DivisorsInt(Size(fact)),
> d -> 5 <= d and d <= maxindex) do
> if Length(PermChars(fact, rec(torso:= [i]))) > 0 then
> return [tblM, maxindex, i];
> fi;
> od;
>
> return false;
> end;;

6.3 Cases where the Table of Marks is available in GAP

For twelve sporadic simple groups, the GAP library of Tables of Marks knows the tables of marks, so
we can use MaximalSolvableSubgroupInfoFromTom.

Computations with the GAP Character Table Library 215

Example
gap> solvinfo:= Filtered(List(
> AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false),
> MaximalSolvableSubgroupInfoFromTom), x -> x <> false);;
gap> for entry in solvinfo do
> MaxSolv.(entry[1]):= entry[2];
> od;
gap> for entry in solvinfo do
> Print(String(entry[1], 5), String(entry[2], 7),
> String(entry[3], 28), "\n");
> od;

Co3 69984 [[3849120, 699840]]
HS 2000 [[252000, 252000]]
He 13824 [[138240], [138240]]
J1 168 [[168]]
J2 1152 [[1152]]
J3 1944 [[1944]]

M11 144 [[144]]
M12 432 [[432], [432]]
M22 576 [[5760]]
M23 1152 [[40320, 5760]]
M24 13824 [[138240]]
McL 11664 [[3265920, 58320]]

We see that for J1, J2, J3, M11, and M12, the subgroup S is maximal. For M12 and He, there are
two classes of subgroups S. For the other groups, the class of subgroups S is unique, and there are one
or two classes of maximal subgroups of G that contain S. From the shown orders of these maximal
subgroups, their structures can be read off from the Atlas, on the pages listed in Table II.

Similarly, the Atlas tells us about the extensions of the subgroups S in Aut(G). In particular,

• the order 2000 subgroups of HS are contained in maximal subgroups of the type U3(5).2 (two
classes) which do not extend to HS.2, but there are novelties of the type 51+2

+ : [25] and of the
order 4000, so the solvable subgroups of maximal order in HS do in fact extend to HS.2.

• the order 13824 subgroups of He are contained in maximal subgroups of the type 26 : 3S6 (two
classes) which do not extend to He.2, but there are novelties of the type 24+4.(S3×S3).2 and of
the order 18432. (So the solvable subgroups S of maximal order in He do not extend to He.2
but there are larger solvable subgroups in He.2.)

We inspect the maximal subgroups of He.2 in order to show that these are in fact the solvable
subgroups of maximal order (see [CCN+85, p. 104]): Any other solvable subgroup of order at
least n in He.2 must be contained in a subgroup of one of the types S4(4).4 (of index at most
212), 22.L3(4).D12 (of index at most 52), or 21+6

+ .L3(2).2 (of index at most 2). By [CCN+85,
pp. 44, 23, 3], this is not the case.

• the maximal subgroups of order 1152 in J2 extend to subgroups of order 2304 in J2.2.

• the maximal subgroups of order 1944 in J3 extend to subgroups of the type 32.31+2
+ : 8.2 and of

order 3888 in J3.2. (The structure stated in [CCN+85, p. 82] is not correct, see [BN95].)

Computations with the GAP Character Table Library 216

• the maximal subgroups of order 432 in M12 (two classes) do not extend in M12.2, and we see
from the table of marks of M12.2 that there are no larger solvable subgroups in this group, i. e.,
the solvable subgroups of maximal order in M12.2 lie in M12.

• the order 576 subgroups of M22 are contained in maximal subgroups of the type 24 : A6 which
extend to subgroups of the type 24 : S6 in M22.2, so the solvable subgroups of maximal order in
M22.2 have the type 24 : 32 : D8 and the order 1152. In fact the structure is S4 oS2.

• the order 11664 subgroups of McL are contained in maximal subgroups of the type 31+4
+ : 2S5

which extend to subgroups of the type 31+4 : 4S5 in McL.2, so the solvable subgroups of maximal
order in McL.2 have the type 31+4 : 4S4 and the order 23328.

Example
gap> MaxSolv.("HS.2"):= 2 * MaxSolv.("HS");;
gap> n:= 2^(4+4) * (6 * 6) * 2; MaxSolv.("He.2"):= n;;
18432
gap> List([Size(CharacterTable("S4(4).4")),
> Factorial(5)^2 * 2,
> Size(CharacterTable("2^2.L3(4).D12")),
> 2^7 * Size(CharacterTable("L3(2)")) * 2,
> 7^2 * 2 * Size(CharacterTable("L2(7)")) * 2,
> 3 * Factorial(7) * 2], i -> Int(i / n));
[212, 1, 52, 2, 1, 1]
gap> MaxSolv.("J2.2"):= 2 * MaxSolv.("J2");;
gap> MaxSolv.("J3.2"):= 2 * MaxSolv.("J3");;
gap> info:= MaximalSolvableSubgroupInfoFromTom("M12.2");
["M12.2", 432, [[95040]]]
gap> MaxSolv.("M12.2"):= info[2];;
gap> MaxSolv.("M22.2"):= 2 * MaxSolv.("M22");;
gap> MaxSolv.("McL.2"):= 2 * MaxSolv.("McL");;

6.4 Cases where the Table of Marks is not available in GAP

We use the GAP function SolvableSubgroupInfoFromCharacterTable, and individual argu-
ments. In several cases, information about smaller sporadic simple groups is needed, so we deal
with the groups in increasing order.

6.4.1 G = Ru

The group Ru contains exactly two conjugacy classes of nonisomorphic solvable subgroups of order
n = 49152, and no larger solvable subgroups.

Example
gap> t:= CharacterTable("Ru");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 49152;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2^3+8:L3(2)"), 7, 7],

[CharacterTable("2.2^4+6:S5"), 5, 5]]

Computations with the GAP Character Table Library 217

The maximal subgroups of the structure 2.24+6 : S5 in Ru contain one class of solvable subgroups
of order n and with the structure 2.24+6 : S4, see [CCN+85, p. 126, p. 2].

The maximal subgroups of the structure 23+8 : L3(2) in Ru contain two classes of solvable sub-
groups of order n and with the structure 23+8 : S4, see [CCN+85, p. 126, p. 3]. These groups are
the stabilizers of vectors and two-dimensional subspaces, respectively, in the three-dimensional sub-
module; note that each 23+8 : L3(2) type subgroup H of Ru is the normalizer of an elementary abelian
group of order eight all of whose involutions are in the Ru-class 2A and are conjugate in H. Since the
2.24+6 : S5 type subgroups of Ru are the normalizers of 2A-elements in Ru, the groups in one of the
two classes in question coincide with the largest solvable subgroups in the 2.24+6 : S5 type subgroups.
The groups in the other class do not centralize a 2A-element in Ru and are therefore not isomorphic
with the 2.24+6 : S4 type groups.

Example
gap> MaxSolv.("Ru"):= n;;
gap> s:= info[1][1];;
gap> cls:= SizesConjugacyClasses(s);;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(s),
> x -> Sum(cls{ x }) = 2^3);
[[1, 2]]
gap> cls{ nsg[1] };
[1, 7]
gap> GetFusionMap(s, t){ nsg[1] };
[1, 2]

6.4.2 G = Suz

The group Suz contains a unique conjugacy class of solvable subgroups of order n = 139968, and no
larger solvable subgroups.

Example
gap> t:= CharacterTable("Suz");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 139968;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("G2(4)"), 1797, 416],

[CharacterTable("3_2.U4(3).2_3’"), 140, 72],
[CharacterTable("3^5:M11"), 13, 11],
[CharacterTable("2^4+6:3a6"), 7, 6],
[CharacterTable("3^2+4:2(2^2xa4)2"), 1, 1]]

The maximal subgroups S of the structure 32+4 : 2(A4× 22).2 in Suz are solvable and have order
n, see [CCN+85, p. 131].

In order to show that Suz contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in G2(4) of index at most 1797 (see [CCN+85, p. 97]),
in U4(3).2′3 of index at most 140 (see [CCN+85, p. 52]), in M11 of index at most 13 (see [CCN+85, p.
18]), and in A6 of index at most 7 (see [CCN+85, p. 4]).

The group S extends to a group of the structure 32+4 : 2(S4×D8) in the automorphism group Suz.2.
Example

gap> MaxSolv.("Suz"):= n;;
gap> MaxSolv.("Suz.2"):= 2 * n;;

Computations with the GAP Character Table Library 218

6.4.3 G = ON

The group ON contains a unique conjugacy class of solvable subgroups of order 25920, and no larger
solvable subgroups.

Example
gap> t:= CharacterTable("ON");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 25920;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("L3(7).2"), 144, 114],

[CharacterTable("ONM2"), 144, 114],
[CharacterTable("3^4:2^(1+4)D10"), 1, 1]]

The maximal subgroups S of the structure 34 : 21+4
− D10 in ON are solvable and have order n,

see [CCN+85, pp. 132].
In order to show that ON contains no other solvable subgroups of order larger than or equal to |S|,

we check that there are no solvable subgroups in L3(7).2 of index at most 144 (see [CCN+85, p. 50]);
note that the groups in the second class of maximal subgroups of ON are isomorphic with L3(7).2.

The group S extends to a group of order |S.2| in the automorphism group ON.2.
Example

gap> MaxSolv.("ON"):= n;;
gap> MaxSolv.("ON.2"):= 2 * n;;

6.4.4 G =Co2

The group Co2 contains a unique conjugacy class of solvable subgroups of order 2359296, and no
larger solvable subgroups.

Example
gap> t:= CharacterTable("Co2");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 2359296;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("U6(2).2"), 7796, 672],

[CharacterTable("2^10:m22:2"), 385, 22],
[CharacterTable("McL"), 380, 275],
[CharacterTable("2^1+8:s6f2"), 315, 28],
[CharacterTable("2^1+4+6.a8"), 17, 8],
[CharacterTable("U4(3).D8"), 11, 8],
[CharacterTable("2^(4+10)(S5xS3)"), 5, 5]]

The maximal subgroups of the structure 24+10(S5× S3) in Co2 contain solvable subgroups S of
order n and with the structure 24+10(S4×S3), see [CCN+85, p. 154].

The subgroups S are contained also in the maximal subgroups of the type 21+8
+ : S6(2); note that

the 21+8
+ : S6(2) type subgroups are described as normalizers of elements in the Co2-class 2A, and

S normalizes an elementary abelian group of order 16 containing an S-class of length five that is
contained in the Co2-class 2A.

Computations with the GAP Character Table Library 219

Example
gap> s:= info[7][1];
CharacterTable("2^(4+10)(S5xS3)")
gap> cls:= SizesConjugacyClasses(s);;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(s),
> x -> Sum(cls{ x }) = 2^4);
[[1 .. 3]]
gap> cls{ nsg[1] };
[1, 5, 10]
gap> GetFusionMap(s, t){ nsg[1] };
[1, 2, 3]

The stabilizers of these involutions in 24+10(S5× S3) have index five, they are solvable, and they
are contained in 21+8

+ : S6(2) type subgroups, so they are Co2-conjugates of S. (The corresponding
subgroups of S6(2) are maximal and have the type 2.[26] : (S3×S3).)

In order to show that G contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in U6(2) of index at most 7796 (see [CCN+85, p. 115]),
in M22.2 of index at most 385 (see [CCN+85, p. 39] or Section 6.3), in McL of index at most 380
(see [CCN+85, p. 100] or Section 6.3), in A8 of index at most 17 (see [CCN+85, p. 20]), and in
U4(3).D8 of index at most 11 (see [CCN+85, p. 52]).

Example
gap> MaxSolv.("Co2"):= n;;

6.4.5 G = Fi22

The group Fi22 contains a unique conjugacy class of solvable subgroups of order 5038848, and no
larger solvable subgroups.

Example
gap> t:= CharacterTable("Fi22");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 5038848;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2.U6(2)"), 3650, 672],

[CharacterTable("O7(3)"), 910, 351],
[CharacterTable("Fi22M3"), 910, 351],
[CharacterTable("O8+(2).3.2"), 207, 6],
[CharacterTable("2^10:m22"), 90, 22],
[CharacterTable("3^(1+6):2^(3+4):3^2:2"), 1, 1]]

The maximal subgroups S of the structure 31+6 : 23+4 : 32 : 2 in Fi22 are solvable and have order
n, see [CCN+85, p. 163].

In order to show that Fi22 contains no other solvable subgroups of order larger than or equal to
|S|, we check that there are no solvable subgroups in U6(2) of index at most 3650 (see [CCN+85,
p. 115]), in O7(3) of index at most 910 (see [CCN+85, p. 109]), in O+

8 (2).S3 of index at most 207
(see [CCN+85, p. 85]), and in M22.2 of index at most 90 (see [CCN+85, p. 39] or Section 6.3); note
that the groups in the third class of maximal subgroups of Fi22 are isomorphic with O7(3).

The group S extends to a group of order |S.2| in the automorphism group Fi22.2.

Computations with the GAP Character Table Library 220

Example
gap> MaxSolv.("Fi22"):= n;;
gap> MaxSolv.("Fi22.2"):= 2 * n;;

6.4.6 G = HN

The group HN contains a unique conjugacy class of solvable subgroups of order 2000000, and no
larger solvable subgroups.

Example
gap> t:= CharacterTable("HN");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 2000000;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("A12"), 119, 12],

[CharacterTable("5^(1+4):2^(1+4).5.4"), 1, 1]]

The maximal subgroups S of the structure 51+4 : 21+4.5.4 in HN are solvable and have order n,
see [CCN+85, p. 166].

In order to show that HN contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in A12 of index at most 119 (see [CCN+85, p. 91]).

The group S extends to a group of order |S.2| in the automorphism group HN.2.
Example

gap> MaxSolv.("HN"):= n;;
gap> MaxSolv.("HN.2"):= 2 * n;;

6.4.7 G = Ly

The group Ly contains a unique conjugacy class of solvable subgroups of order 900000, and no larger
solvable subgroups.

Example
gap> t:= CharacterTable("Ly");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 900000;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("G2(5)"), 6510, 3906],

[CharacterTable("3.McL.2"), 5987, 275],
[CharacterTable("5^3.psl(3,5)"), 51, 31],
[CharacterTable("2.A11"), 44, 11],
[CharacterTable("5^(1+4):4S6"), 10, 6]]

The maximal subgroups of the structure 5(1+4) : 4S6 in Ly contain solvable subgroups S of order
n and with the structure 51+4 : 4.32.D8, see [CCN+85, p. 174].

In order to show that Ly contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in G2(5) of index at most 6510 (see [CCN+85, p. 114]),
in McL.2 of index at most 5987 (see [CCN+85, p. 100] or Section 6.3), in L3(5) of index at most 51
(see [CCN+85, p. 38]), and in A11 of index at most 44 (see [CCN+85, p. 75]).

Example
gap> MaxSolv.("Ly"):= n;;

Computations with the GAP Character Table Library 221

6.4.8 G = T h

The group T h contains exactly two conjugacy classes of nonisomorphic solvable subgroups of order
n = 944784, and no larger solvable subgroups.

Example
gap> t:= CharacterTable("Th");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 944784;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2^5.psl(5,2)"), 338, 31],

[CharacterTable("2^1+8.a9"), 98, 9],
[CharacterTable("U3(8).6"), 35, 6],
[CharacterTable("ThN3B"), 1, 1],
[CharacterTable("ThM7"), 1, 1]]

The maximal subgroups S of the structures [39].2S4 and 32.[37].2S4 in T h are solvable and have
order n, see [CCN+85, p. 177].

In order to show that T h contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in L5(2) of index at most 338 (see [CCN+85, p. 70]),
in A9 of index at most 98 (see [CCN+85, p. 37]), and in U3(8).6 of index at most 35 (see [CCN+85,
p. 66]).

Example
gap> MaxSolv.("Th"):= n;;

6.4.9 G = Fi23

The group Fi23 contains a unique conjugacy class of solvable subgroups of order n = 3265173504,
and no larger solvable subgroups.

Example
gap> t:= CharacterTable("Fi23");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 3265173504;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("2.Fi22"), 39545, 3510],

[CharacterTable("O8+(3).3.2"), 9100, 6],
[CharacterTable("3^(1+8).2^(1+6).3^(1+2).2S4"), 1, 1]]

The maximal subgroups S of the structure 31+8
+ .21+6

− .31+2
+ .2S4 in Fi23 are solvable and have order

n, see [CCN+85, p. 177].
In order to show that Fi23 contains no other solvable subgroups of order larger than or equal to |S|,

we check that there are no solvable subgroups in Fi22 of index at most 39545 (see Section 6.4.5) and
in O+

8 (3).S3 of index at most 9100 (see [CCN+85, p. 140]).
Example

gap> MaxSolv.("Fi23"):= n;;

Computations with the GAP Character Table Library 222

6.4.10 G =Co1

The group Co1 contains a unique conjugacy class of solvable subgroups of order n = 84934656, and
no larger solvable subgroups.

Example
gap> t:= CharacterTable("Co1");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 84934656;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("Co2"), 498093, 2300],

[CharacterTable("3.Suz.2"), 31672, 1782],
[CharacterTable("2^11:M24"), 5903, 24],
[CharacterTable("Co3"), 5837, 276],
[CharacterTable("2^(1+8)+.O8+(2)"), 1050, 120],
[CharacterTable("U6(2).3.2"), 649, 6],
[CharacterTable("2^(2+12):(A8xS3)"), 23, 8],
[CharacterTable("2^(4+12).(S3x3S6)"), 10, 6]]

The maximal subgroups of the structure 24+12.(S3×3S6) in Co1 contain solvable subgroups S of
order n and with the structure 24+12.(S3×31+2

+ : D8), see [CCN+85, p. 183].
In order to show that Co1 contains no other solvable subgroups of order larger than or equal to |S|,

we check that there are no solvable subgroups in Co2 of index at most 498093 (see Section 6.4.4), in
Suz.2 of index at most 31672 (see Section 6.4.2), in M24 of index at most 5903 (see Section 6.3), in
Co3 of index at most 5837 (see [CCN+85, p. 134] or Section 6.3), in O+

8 (2) of index at most 1050
(see [CCN+85, p. 185]), in U6(2).S3 of index at most 649 (see [CCN+85, p. 115]), and in A8 of index
at most 23 (see [CCN+85, p. 22]).

Example
gap> MaxSolv.("Co1"):= n;;

6.4.11 G = J4

The group J4 contains a unique conjugacy class of solvable subgroups of order 28311552, and no
larger solvable subgroups.

Example
gap> t:= CharacterTable("J4");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 28311552;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("mx1j4"), 17710, 24],

[CharacterTable("c2aj4"), 770, 22],
[CharacterTable("2^10:L5(2)"), 361, 31],
[CharacterTable("J4M4"), 23, 5]]

The maximal subgroups of the structure 211 : M24 in J4 contain solvable subgroups S of order n
and with the structure 211 : 26 : 31+2

+ : D8, see Section 6.3 and [CCN+85, p. 190].
(The subgroups in the first four classes of maximal subgroups of J4 have the structures 211 : M24,

21+12
+ .3M22 : 2, 210 : L5(2), and 23+12.(S5×L3(2)), in this order.)

Computations with the GAP Character Table Library 223

The subgroups S are contained also in the maximal subgroups of the type 21+12
+ .3M22 : 2; note

that these subgroups are described as normalizers of elements in the J4-class 2A, and S normalizes an
elementary abelian group of order 211 containing an S-class of length 1771 that is contained in the
J4-class 2A.

Example
gap> s:= info[1][1];
CharacterTable("mx1j4")
gap> cls:= SizesConjugacyClasses(s);;
gap> nsg:= Filtered(ClassPositionsOfNormalSubgroups(s),
> x -> Sum(cls{ x }) = 2^11);
[[1 .. 3]]
gap> cls{ nsg[1] };
[1, 276, 1771]
gap> GetFusionMap(s, t){ nsg[1] };
[1, 3, 2]

The stabilizers of these involutions in 211 : M24 have index 1771, they have the structure 211 :
26 : 3.S6, and they are contained in 21+12

+ .3M22 : 2 type subgroups; so also S, which has index 10 in
211 : 26 : 3.S6, is contained in 21+12

+ .3M22 : 2. (The corresponding subgroups of M22 : 2 are of course
the solvable groups of maximal order described in Section 6.3.)

In order to show that G contains no other solvable subgroups of order larger than or equal to |S|,
we check that there are no solvable subgroups in L5(2) of index at most 361 (see [CCN+85, p. 70])
and in S5×L3(2) of index at most 23 (see [CCN+85, pp. 2, 3]).

Example
gap> MaxSolv.("J4"):= n;;

6.4.12 G = Fi′24

The group Fi′24 contains a unique conjugacy class of solvable subgroups of order 29386561536, and
no larger solvable subgroups.

Example
gap> t:= CharacterTable("Fi24’");;
gap> mx:= List(Maxes(t), CharacterTable);;
gap> n:= 29386561536;;
gap> info:= List(mx, x -> SolvableSubgroupInfoFromCharacterTable(x, n));;
gap> info:= Filtered(info, IsList);
[[CharacterTable("Fi23"), 139161244, 31671],

[CharacterTable("2.Fi22.2"), 8787, 3510],
[CharacterTable("(3xO8+(3):3):2"), 3033, 6],
[CharacterTable("O10-(2)"), 851, 495],
[CharacterTable("3^(1+10):U5(2):2"), 165, 165],
[CharacterTable("2^2.U6(2).3.2"), 7, 6]]

The maximal subgroups of the structure 31+10
+ : U5(2) : 2 in Fi′24 contain solvable subgroups S of

order n and with the structure 31+10
+ : 21+6

− : 31+2
+ : 2S4, see [CCN+85, p. 73, p. 207].

In order to show that G contains no other solvable subgroups of order larger than or equal to
|S|, we check that there are no solvable subgroups in Fi23 of order at least n (see Section 6.4.9), in
Fi22.2 of order at least n (see Section 6.4.5), in O+

8 (3).S3 of index at most 3033 (see [CCN+85, p.

Computations with the GAP Character Table Library 224

140]), in O−10(2) of index at most 851 (see [CCN+85, p. 147]), and in U6(2).S3 of index at most 7
(see [CCN+85, p. 115]).

The group S extends to a group of order |S.2| in the automorphism group Fi24.
Example

gap> MaxSolv.("Fi24’"):= n;;
gap> MaxSolv.("Fi24’.2"):= 2 * n;;

6.4.13 G = B

The group B contains a unique conjugacy class of solvable subgroups of order n = 29686813949952,
and no larger solvable subgroups.

The maximal subgroups of the structure 22+10+20(M22 : 2×S3) in B contain solvable subgroups S
of order n and with the structure 22+10+20(24 : 32 : D8×S3), see [CCN+85, p. 217] and Section 6.3.

Example
gap> n:= 29686813949952;;
gap> n = 2^(2+10+20) * 2^4 * 3^2 * 8 * 6;
true
gap> n = 2^(2+10+20) * MaxSolv.("M22.2") * 6;
true

By [Wil99, Table 1], the only maximal subgroups of B of order bigger than |S| have the following
structures.

2.2E6(2).2 21+22.Co2 Fi23 29+16S8(2)
T h (22×F4(2)) : 2 22+10+20(M22 : 2×S3) 25+5+10+10L5(2)
S3×Fi22 : 2 2[35](S5×L3(2)) HN : 2 O+

8 (3) : S4

(The character tables of the maximal subgroups of B are meanwhile available in GAP.)
Example

gap> b:= CharacterTable("B");;
gap> mx:= List(Maxes(b), CharacterTable);;
gap> Filtered(mx, x -> Size(x) >= n);
[CharacterTable("2.2E6(2).2"), CharacterTable("2^(1+22).Co2"),

CharacterTable("Fi23"), CharacterTable("2^(9+16).S8(2)"),
CharacterTable("Th"), CharacterTable("(2^2xF4(2)):2"),
CharacterTable("2^(2+10+20).(M22.2xS3)"),
CharacterTable("[2^30].L5(2)"), CharacterTable("S3xFi22.2"),
CharacterTable("[2^35].(S5xL3(2))"), CharacterTable("HN.2"),
CharacterTable("O8+(3).S4")]

For the subgroups 21+22.Co2, Fi23, T h, S3×Fi22 : 2, and HN : 2, the solvable subgroups of maxi-
mal order are known from the previous sections or can be derived from known values, and are smaller
than n.

Example
gap> List([2^(1+22) * MaxSolv.("Co2"),
> MaxSolv.("Fi23"),
> MaxSolv.("Th"),
> 6 * MaxSolv.("Fi22.2"),
> MaxSolv.("HN.2")], i -> Int(i / n));
[0, 0, 0, 0, 0]

Computations with the GAP Character Table Library 225

If one of the remaining maximal groups U from the above list has a solvable subgroup of order at
least n then the index of this subgroup in U is bounded as follows.

Example
gap> List([Size(CharacterTable("2.2E6(2).2")),
> 2^(9+16) * Size(CharacterTable("S8(2)")),
> 2^3 * Size(CharacterTable("F4(2)")),
> 2^(2+10+20) * Size(CharacterTable("M22.2")) * 6,
> 2^30 * Size(CharacterTable("L5(2)")),
> 2^35 * Factorial(5) * Size(CharacterTable("L3(2)")),
> Size(CharacterTable("O8+(3)")) * 24],
> i -> Int(i / n));
[10311982931, 53550, 892, 770, 361, 23, 4]

The group O+
8 (3) : S4 is nonsolvable, and its order is less than 5n, thus its solvable subgroups have

orders less than n.
The largest solvable subgroup of S5×L3(2) has index 35, thus the solvable subgroups of 2[35](S5×

L3(2)) have orders less than n.
The groups of type 25+5+10+10L5(2) cannot contain solvable subgroups of order at least n because

L5(2) has no solvable subgroup of index up to 361 –such a subgroup would be contained in 24 : L4(2),
of index at most b361/31c= 11 (see [CCN+85, p. 70]), and L4(2)∼= A8 does not have such subgroups
(see [CCN+85, p. 22]).

The largest proper subgroup of F4(2) has index 69615 (see [CCN+85, p. 170]), which excludes
solvable subgroups of order at least n in (22×F4(2)) : 2.

Ruling out the group 2.2E6(2).2 is more involved. We consider the list of maximal subgroups of
2E6(2) in [CCN+85, p. 191] (which is complete, see [BN95]), and compute the maximal index of a
group of order n/4; the possible subgroups of 2E6(2) to consider are the following

21+20 : U6(2) 28+16 : O−8 (2) F4(2) 22.29.218 : (L3(4)×S3)
Fi22 O−10(2) 23.212.215 : (S5×L3(2))

(The order of S3×U6(2) is already smaller than n/4.)
Example

gap> List([2^(1+20) * Size(CharacterTable("U6(2)")),
> 2^(8+16) * Size(CharacterTable("O8-(2)")),
> Size(CharacterTable("F4(2)")),
> 2^(2+9+18) * Size(CharacterTable("L3(4)")) * 6,
> Size(CharacterTable("Fi22")),
> Size(CharacterTable("O10-(2)")),
> 2^(3+12+15) * 120 * Size(CharacterTable("L3(2)")),
> 6 * Size(CharacterTable("U6(2)"))],
> i -> Int(i / (n / 4)));
[2598, 446, 446, 8, 8, 3, 2, 0]

The indices of the solvable groups of maximal orders in the groups U6(2), O−8 (2), F4(2), L3(4),
and Fi22 are larger than the bounds we get for n, see [CCN+85, pp. 115, 89, 170, 23, 163].

It remains to consider the subgroups of the type 29+16S8(2). The group S8(2) contains maximal
subgroups of the type 23+8 : (S3× S6) and of index 5355 (see [CCN+85, p. 123]), which contain
solvable subgroups S′ of index 10. This yields solvable subgroups of order 29+16+3+8 ·6 ·72 = n.

Computations with the GAP Character Table Library 226

Example
gap> 2^(9+16+3+8) * 6 * 72 = n;
true

There are no other solvable subgroups of larger or equal order in S8(2): We would need solvable
subgroups of index at most 446 in O−8 (2) : 2, 393 in O+

8 (2) : 2, 210 in S6(2), or 23 in A8, which is not
the case by [CCN+85, pp. 89, 85, 46, 22].

Example
gap> index:= Int(2^(9+16) * Size(CharacterTable("S8(2)")) / n);
53550
gap> List([120, 136, 255, 2295], i -> Int(index / i));
[446, 393, 210, 23]
gap> MaxSolv.("B"):= n;;

So the 29+16S8(2) type subgroups of B yield solvable subgroups S′ of the type 29+16.23+8 : (S3×
32 : D8), and of order n.

We want to show that S′ is a B-conjugate of S. For that, we first show the following:
Lemma:
The group B contains exactly two conjugacy classes of Klein four groups whose involutions lie in

the class 2B. (We will call these Klein four groups 2B-pure.) Their normalizers in B have the orders
22858846741463040 and 292229574819840, respectively.

Proof. Let V be a 2B-pure Klein four group in B, and set N = NB(V). Let x ∈ V be an involution
and set H =CB(x), then H is maximal in B and has the structure 21+22.Co2. The index of C =CB(V) =
CH(V) in N divides 6, and C stabilizes the central involution in H and another 2B involution. The group
H contains exactly four conjugacy classes of 2B elements.

Example
gap> h:= mx[2];
CharacterTable("2^(1+22).Co2")
gap> pos:= Positions(GetFusionMap(h, b), 3);
[2, 4, 11, 20]

The B-classes of 2B-pure Klein four groups arise from those of these classes yH ⊂ H such that
x 6= y holds and xy is a 2B element. We compute this subset.

Example
gap> pos:= Filtered(Difference(pos, [2]), i -> ForAny(pos,
> j -> NrPolyhedralSubgroups(h, 2, i, j).number <> 0));
[4, 11]

The two classes have lengths 93150 and 7286400, thus the index of C in H is one of these num-
bers.

Example
gap> SizesConjugacyClasses(h){ pos };
[93150, 7286400]

Next we compute the number n0 of 2B-pure Klein four groups in B.

Computations with the GAP Character Table Library 227

Example
gap> nr:= NrPolyhedralSubgroups(b, 3, 3, 3);
rec(number := 14399283809600746875, type := "V4")
gap> n0:= nr.number;;

The B-conjugacy class of V has length [B : N] = [B : H] · [H : C]/[N : C], where [N : C] divides 6.
We see that [N : C] = 6 in both cases.

Example
gap> cand:= List(pos, i -> Size(b) / SizesCentralizers(h)[i] / 6);
[181758140654146875, 14217525668946600000]
gap> Sum(cand) = n0;
true

The orders of the normalizers of the two classes of 2B-pure Klein four groups are as claimed.
Example

gap> List(cand, x -> Size(b) / x);
[22858846741463040, 292229574819840]

The subgroup S of order n is contained in a maximal subgroup M of the type 22+10+20(M22 : 2×S3)
in B. The group M is the normalizer of a 2B-pure Klein four group in B, and the other class of
normalizers of 2B-pure Klein four groups does not contain subgroups of order n. Thus the conjugates
of S are uniquely determined by |S| and the property that they normalize 2B-pure Klein four groups.

Example
gap> m:= mx[7];
CharacterTable("2^(2+10+20).(M22.2xS3)")
gap> Size(m);
22858846741463040
gap> nsg:= ClassPositionsOfMinimalNormalSubgroups(m);
[[1, 2]]
gap> SizesConjugacyClasses(m){ nsg[1] };
[1, 3]
gap> GetFusionMap(m, b){ nsg[1] };
[1, 3]
gap> List(cand, x -> Size(b) / (n * x));
[770, 315/32]

Now consider the subgroup S′ of order n, which is contained in a maximal subgroup of the type
29+16S8(2) in B. In order to prove that S′ is B-conjugate to S, it is enough to show that S′ normalizes a
2B-pure Klein four group.

The unique minimal normal subgroup V of 29+16S8(2) has order 28. Its involutions lie in the class
2B of B.

Example
gap> m:= mx[4];
CharacterTable("2^(9+16).S8(2)")
gap> nsg:= ClassPositionsOfMinimalNormalSubgroups(m);
[[1, 2]]
gap> SizesConjugacyClasses(m){ nsg[1] };
[1, 255]
gap> GetFusionMap(m, b){ nsg[1] };
[1, 3]

Computations with the GAP Character Table Library 228

The group V is central in the normal subgroup W = 29+16, since all nonidentity elements of V
lie in one conjugacy class of odd length. As a module for S8(2), V is the unique irreducible eight-
dimensional module in characteristic two.

Example
gap> CharacterDegrees(CharacterTable("S8(2)") mod 2);
[[1, 1], [8, 1], [16, 1], [26, 1], [48, 1], [128, 1],

[160, 1], [246, 1], [416, 1], [768, 1], [784, 1],
[2560, 1], [3936, 1], [4096, 1], [12544, 1], [65536, 1]]

Hence we are done if the restriction of the S8(2)-action on V to S′/W leaves a two-dimensional
subspace of V invariant. In fact we show that already the restriction of the S8(2)-action on V to the
maximal subgroups of the structure 23+8 : (S3×S6) has a two-dimensional submodule.

These maximal subgroups have index 5355 in S8(2). The primitive permutation representation of
degree 5355 of S8(2) and the irreducible eight-dimensional matrix representation of S8(2) over the
field with two elements are available via the GAP package AtlasRep, see [WPN+22]. We compute
generators for an index 5355 subgroup in the matrix group via an isomorphism to the permutation
group.

Example
gap> permg:= AtlasGroup("S8(2)", NrMovedPoints, 5355);
<permutation group of size 47377612800 with 2 generators>
gap> matg:= AtlasGroup("S8(2)", Dimension, 8);
<matrix group of size 47377612800 with 2 generators>
gap> hom:= GroupHomomorphismByImagesNC(matg, permg,
> GeneratorsOfGroup(matg), GeneratorsOfGroup(permg));;
gap> max:= PreImages(hom, Stabilizer(permg, 1));;

These generators define the action of the index 5355 subgroup of S8(2) on the eight-dimensional
module. We compute the dimensions of the factors of an ascending composition series of this module.

Example
gap> m:= GModuleByMats(GeneratorsOfGroup(max), GF(2));;
gap> comp:= MTX.CompositionFactors(m);;
gap> List(comp, r -> r.dimension);
[2, 4, 2]

6.4.14 G = M

The group M contains exactly two conjugacy classes of solvable subgroups of order n =
2849934139195392, and no larger solvable subgroups.

The maximal subgroups of the structure 21+24
+ .Co1 in the group M contain solvable subgroups S of

order n and with the structure 21+24
+ .24+12.(S3×31+2

+ : D8), see [CCN+85, p. 234] and Section 6.4.10.
Example

gap> n:= 2^25 * MaxSolv.("Co1");
2849934139195392

The solvable subgroups of maximal order in groups of the types 22+11+22.(M24 × S3) and
2[39].(L3(2)×3S6) have order n.

Computations with the GAP Character Table Library 229

Example
gap> 2^(2+11+22) * MaxSolv.("M24") * 6 = n;
true
gap> 2^39 * 24 * 3 * 72 = n;
true

For inspecting the other maximal subgroups of M, we use the description from [NW13], which
lists 44 classes of maximal subgroups of G, and states that any possible other maximal subgroup
of G has socle isomorphic to one of L2(13), Sz(8), U3(4), U3(8); so these maximal subgroups are
isomorphic to subgroups of the automorphism groups of these groups – the maximum of these group
orders is smaller than n, hence we may ignore these possible subgroups.

Example
gap> cand:= ["L2(13)", "Sz(8)", "U3(4)", "U3(8)"];;
gap> List(cand, nam -> ExtensionInfoCharacterTable(
> CharacterTable(nam)));
[["2", "2"], ["2^2", "3"], ["", "4"], ["3", "(S3x3)"]]
gap> ll:= List(cand, x -> Size(CharacterTable(x)));
[1092, 29120, 62400, 5515776]
gap> 18 * ll[4];
99283968
gap> 2^39 * 24 * 3 * 72;
2849934139195392

Remark added in December 2023: The classes of maximal subgroups of G are classified in
[DLP23]. As a consequence, The result is that there are no maximal subgroups with socle Sz(8)
or U3(8), and there is one class of maximal subgroups of each of the isomorphism types L2(13).2 and
U3(4).4.

Thus only the following maximal subgroups of M have order bigger than |S|.

2.B 21+24
+ .Co1 3.Fi24 22.2E6(2) : S3

210+16.O+
10(2) 22+11+22.(M24×S3) 31+12

+ .2Suz.2 25+10+20.(S3×L5(2))
S3×T h 2[39].(L3(2)×3S6) 38.O−8 (3).23 (D10×HN).2

For the subgroups 2.B, 3.Fi24, 31+12
+ .2Suz.2, S3×T h, and (D10×HN).2, the solvable subgroups

of maximal order are smaller than n.
Example

gap> List([2 * MaxSolv.("B"),
> 6 * MaxSolv.("Fi24’"),
> 3^13 * 2 * MaxSolv.("Suz") * 2,
> 6 * MaxSolv.("Th"),
> 10 * MaxSolv.("HN") * 2], i -> Int(i / n));
[0, 0, 0, 0, 0]

The subgroup 22.2E6(2) : S3 can be excluded by the fact that this group is only six times larger
than the subgroup 2.2E6(2) : 2 of B, but n is 96 times larger than the maximal solvable subgroup in B.

Example
gap> n / MaxSolv.("B");
96

Computations with the GAP Character Table Library 230

The group 38.O−8 (3).23 can be excluded by the fact that a solvable subgroup of order at least n
would imply the existence of a solvable subgroup of index at most 46 in O−8 (3).23, which is not the
case (see [CCN+85, p. 141]).

Example
gap> Int(3^8 * Size(CharacterTable("O8-(3)")) * 2 / n);
46

Similarly, the existence of a solvable subgroup of order at least n in 25+10+20.(S3×L5(2)) would
imply the existence of a solvable subgroup of index at most 723 in L5(2) and in turn of a solvable
subgroup of index at most 23 in L4(2), which is not the case (see [CCN+85, p. 70]).

Example
gap> Int(2^(10+16) * Size(CharacterTable("O10+(2)")) / n);
553350
gap> Int(2^(5+10+20) * 6 * Size(CharacterTable("L5(2)")) / n);
723
gap> Int(723 / 31);
23

It remains to exclude the subgroup 210+16.O+
10(2), which means to show that O+

10(2) does not
contain a solvable subgroup of index at most 553350. If such a subgroup would exist then it would
be contained in one of the following maximal subgroups of O+

10(2) (see [CCN+85, p. 146]): in
S8(2) (of index at most 1115), in 28 : O+

8 (2) (of index at most 1050), in 210 : L5(2) (of index at
most 241), in (3×O−8 (2)) : 2 (of index at most 27), in (21+12

+ : (S3×A8) (of index at most 23), or in
23+12 : (S3×S3×L3(2)) (of index at most 4). By [CCN+85, pp. 123, 85, 70, 89, 22], this is not the
case.

Example
gap> index:= Int(2^(10+16) * Size(CharacterTable("O10+(2)")) / n);
553350
gap> List([496, 527, 2295, 19840, 23715, 118575], i -> Int(index / i));
[1115, 1050, 241, 27, 23, 4]

As a consequence, we have shown that the largest solvable subgroups of M have order n.
Example

gap> MaxSolv.("M"):= n;;

In order to prove the statement about the conjugacy of subgroups of order n in M, we first show
the following.

Lemma:
The group M contains exactly three conjugacy classes of 2B-pure Klein four groups. Their nor-

malizers in M have the orders 50472333605150392320, 259759622062080, and 9567039651840,
respectively.

Proof. The idea is the same as for the Baby Monster group, see Section 6.4.13. Let V be a 2B-pure
Klein four group in M, and set N = NM(V). Let x ∈V be an involution and set H =CM(x), then H is
maximal in M and has the structure 21+24

+ .Co1. The index of C =CM(V) =CH(V) in N divides 6, and
C stabilizes the central involution in H and another 2B involution.

The group H contains exactly five conjugacy classes of 2B elements, three of them consist of
elements that generate a 2B-pure Klein four group together with x.

Computations with the GAP Character Table Library 231

Example
gap> m:= CharacterTable("M");;
gap> h:= CharacterTable("2^1+24.Co1");
CharacterTable("2^1+24.Co1")
gap> pos:= Positions(GetFusionMap(h, m), 3);
[2, 4, 7, 9, 16]
gap> pos:= Filtered(Difference(pos, [2]), i -> ForAny(pos,
> j -> NrPolyhedralSubgroups(h, 2, i, j).number <> 0));
[4, 9, 16]

The two classes have lengths 93150 and 7286400, thus the index of C in H is one of these num-
bers.

Example
gap> SizesConjugacyClasses(h){ pos };
[16584750, 3222483264000, 87495303168000]

Next we compute the number n0 of 2B-pure Klein four groups in M.
Example

gap> nr:= NrPolyhedralSubgroups(m, 3, 3, 3);
rec(number := 87569110066985387357550925521828244921875,

type := "V4")
gap> n0:= nr.number;;

The M-conjugacy class of V has length [M : N] = [M : H] · [H : C]/[N : C], where [N : C] divides 6.
We see that [N : C] = 6 in both cases.

Example
gap> cand:= List(pos, i -> Size(m) / SizesCentralizers(h)[i] / 6);
[16009115629875684006343550944921875,

3110635203347364905168577322802100000000,
84458458854522392576698341855475200000000]

gap> Sum(cand) = n0;
true

The orders of the normalizers of the three classes of 2B-pure Klein four groups are as claimed.
Example

gap> List(cand, x -> Size(m) / x);
[50472333605150392320, 259759622062080, 9567039651840]

As we have seen above, the group M contains exactly the following (solvable) subgroups of order
n.

1. One class in 21+24
+ .Co1 type subgroups,

2. one class in 22+11+22.(M24×S3) type subgroups, and

3. two classes in 2[39].(L3(2)×3S6) type subgroups.

Computations with the GAP Character Table Library 232

Note that 2[39].(L3(2)×3S6) contains an elementary abelian normal subgroup of order eight whose
involutions lie in the class 2B, see [CCN+85, p. 234]. As a module for the group L3(2), this normal
subgroup is irreducible, and the restriction of the action to the two classes of S4 type subgroups fixes a
one- and a two-dimensional subspace, respectively. Hence we have one class of subgroups of order n
that centralize a 2B element and one class of subgroups of order n that normalize a 2B-pure Klein four
group. Clearly the subgroups in the first class coincide with the subgroups of order n in 21+24

+ .Co1
type subgroups. By the above classification of 2B-pure Klein four groups in M, the subgroups in the
second class coincide with the subgroups of order n in 22+11+22.(M24×S3) type subgroups.

It remains to show that the subgroups of order n do not stabilize both a 2B element and a 2B-pure
Klein four group. We do this by direct computations with a 22+11+22.(M24×S3) type group, which is
available via the AtlasRep package, see [WPN+22].

First we fetch the group, and factor out the largest solvable normal subgroup, by suitable actions
on blocks.

Example
gap> g:= AtlasGroup("2^(2+11+22).(M24xS3)");
<permutation group of size 50472333605150392320 with 2 generators>
gap> NrMovedPoints(g);
294912
gap> bl:= Blocks(g, MovedPoints(g));;
gap> Length(bl);
147456
gap> hom1:= ActionHomomorphism(g, bl, OnSets);;
gap> act1:= Image(hom1);;
gap> Size(g) / Size(act1);
8192
gap> bl2:= Blocks(act1, MovedPoints(act1));;
gap> Length(bl2);
72
gap> hom2:= ActionHomomorphism(act1, bl2, OnSets);;
gap> act2:= Image(hom2);;
gap> Size(act2);
1468938240
gap> Size(MathieuGroup(24)) * 6;
1468938240
gap> bl3:= AllBlocks(act2);;
gap> List(bl3, Length);
[24, 3]
gap> bl3:= Orbit(act2, bl3[2], OnSets);;
gap> hom3:= ActionHomomorphism(act2, bl3, OnSets);;
gap> act3:= Image(hom3);;

Now we compute an isomorphism from the factor group of type M24 to the group that belongs to
GAP’s table of marks. Then we use the information from the table of marks to compute a solvable
subgroup of maximal order in M24 (which is 13824), and take the preimage under the isomorphism.
Finally, we take the preimage of this group in the original group.

Example
gap> tom:= TableOfMarks("M24");;
gap> tomgroup:= UnderlyingGroup(tom);;
gap> iso:= IsomorphismGroups(act3, tomgroup);;
gap> pos:= Positions(OrdersTom(tom), 13824);

Computations with the GAP Character Table Library 233

[1508]
gap> sub:= RepresentativeTom(tom, pos[1]);;
gap> pre:= PreImages(iso, sub);;
gap> pre:= PreImages(hom3, pre);;
gap> pre:= PreImages(hom2, pre);;
gap> pre:= PreImages(hom1, pre);;
gap> Size(pre) = n;
true

The subgroups stabilizes a Klein four group. It does not stabilize a 2B element because its centre
is trivial.

Example
gap> pciso:= IsomorphismPcGroup(pre);;
gap> Size(Centre(Image(pciso)));
1

6.5 Proof of the Corollary

With the computations in the previous sections, we have collected the information that is needed to
show the corollary stated in Section 6.1.

Example
gap> Filtered(Set(RecNames(MaxSolv)),
> x -> MaxSolv.(x)^2 >= Size(CharacterTable(x)));
["Fi23", "J2", "J2.2", "M11", "M12", "M22.2"]

Chapter 7

Large Nilpotent Subgroups of Sporadic
Simple Groups

Date: June 6th, 2009
We show that any nontrivial nilpotent subgroup U in a sporadic simple group G satisfies |U | ·

|NG(U)| < |G|. The proof uses the information in the Atlas of Finite Groups [CCN+85] and the
GAP system [GAP21], in particular its Character Table Library [Bre24] and its library of Tables of
Marks [MNP19]. (In [Vdo00], it is shown that in any finite nonabelian simple group G, any nilpotent
subgroup U satisfies |U |2 < |G|.)

7.1 The Result

The aim of this writeup is to show the following statement.
Proposition: Let G be a sporadic simple group, let U be a nontrivial nilpotent subgroup in G, and

let NG(U) denote the normalizer of U in G. Then |U | · |NG(U)|< |G| holds.
The following criteria are sufficient to prove this proposition. Note that we are interested in an

argument that uses only information about the character tables of the sporadic simple groups and of
their maximal subgroups.

Lemma 1: Let G be a nonabelian finite simple group, and suppose that U is a nontrivial nilpotent
subgroup of G such that |U | · |NG(U)| ≥ |G| holds. Let Π= {p1, p2, . . . , pn} be the set of prime divisors
of |U |, and set n = ∏p∈Π p.

(a) G contains an element g of order n and a maximal subgroup M with the properties g ∈ Z(U)
and NG(U) ≤ M. Set c := gcd(|CG(g)|Π, |M|), where |CG(g)|Π denotes the largest divisor of
the order of the centralizer of g in G whose prime divisors are elements of the set Π. Then we
have |U | ≤ c and hence c · |M| ≥ |G|, in particular |M|2 ≥ |G|.

(b) If (g,M) is as in part (a) then one of the following holds.

(b1)
U is normal in M, and the Fitting subgroup Fit(M) of M satisfies |Fit(M)| · |M| ≥ |G|.

(b2)
U is not normal in M, so NG(U) is a proper subgroup of M, in particular |G| ≤ |U | · |M|/2≤
c · |M|/2 holds.

234

Computations with the GAP Character Table Library 235

(c) Let (g,M) be as in part (b2) and assume that M contains a normal subgroup K such that
π(M) := M/K is an almost simple group with socle S, i. e., π(M) has a nonabelian simple nor-
mal subgroup S such that Cπ(M)(S) is trivial. Then either U ≤K holds, and hence |K| · |M| ≥ |G|,
or we are in the following situation.

The group π(U) := UK/K is a nontrivial nilpotent normal subgroup of π(N) := NG(U)K/K,
and H := S∩ π(N) is a proper subgroup of S. The latter statement holds because otherwise
S∩ π(U) would be normal in S and thus would be trivial, which would imply that S would
centralize π(U).

As a consequence, |π(N)| divides |π(M)/S| · |H| = |π(M)|/[S : H], in particular, [S : H] ≤
|π(M)|/|π(N)|= |M|/|NG(U)K| ≤ |M|/|NG(U)| ≤ |M| · |U |/|G| ≤ c/[G : M] holds.

We will apply Lemma 1 as follows.
From the character tables of G and M, the value |Fit(M)| and the maximal possible c can be

computed. If part (a) of the lemma applies then we verify that part (b1) does not apply, and that either
(b2) or (c) yields a contradiction. Note that we can determine from the character table of M whether M
has a normal subgroup K such that M/K is almost simple, and in this case we can compute the order
of the socle S of M/K.

For proving the nonexistence of the subgroup H in the situation of part (c), we will show that all
subgroups of π(M) of index up to d := c · [π(M) : S]/[G : M] contain S. For that, we will compute the
complete list of those possible permutation characters of π(M) whose degree is at most d, and then
check that the kernels of these characters contain S.

(Note that these computations are cheap because the bound d is small in the cases that occur. There
are easier criteria for proving the nonexistence of a subgroup of index at most d in a simple group S,
for example in the case |S|> d!/2 or if the smallest nontrivial irreducible degree of S is at least d; but
these criteria do not suffice in our situation.)

We illustrate the application of Lemma 1 with some examples.

J1: The first Janko group J1 (see [CCN+85, p. 36]) has order 175560, and the largest maximal
subgroup has order 660. The largest centralizer of a nonidentity element in J1 has order 120,
and 660 ·120 = 79200 < |J1|. Thus J1 satisfies the proposition.

M: For the Monster group M (see [CCN+85, p. 234]), we read off from the list [Wil] of maximal
subgroups that the only maximal subgroups M of M with the property |M|2 ≥ M have the
structure 2.B. Already for the second largest maximal subgroups, with the structure 21+24.Co1,
the order is smaller than the index in the Monster.

Only elements g from the classes 2A, 2B, and 3A have the property that the product of |2.B|
and the order of the centralizer of g in M is not smaller than |M|. So U can be only a 2- or
a 3-subgroup of 2.B. However, the 2-part and the 3-part of |2.B| are 242 and 313, respectively,
which are smaller than the index of 2.B in M. Thus M satisfies the proposition.

Fi23:
We show that no counterexample to the proposition can arise from maximal subgroups M of
the type O+

8 (3) : S3 in the Fischer group Fi23 (see [CCN+85, p. 177]). Several element cen-
tralizers in G satisfy Lemma 1 (a), the largest value c arises from elements in the class 6B,
whose centralizers have order 28 ·39, which divides |M|. So |U | ≤ 28 ·39, and a possible coun-
terexample to the proposition must satisfy |NG(U)| ≥ |G|/(28 ·39) = 811588377600. We have
|M| = 29713078886400, which is less than 37 times this minimal order required for NG(U).

Computations with the GAP Character Table Library 236

However, the intersection H of this group with the simple subgroup S ∼= O+
8 (3) in M cannot

be at most 36, because the largest maximal subgroups in S have index 1080 (see [CCN+85, p.
140]). Arguing not with S but with M, we can show –using only the character table of M– that
all proper subgroups of index less than 37 ·6 in M contain S.

7.2 The Proof

The following GAP function utilizes Lemma 1. Its input are the GAP character table tbl of a group
G, say, and a list maxesinfo of character tables of maximal subgroups of G, covering at least all those
maximal subgroups M for which |M|2 ≥ |G| holds.

The idea is to collect pairs (M,g) that satisfy part (a) of Lemma 1, and then to show that they do
not satisfy part (b) or part (c). For each maximal subgroup M that admits elements g as in Lemma 1,
information is printed how this candidate is excluded.

The function returns a list of length three. The first entry is true if the criteria of Lemma 1 are
sufficient to prove that the proposition is true for G, and false otherwise. The second entry is the
name of G, and the third entry in the number of maximal subgroups M for which an element g as in
Lemma 1 (a) exists.

Example
gap> ApplyTheLemma:= function(tbl, maxesinfo)
> local Gname, Gsize, cents, orders, result, Mtbl, Msize, maxc, i,
> pi, pipart, c, Mclasslengths, Fit, excluded, Kclasses, Mbar,
> Ksize, Sclasses, Ssize, d;
> Gname:= Identifier(tbl);
> Gsize:= Size(tbl);
> cents:= SizesCentralizers(tbl);
> orders:= OrdersClassRepresentatives(tbl);
> result:= [true, Gname, 0];
> # Run over the relevant maximal subgroups.
> for Mtbl in maxesinfo do
> Msize:= Size(Mtbl);
> # Run over nonidentity class representatives g of squarefree
> # order, compute the largest c that occurs.
> maxc:= 1;
> for i in [2 .. NrConjugacyClasses(tbl)] do
> pi:= Factors(orders[i]);
> if IsSet(pi) then
> # The elements in class ‘i’ have squarefree order.
> pipart:= Product(Filtered(Factors(cents[i]),
> x -> x in pi));
> c:= Gcd(pipart, Msize);
> if maxc < c then
> maxc:= c;
> fi;
> fi;
> od;
> if maxc * Msize >= Gsize then
> # Criterion (a) is satisfied, try to exclude (b) and (c).
> result[3]:= result[3] + 1;
> Print(Gname, ": consider M = ", Identifier(Mtbl),
> ", c = ", StringPP(maxc),

Computations with the GAP Character Table Library 237

> ", c * |M| / |G| >= ", Int(maxc * Msize / Gsize),
> "\n");
> Mclasslengths:= SizesConjugacyClasses(Mtbl);
> Fit:= Mclasslengths{ ClassPositionsOfFittingSubgroup(Mtbl) };
> if Sum(Fit) * Msize >= Gsize then
> # Criterion (b1) is satisfied.
> Print(Gname, ": not excludable by (b1)\n");
> result[1]:= false;
> elif maxc * Msize < 2 * Gsize then
> # Criterion (b2) is not satisfied.
> Print(Gname, ": excluded by (b2)\n");
> else
> # Run over the normal subgroups of M.
> excluded:= false;
> for Kclasses in ClassPositionsOfNormalSubgroups(Mtbl) do
> Mbar:= Mtbl / Kclasses;
> Ksize:= Sum(Mclasslengths{ Kclasses });
> if IsAlmostSimpleCharacterTable(Mbar) and
> Ksize * Msize < Gsize then
> # We are in the situation of criterion (c).
> # The socle is the unique minimal normal subgroup.
> Sclasses:= ClassPositionsOfMinimalNormalSubgroups(
> Mbar)[1];
> Ssize:= Sum(SizesConjugacyClasses(Mbar){ Sclasses });
> d:= Int(maxc * Msize * Size(Mbar)
> / (Gsize * Ssize));
> # Try to show that all subgroups of index up to d
> # in Mbar contain the socle.
> if ForAll([2 .. d],
> n -> ForAll(PermChars(Mbar, rec(torso:= [n])),
> chi -> IsSubset(
> ClassPositionsOfKernel(chi),
> Sclasses))) then
> Print(Gname, ": excluded by (c), |K| = ",
> StringPP(Ksize), ", degree bound ", d, "\n");
> excluded:= true;
> break;
> fi;
> fi;
> od;
> if not excluded then
> Print(Gname, ": not excludable by (c)\n");
> result[1]:= false;
> fi;
> fi;
> fi;
> od;
> return result;
> end;;

So our proof relies on the classifications of maximal subgroups of sporadic simple groups,
see [CCN+85] and [BN95].

Computations with the GAP Character Table Library 238

The GAP Character Table Library [Bre24] contains the character tables of the sporadic simple
groups and of their maximal subgroups, except that not all character tables of maximal subgroups of
the Monster group are available yet. (See Section 7.1 for the treatment of the Monster group.)

Since the GAP Character Table Library is used for the computations in this section, we first load
this package.

Example
gap> LoadPackage("ctbllib", false);
true

Now we apply the function to the sporadic simple groups.
Example

gap> info:= [];;
gap> for name in AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false) do
> tbl:= CharacterTable(name);
> if HasMaxes(tbl) then
> mx:= List(Maxes(tbl), CharacterTable);
> elif name = "M" then
> mx:= [CharacterTable("2.B")];
> else
> Error("this should not happen ...");
> fi;
> Add(info, ApplyTheLemma(tbl, mx));
> od;
B: consider M = 2.2E6(2).2, c = 2^38, c * |M| / |G| >= 20
B: excluded by (c), |K| = 2, degree bound 40
Co1: consider M = Co2, c = 2^13*3^5, c * |M| / |G| >= 20
Co1: excluded by (c), |K| = 1, degree bound 20
Co1: consider M = 3.Suz.2, c = 2^13*3^5, c * |M| / |G| >= 1
Co1: excluded by (b2)
Co2: consider M = U6(2).2, c = 2^16, c * |M| / |G| >= 28
Co2: excluded by (c), |K| = 1, degree bound 56
Co2: consider M = 2^10:m22:2, c = 2^18, c * |M| / |G| >= 5
Co2: excluded by (c), |K| = 2^10, degree bound 11
Co2: consider M = 2^1+8:s6f2, c = 2^18, c * |M| / |G| >= 4
Co2: excluded by (c), |K| = 2^9, degree bound 4
Co3: consider M = McL.2, c = 2^4*3^4, c * |M| / |G| >= 4
Co3: excluded by (c), |K| = 1, degree bound 9
F3+: consider M = Fi23, c = 2^9*3^9, c * |M| / |G| >= 32
F3+: excluded by (c), |K| = 1, degree bound 32
Fi22: consider M = 2.U6(2), c = 2^7*3^6, c * |M| / |G| >= 26
Fi22: excluded by (c), |K| = 2, degree bound 26
Fi22: consider M = O7(3), c = 2^7*3^6, c * |M| / |G| >= 6
Fi22: excluded by (c), |K| = 1, degree bound 6
Fi22: consider M = Fi22M3, c = 2^7*3^6, c * |M| / |G| >= 6
Fi22: excluded by (c), |K| = 1, degree bound 6
Fi22: consider M = O8+(2).3.2, c = 2^7*3^6, c * |M| / |G| >= 1
Fi22: excluded by (b2)
Fi23: consider M = 2.Fi22, c = 2^8*3^9, c * |M| / |G| >= 159
Fi23: excluded by (c), |K| = 2, degree bound 159
Fi23: consider M = O8+(3).3.2, c = 2^8*3^9, c * |M| / |G| >= 36

Computations with the GAP Character Table Library 239

Fi23: excluded by (c), |K| = 1, degree bound 219
HS: consider M = M22, c = 2^7, c * |M| / |G| >= 1
HS: excluded by (b2)
M11: consider M = A6.2_3, c = 2^4, c * |M| / |G| >= 1
M11: excluded by (b2)
M12: consider M = M11, c = 2^4, c * |M| / |G| >= 1
M12: excluded by (b2)
M12: consider M = M12M2, c = 2^4, c * |M| / |G| >= 1
M12: excluded by (b2)
M22: consider M = L3(4), c = 2^6, c * |M| / |G| >= 2
M22: excluded by (c), |K| = 1, degree bound 2
M22: consider M = 2^4:a6, c = 2^7, c * |M| / |G| >= 1
M22: excluded by (b2)
M23: consider M = M22, c = 2^7, c * |M| / |G| >= 5
M23: excluded by (c), |K| = 1, degree bound 5
M24: consider M = M23, c = 2^7, c * |M| / |G| >= 5
M24: excluded by (c), |K| = 1, degree bound 5
M24: consider M = 2^4:a8, c = 2^10, c * |M| / |G| >= 1
M24: excluded by (b2)
McL: consider M = U4(3), c = 3^6, c * |M| / |G| >= 2
McL: excluded by (c), |K| = 1, degree bound 2
Ru: consider M = 2F4(2)’.2, c = 2^12, c * |M| / |G| >= 1
Ru: excluded by (b2)
Suz: consider M = G2(4), c = 2^12, c * |M| / |G| >= 2
Suz: excluded by (c), |K| = 1, degree bound 2

First of all, we see that Lemma 1 is sufficient to prove the proposition, since all candidates were
excluded.

Moreover, we see that for the following ten sporadic simple groups, no candidates had to be
considered. (No information was printed about these groups.)

Example
gap> Filtered(info, x -> x[3] = 0);
[[true, "HN", 0], [true, "He", 0], [true, "J1", 0],

[true, "J2", 0], [true, "J3", 0], [true, "J4", 0],
[true, "Ly", 0], [true, "M", 0], [true, "ON", 0],
[true, "Th", 0]]

7.3 Alternative: Use GAP’s Tables of Marks

We can easily inspect all conjugacy classes of subgroups of a group G whose table of marks is con-
tained in GAP’s Library of Tables of Marks [MNP19]. First we load this GAP package.

Example
gap> LoadPackage("tomlib", false);
true

The following GAP function takes the table of marks of a group G and returns the list of pairs
[U,NG(U)] where U ranges over representatives of conjugacy classes of those nilpotent subgroups of
G for which |U | · |NG(U)| is maximal.

Computations with the GAP Character Table Library 240

Example
gap> maximalpairs:= function(tom)
> local g, max, result, i, u, n, prod;
> g:= UnderlyingGroup(tom);
> max:= 1;
> result:= [];
> for i in [1 .. Length(OrdersTom(tom))] do
> u:= RepresentativeTom(tom, i);
> if not IsTrivial(u) and IsNilpotent(u) then
> n:= Normalizer(g, u);
> prod:= Size(u) * Size(n);
> if max < prod then
> max:= prod;
> result:= [[u, n]];
> elif max = prod then
> Add(result, [u, n]);
> fi;
> fi;
> od;
> return result;
> end;;

So let us collect the data for those sporadic simple groups for which the table of marks is known.
Example

gap> info:= [];;
gap> for name in AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false) do
> tom:= TableOfMarks(name);
> if tom <> fail then
> Add(info, [name, tom, maximalpairs(tom)]);
> fi;
> od;
gap> Length(info);
12

We got results for twelve sporadic simple groups. The following computations show that in ten
cases, the simple group G contains a unique class of nontrivial nilpotent subgroups U for which the
maximal value of |U | · |NG(U)| is attained. The ratio of this value and |G| is less than 21 per cent. The
following table shows the name of the group G, the orders of U and NG(U), and the integral part of
106 times the ratio.

Example
gap> List(info, x -> Length(x[3]));
[1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1]
gap> mat:= [];;
gap> for entry in info do
> pair:= entry[3][1]; # [U, N_G(U)]
> bound:= Size(pair[1]) * Size(pair[2]); # |U|*|N_G(U)|
> size:= Size(UnderlyingGroup(entry[2])); # |G|
> Add(mat, [entry[1],
> StringPP(Size(pair[1])),
> StringPP(Size(pair[2])),

Computations with the GAP Character Table Library 241

> Int(10^6 * bound / size)]);
> if Size(pair[1]) * Size(pair[2]) >= 21/100 * size then
> Error("!");
> fi;
> od;
gap> PrintArray(mat);
[[Co3, 3^5, 2^5*3^7*5*11, 1886],

[HS, 2^6, 2^9*3*7, 15515],
[He, 2^6, 2^10*3^3*5, 2195],
[J1, 19, 2*3*19, 12337],
[J2, 2^6, 2^7*3^2, 121904],
[J3, 3^5, 2^3*3^5, 9404],
[M11, 3^2, 2^4*3^2, 163636],
[M12, 2^5, 2^6*3, 64646],
[M22, 2^4, 2^7*3^2*5, 207792],
[M23, 2^4, 2^7*3^2*5*7, 63241],
[M24, 2^6, 2^10*3^3*5, 36137],
[McL, 3^5, 2^4*3^6*5, 15779]]

Moreover, we see that in most cases, the group U for which the maximum is attained is not the
largest p-subgroup in the simple group in question.

Chapter 8

Permutation Characters in GAP

Date: April 17th, 1999
This is a loose collection of examples of computations with permutation characters and possible

permutation characters in the GAP system [GAP21]. We mainly use the GAP implementation of the
algorithms to compute possible permutation characters that are described in [BP98], and information
from the Atlas of Finite Groups [CCN+85]. A possible permutation character of a finite group G is
a character satisfying the conditions listed in Section “Possible Permutation Characters” of the GAP
Reference Manual.

• Sections 8.14 and 8.15 were added in October 2001.

• Section 8.16.1 was added in June 2009.

• Section 8.16.2 was added in September 2009.

• Section 8.16.3 was added in October 2009.

• Section 8.16.4 was added in November 2009.

• Section 8.17 was added in June 2012.

• Section 8.18 was added in October 2017.

• Section 8.19 was added in December 2021.

In the following, the GAP Character Table Library [Bre24] will be used frequently.
Example

gap> LoadPackage("ctbllib", "1.2", false);
true

8.1 Some Computations with M24

We start with the sporadic simple Mathieu group G = M24 in its natural action on 24 points.
Example

gap> g:= MathieuGroup(24);;
gap> SetName(g, "m24");
gap> Size(g); IsSimple(g); NrMovedPoints(g);

242

Computations with the GAP Character Table Library 243

244823040
true
24

The conjugacy classes that are computed for a group can be ordered differently in different GAP
sessions. In order to make the output shown in the following examples stable, we first sort the conju-
gacy classes of G for our purposes.

Example
gap> ccl:= AttributeValueNotSet(ConjugacyClasses, g);;
gap> HasConjugacyClasses(g);
false
gap> invariants:= List(ccl, c -> [Order(Representative(c)),
> Size(c), Size(ConjugacyClass(g, Representative(c)^2))]);;
gap> SortParallel(invariants, ccl);
gap> SetConjugacyClasses(g, ccl);

The permutation character pi of G corresponding to the action on the moved points is constructed.
This action is 5-transitive.

Example
gap> NrConjugacyClasses(g);
26
gap> pi:= NaturalCharacter(g);
Character(CharacterTable(m24),
[24, 8, 0, 6, 0, 0, 4, 0, 4, 2, 0, 3, 3, 2, 0, 2, 0, 0, 1, 1, 1, 1,
0, 0, 1, 1])

gap> IsTransitive(pi); Transitivity(pi);
true
5
gap> SetIdentifier(CharacterTable(g), "M24table");
gap> Display(pi);
M24table

2 10 10 9 3 3 7 7 5 2 3 3 1 1 4 2 . 2 2 1
3 3 1 1 3 2 1 . 1 1 1 1 1 1 . . . 1 1 .
5 1 . 1 1 1 1
7 1 1 . . 1 1 1 1

11 1 1 . . .
23 1

1a 2a 2b 3a 3b 4a 4b 4c 5a 6a 6b 7a 7b 8a 10a 11a 12a 12b 14a

Y.1 24 8 . 6 . . 4 . 4 2 . 3 3 2 . 2 . . 1

2 1
3 . 1 1 1 1 . .
5 . 1 1
7 1 . . 1 1 . .

11
23 1 1

14b 15a 15b 21a 21b 23a 23b

Computations with the GAP Character Table Library 244

Y.1 1 1 1 . . 1 1

(We have set the Identifier (CTblLib: IdentifierOfMainTable) value of the character table
because otherwise some default identifier would be chosen, which depends on the GAP session.)

pi determines the permutation characters of the G-actions on related sets, for example piop on
the set of ordered and piup on the set of unordered pairs of points.

Example
gap> piop:= pi * pi;
Character(CharacterTable(m24),
[576, 64, 0, 36, 0, 0, 16, 0, 16, 4, 0, 9, 9, 4, 0, 4, 0, 0, 1, 1,
1, 1, 0, 0, 1, 1])

gap> IsTransitive(piop);
false
gap> piup:= SymmetricParts(UnderlyingCharacterTable(pi), [pi], 2)[1];
Character(CharacterTable(m24),
[300, 44, 12, 21, 0, 4, 12, 0, 10, 5, 0, 6, 6, 4, 2, 3, 0, 1, 2, 2,
1, 1, 0, 0, 1, 1])

gap> IsTransitive(piup);
false

Clearly the action on unordered pairs is not transitive, since the pairs [i, i] form an orbit of their
own. There are exactly two G-orbits on the unordered pairs, hence the G-action on 2-sets of points is
transitive.

Example
gap> ScalarProduct(piup, TrivialCharacter(g));
2
gap> comb:= Combinations([1 .. 24], 2);;
gap> hom:= ActionHomomorphism(g, comb, OnSets);;
gap> pihom:= NaturalCharacter(hom);
Character(CharacterTable(m24),
[276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0])

gap> Transitivity(pihom);
1

In terms of characters, the permutation character pihom is the difference of piup and pi . Note
that GAP does not know that this difference is in fact a character; in general this question is not easy
to decide without knowing the irreducible characters of G, and up to now GAP has not computed the
irreducibles.

Example
gap> pi2s:= piup - pi;
VirtualCharacter(CharacterTable(m24),
[276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 0, 1, 1, 1,
0, 0, 0, 0, 0, 0])

gap> pi2s = pihom;
true
gap> HasIrr(g); HasIrr(CharacterTable(g));
false
false

Computations with the GAP Character Table Library 245

The point stabilizer in the action on 2-sets is in fact a maximal subgroup of G, which is isomorphic
to the automorphism group M22 : 2 of the Mathieu group M22. Thus this permutation action is primi-
tive. But we cannot apply IsPrimitive (Reference: IsPrimitive) to the character pihom for getting
this answer because primitivity of characters is defined in a different way, cf. IsPrimitiveCharacter
(Reference: IsPrimitiveCharacter).

Example
gap> IsPrimitive(g, comb, OnSets);
true

We could also have computed the transitive permutation character of degree 276 using the GAP
Character Table Library instead of the group G, since the character tables of G and all its maximal
subgroups are available, together with the class fusions of the maximal subgroups into G.

Example
gap> tbl:= CharacterTable("M24");
CharacterTable("M24")
gap> maxes:= Maxes(tbl);
["M23", "M22.2", "2^4:a8", "M12.2", "2^6:3.s6", "L3(4).3.2_2",

"2^6:(psl(3,2)xs3)", "L2(23)", "L3(2)"]
gap> s:= CharacterTable(maxes[2]);
CharacterTable("M22.2")
gap> TrivialCharacter(s)^tbl;
Character(CharacterTable("M24"),
[276, 36, 12, 15, 0, 4, 8, 0, 6, 3, 0, 3, 3, 2, 2, 1, 1, 0, 1, 1,
0, 0, 0, 0, 0, 0])

Note that the sequence of conjugacy classes in the library table of G does in general not agree with
the succession computed for the group.

8.2 All Possible Permutation Characters of M11

We compute all possible permutation characters of the Mathieu group M11, using the three different
strategies available in GAP. First we try the algorithm that enumerates all candidates via solving a
system of inequalities, which is described in [BP98, Section 3.2].

Example
gap> m11:= CharacterTable("M11");;
gap> SetName(m11, "m11");
gap> perms:= PermChars(m11);
[Character(m11, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), Character(m11,

[11, 3, 2, 3, 1, 0, 1, 1, 0, 0]), Character(m11,
[12, 4, 3, 0, 2, 1, 0, 0, 1, 1]), Character(m11,
[22, 6, 4, 2, 2, 0, 0, 0, 0, 0]), Character(m11,
[55, 7, 1, 3, 0, 1, 1, 1, 0, 0]), Character(m11,
[66, 10, 3, 2, 1, 1, 0, 0, 0, 0]), Character(m11,
[110, 6, 2, 2, 0, 0, 2, 2, 0, 0]), Character(m11,
[110, 6, 2, 6, 0, 0, 0, 0, 0, 0]), Character(m11,
[110, 14, 2, 2, 0, 2, 0, 0, 0, 0]), Character(m11,
[132, 12, 6, 0, 2, 0, 0, 0, 0, 0]), Character(m11,
[144, 0, 0, 0, 4, 0, 0, 0, 1, 1]), Character(m11,
[165, 13, 3, 1, 0, 1, 1, 1, 0, 0]), Character(m11,

Computations with the GAP Character Table Library 246

[220, 4, 4, 0, 0, 4, 0, 0, 0, 0]), Character(m11,
[220, 12, 4, 4, 0, 0, 0, 0, 0, 0]), Character(m11,
[220, 20, 4, 0, 0, 2, 0, 0, 0, 0]), Character(m11,
[330, 2, 6, 2, 0, 2, 0, 0, 0, 0]), Character(m11,
[330, 18, 6, 2, 0, 0, 0, 0, 0, 0]), Character(m11,
[396, 12, 0, 4, 1, 0, 0, 0, 0, 0]), Character(m11,
[440, 8, 8, 0, 0, 2, 0, 0, 0, 0]), Character(m11,
[440, 24, 8, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[495, 15, 0, 3, 0, 0, 1, 1, 0, 0]), Character(m11,
[660, 4, 3, 4, 0, 1, 0, 0, 0, 0]), Character(m11,
[660, 12, 3, 0, 0, 3, 0, 0, 0, 0]), Character(m11,
[660, 12, 12, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[660, 28, 3, 0, 0, 1, 0, 0, 0, 0]), Character(m11,
[720, 0, 0, 0, 0, 0, 0, 0, 5, 5]), Character(m11,
[792, 24, 0, 0, 2, 0, 0, 0, 0, 0]), Character(m11,
[880, 0, 16, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[990, 6, 0, 2, 0, 0, 2, 2, 0, 0]), Character(m11,
[990, 6, 0, 6, 0, 0, 0, 0, 0, 0]), Character(m11,
[990, 30, 0, 2, 0, 0, 0, 0, 0, 0]), Character(m11,
[1320, 8, 6, 0, 0, 2, 0, 0, 0, 0]), Character(m11,
[1320, 24, 6, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[1584, 0, 0, 0, 4, 0, 0, 0, 0, 0]), Character(m11,
[1980, 12, 0, 4, 0, 0, 0, 0, 0, 0]), Character(m11,
[1980, 36, 0, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[2640, 0, 12, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[3960, 24, 0, 0, 0, 0, 0, 0, 0, 0]), Character(m11,
[7920, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

gap> Length(perms);
39

Next we try the improved combinatorial approach that is sketched at the end of Section 3.2
in [BP98]. We get the same characters, except that they may be ordered in a different way; thus
we compare the ordered lists.

Example
gap> degrees:= DivisorsInt(Size(m11));;
gap> perms2:= [];;
gap> for d in degrees do
> Append(perms2, PermChars(m11, d));
> od;
gap> Set(perms) = Set(perms2);
true

Finally, we try the algorithm that is based on Gaussian elimination and that is described in [BP98,
Section 3.3].

Example
gap> perms3:= [];;
gap> for d in degrees do
> Append(perms3, PermChars(m11, rec(torso:= [d])));
> od;
gap> Set(perms) = Set(perms3);
true

Computations with the GAP Character Table Library 247

GAP provides two more functions to test properties of permutation characters. The first one yields
no new information in our case, but the second excludes one possible permutation character; note that
TestPerm5 needs a p-modular Brauer table, and the GAP character table library contains all Brauer
tables of M11.

Example
gap> newperms:= TestPerm4(m11, perms);;
gap> newperms = perms;
true
gap> newperms:= TestPerm5(m11, perms, m11 mod 11);;
gap> newperms = perms;
false
gap> Difference(perms, newperms);
[Character(m11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0])]

GAP knows the table of marks of M11, from which the permutation characters can be extracted. It
turns out that M11 has 39 conjugacy classes of subgroups but only 36 different permutation characters,
so three candidates computed above are in fact not permutation characters.

Example
gap> tom:= TableOfMarks("M11");
TableOfMarks("M11")
gap> trueperms:= PermCharsTom(m11, tom);;
gap> Length(trueperms); Length(Set(trueperms));
39
36
gap> Difference(perms, trueperms);
[Character(m11, [220, 4, 4, 0, 0, 4, 0, 0, 0, 0]),

Character(m11, [660, 4, 3, 4, 0, 1, 0, 0, 0, 0]),
Character(m11, [660, 12, 3, 0, 0, 3, 0, 0, 0, 0])]

8.3 The Action of U6(2) on the Cosets of M22

We are interested in the permutation character of U6(2) (see [CCN+85, p. 115]) that corresponds to
the action on the cosets of a M22 subgroup (see [CCN+85, p. 39]). The character tables of both the
group and the point stabilizer are available in the GAP character table library, so we can compute class
fusion and permutation character directly; note that if the class fusion is not stored on the table of the
subgroup, in general one will not get a unique fusion but only a list of candidates for the fusion.

Example
gap> u62:= CharacterTable("U6(2)");;
gap> m22:= CharacterTable("M22");;
gap> fus:= PossibleClassFusions(m22, u62);
[[1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 33, 34],

[1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 34, 33],
[1, 3, 7, 11, 14, 15, 22, 24, 24, 27, 33, 34],
[1, 3, 7, 11, 14, 15, 22, 24, 24, 27, 34, 33],
[1, 3, 7, 12, 14, 15, 22, 24, 24, 28, 33, 34],
[1, 3, 7, 12, 14, 15, 22, 24, 24, 28, 34, 33]]

gap> RepresentativesFusions(m22, fus, u62);
[[1, 3, 7, 10, 14, 15, 22, 24, 24, 26, 33, 34]]

Computations with the GAP Character Table Library 248

We see that there are six possible class fusions that are equivalent under table automorphisms of
U6(2) and M22.

Example
gap> cand:= Set(fus,
> x -> Induced(m22, u62, [TrivialCharacter(m22)], x)[1]);
[Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0])]

gap> PermCharInfo(u62, cand).ATLAS;
["1a+22a+252a+616a+1155c+1386a+8064a+9240c",

"1a+22a+252a+616a+1155b+1386a+8064a+9240b",
"1a+22a+252a+616a+1155a+1386a+8064a+9240a"]

gap> aut:= AutomorphismsOfTable(u62);; Size(aut);
24
gap> elms:= Filtered(Elements(aut), x -> Order(x) = 3);
[(10,11,12)(26,27,28)(40,41,42), (10,12,11)(26,28,27)(40,42,41)]
gap> Position(cand, Permuted(cand[1], elms[1]));
3
gap> Position(cand, Permuted(cand[3], elms[1]));
2

The six fusions induce three different characters, they are conjugate under the action of the unique
subgroup of order 3 in the group of table automorphisms of U6(2). The table automorphisms of order
3 are induced by group automorphisms of U6(2) (see [CCN+85, p. 120]). As can be seen from the
list of maximal subgroups of U6(2) in [CCN+85, p. 115], the three induced characters are in fact
permutation characters which belong to the three classes of maximal subgroups of type M22 in U6(2),
which are permuted by an outer automorphism of order 3. Now we want to compute the extension of
the above permutation character to the group U6(2).2, which corresponds to the action of this group
on the cosets of a M22.2 subgroup.

Example
gap> u622:= CharacterTable("U6(2).2");;
gap> m222:= CharacterTable("M22.2");;
gap> fus:= PossibleClassFusions(m222, u622);
[[1, 3, 7, 10, 13, 14, 20, 22, 22, 24, 29, 38, 39, 42, 41, 46, 50,

53, 58, 59, 59]]
gap> cand:= Induced(m222, u622, [TrivialCharacter(m222)], fus[1]);
[Character(CharacterTable("U6(2).2"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0, 0,
6, 0, 2, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1080, 72,
0, 48, 8, 0, 0, 0, 18, 0, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 2, 2,
0, 0, 0, 0, 0, 0])]

gap> PermCharInfo(u622, cand).ATLAS;
["1a+22a+252a+616a+1155a+1386a+8064a+9240a"]

Computations with the GAP Character Table Library 249

We see that for the embedding of M22.2 into U6(2).2, the class fusion is unique, so we get a unique
extension of one of the above permutation characters. This implies that exactly one class of maximal
subgroups of type M22 extends to M22.2 in a given group U6(2).2.

8.4 Degree 20736 Permutation Characters of U6(2)

Now we show an alternative way to compute the characters dealt with in the previous example. This
works also if the character table of the point stabilizer is not available. In this situation we can com-
pute all those characters that have certain properties of permutation characters. Of course this may
take much longer than the above computations, which needed only a few seconds. (The following
calculations may need several hours, depending on the computer used.)

Example
gap> cand:= PermChars(u62, rec(torso := [20736]));
[Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0,
0, 0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0])]

For the next step, that is, the computation of the extension of the permutation character to U6(2).2,
we may use the above information, since the values on the inner classes are prescribed. The question
which of the three candidates for U6(2) extends to U6(2).2 depends on the choice of the class fusion
of U6(2) into U6(2).2. With respect to the class fusion that is stored on the GAP library table, the
third candidate extends, as can be seen from the fact that this one is invariant under the permutation of
conjugacy classes of U6(2) that is induced by the action of the chosen supergroup U6(2).2.

Example
gap> u622:= CharacterTable("U6(2).2");;
gap> inv:= InverseMap(GetFusionMap(u62, u622));
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, [11, 12], 13, 14, 15, [16, 17],

18, 19, 20, 21, 22, 23, 24, 25, 26, [27, 28], [29, 30], 31, 32,
[33, 34], [35, 36], 37, [38, 39], 40, [41, 42], 43, 44,
[45, 46]]

gap> ext:= List(cand, x -> CompositionMaps(x, inv));
[[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, [0, 48], 0, 16, 6, 0, 0,

0, 0, 0, 6, 0, 2, 0, 0, [0, 4], 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0],

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, [0, 48], 0, 16, 6, 0, 0,
0, 0, 0, 6, 0, 2, 0, 0, [0, 4], 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0],

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0, 0,
6, 0, 2, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]]

gap> cand:= PermChars(u622, rec(torso:= ext[3]));
[Character(CharacterTable("U6(2).2"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,

Computations with the GAP Character Table Library 250

0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1080,
72, 0, 48, 8, 0, 0, 0, 18, 0, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 2,
2, 0, 0, 0, 0, 0, 0])]

8.5 Degree 57572775 Permutation Characters of O+
8 (3)

The group O+
8 (3) (see [CCN+85, p. 140]) contains a subgroup of type 23+6.L3(2), which extends

to a maximal subgroup U in O+
8 (3).3. For the computation of the permutation character, we cannot

use explicit induction since the table of U is not available in the GAP table library. Since U ∩O+
8 (3)

is contained in a O+
8 (2) subgroup of O+

8 (3), we can try to find the permutation character of O+
8 (2)

corresponding to the action on the cosets of U ∩O+
8 (3), and then induce this character to O+

8 (3). This
kind of computations becomes more difficult with increasing degree, so we try to reduce the problem
further. In fact, the 23+6.L3(2) group is contained in a 26 : A8 subgroup of O+

8 (2), in which the index
is only 15; the unique possible permutation character of this degree can be read off immediately. In-
duction to O+

8 (3) through the chain of subgroups is possible provided the class fusions are available.
There are 24 possible fusions from O+

8 (2) into O+
8 (3), which are all equivalent w.r.t. table automor-

phisms of O+
8 (3). If we later want to consider the extension of the permutation character in question

to O+
8 (3).3 then we have to choose a fusion of an O+

8 (2) subgroup that does not extend to O+
8 (2).3.

But if for example our question is just whether the resulting permutation character is multiplicity-free
then this can be decided already from the permutation character of O+

8 (3).
Example

gap> o8p3:= CharacterTable("O8+(3)");;
gap> Size(o8p3) / (2^9*168);
57572775
gap> o8p2:= CharacterTable("O8+(2)");;
gap> fus:= PossibleClassFusions(o8p2, o8p3);;
gap> Length(fus);
24
gap> rep:= RepresentativesFusions(o8p2, fus, o8p3);
[[1, 5, 2, 3, 4, 5, 7, 8, 12, 16, 17, 19, 23, 20, 21, 22, 23, 24,

25, 26, 37, 38, 42, 31, 32, 36, 49, 52, 51, 50, 43, 44, 45, 53,
55, 56, 57, 71, 71, 71, 72, 73, 74, 78, 79, 83, 88, 89, 90, 94,
100, 101, 105]]

gap> fus:= rep[1];;
gap> Size(o8p2) / (2^9*168);
2025
gap> sub:= CharacterTable("2^6:A8");;
gap> subfus:= GetFusionMap(sub, o8p2);
[1, 3, 2, 2, 4, 5, 6, 13, 3, 6, 12, 13, 14, 7, 21, 24, 11, 30, 29,

31, 13, 17, 15, 16, 14, 17, 36, 37, 18, 41, 24, 44, 48, 28, 33, 32,
34, 35, 35, 51, 51]

gap> fus:= CompositionMaps(fus, subfus);
[1, 2, 5, 5, 3, 4, 5, 23, 2, 5, 19, 23, 20, 7, 37, 31, 17, 50, 51,

43, 23, 23, 21, 22, 20, 23, 56, 57, 24, 72, 31, 78, 89, 52, 45, 44,
53, 55, 55, 100, 100]

gap> Size(sub) / (2^9*168);
15
gap> List(Irr(sub), Degree);
[1, 7, 14, 20, 21, 21, 21, 28, 35, 45, 45, 56, 64, 70, 28, 28, 35,

Computations with the GAP Character Table Library 251

35, 35, 35, 70, 70, 70, 70, 140, 140, 140, 140, 140, 210, 210, 252,
252, 280, 280, 315, 315, 315, 315, 420, 448]

gap> cand:= PermChars(sub, 15);
[Character(CharacterTable("2^6:A8"),

[15, 15, 15, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3,
3, 3, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0])]

gap> ind:= Induced(sub, o8p3, cand, fus);
[Character(CharacterTable("O8+(3)"),

[57572775, 59535, 59535, 59535, 3591, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 2187, 0, 27, 135, 135, 135, 243, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 27, 27, 0, 0, 0, 0, 27,
27, 27, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0])]

gap> o8p33:= CharacterTable("O8+(3).3");;
gap> inv:= InverseMap(GetFusionMap(o8p3, o8p33));
[1, [2, 3, 4], 5, 6, [7, 8, 9], [10, 11, 12], 13,

[14, 15, 16], 17, 18, 19, [20, 21, 22], 23, [24, 25, 26],
[27, 28, 29], 30, [31, 32, 33], [34, 35, 36], [37, 38, 39],
[40, 41, 42], [43, 44, 45], 46, [47, 48, 49], 50,
[51, 52, 53], 54, 55, 56, 57, [58, 59, 60], [61, 62, 63], 64,
[65, 66, 67], 68, [69, 70, 71], [72, 73, 74], [75, 76, 77],
[78, 79, 80], [81, 82, 83], 84, 85, [86, 87, 88],
[89, 90, 91], [92, 93, 94], 95, 96, [97, 98, 99],
[100, 101, 102], [103, 104, 105], [106, 107, 108],
[109, 110, 111], [112, 113, 114]]

gap> ext:= CompositionMaps(ind[1], inv);
[57572775, 59535, 3591, 0, 0, 0, 0, 0, 2187, 0, 27, 135, 243, 0, 0,

0, 0, 0, 0, 0, 27, 0, 0, 27, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> perms:= PermChars(o8p33, rec(torso:= ext));
[Character(CharacterTable("O8+(3).3"),

[57572775, 59535, 3591, 0, 0, 0, 0, 0, 2187, 0, 27, 135, 243, 0,
0, 0, 0, 0, 0, 0, 27, 0, 0, 27, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3159,
3159, 243, 243, 39, 39, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3,
3, 3, 3, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0])]

gap> PermCharInfo(o8p33, perms).ATLAS;
["1a+780aabb+2457a+2808abc+9450aaabbcc+18200abcdddef+24192a+54600a^{5\
}b+70200aabb+87360ab+139776a^{5}+147420a^{4}b^{4}+163800ab+184275aabc+\
199017aa+218700a+245700a+291200aef+332800a^{4}b^{5}c^{5}+491400aaabcd+\
531441a^{5}b^{4}c^{4}+552825a^{4}+568620aabb+698880a^{4}b^{4}+716800aa\
abbccdddeeff+786240aabb+873600aa+998400aa+1257984a^{6}+1397760aa"]

8.6 The Action of O7(3).2 on the Cosets of 27.S7

We want to know whether the permutation character of O7(3).2 (see [CCN+85, p. 108]) on the
cosets of its maximal subgroup U of type 27.S7 is multiplicity-free. As in the previous examples, first
we try to compute the permutation character of the simple group O7(3). It turns out that the direct

Computations with the GAP Character Table Library 252

computation of all candidates from the degree is very time consuming. But we can use for example the
additional information provided by the fact that U contains an A7 subgroup. We compute the possible
class fusions.

Example
gap> o73:= CharacterTable("O7(3)");;
gap> a7:= CharacterTable("A7");;
gap> fus:= PossibleClassFusions(a7, o73);
[[1, 3, 6, 10, 15, 16, 24, 33, 33],

[1, 3, 7, 10, 15, 16, 22, 33, 33]]

We cannot decide easily which fusion is the right one, but already the fact that no other fusions
are possible gives us some information about impossible constituents of the permutation character we
want to compute.

Example
gap> ind:= List(fus,
> x -> Induced(a7, o73, [TrivialCharacter(a7)], x)[1]);;
gap> mat:= MatScalarProducts(o73, Irr(o73), ind);;
gap> sum:= Sum(mat);
[2, 6, 2, 0, 8, 6, 2, 4, 4, 8, 3, 0, 4, 4, 9, 3, 5, 0, 0, 9, 0, 10,

5, 6, 15, 1, 12, 1, 15, 7, 2, 4, 14, 16, 0, 12, 12, 7, 8, 8, 14,
12, 12, 14, 6, 6, 20, 16, 12, 12, 12, 10, 10, 12, 12, 8, 12, 6]

gap> const:= Filtered([1 .. Length(sum)], x -> sum[x] <> 0);
[1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]

gap> Length(const);
52
gap> const:= Irr(o73){ const };;
gap> rat:= RationalizedMat(const);;

But much more can be deduced from the fact that certain zeros of the permutation character can
be predicted.

Example
gap> names:= ClassNames(o73);
["1a", "2a", "2b", "2c", "3a", "3b", "3c", "3d", "3e", "3f", "3g",

"4a", "4b", "4c", "4d", "5a", "6a", "6b", "6c", "6d", "6e", "6f",
"6g", "6h", "6i", "6j", "6k", "6l", "6m", "6n", "6o", "6p", "7a",
"8a", "8b", "9a", "9b", "9c", "9d", "10a", "10b", "12a", "12b",
"12c", "12d", "12e", "12f", "12g", "12h", "13a", "13b", "14a",
"15a", "18a", "18b", "18c", "18d", "20a"]

gap> List(fus, x -> names{ x });
[["1a", "2b", "3b", "3f", "4d", "5a", "6h", "7a", "7a"],

["1a", "2b", "3c", "3f", "4d", "5a", "6f", "7a", "7a"]]
gap> torso:= [28431];;
gap> zeros:= [5, 8, 9, 11, 17, 20, 23, 28, 29, 32, 36, 37, 38,
> 43, 46, 47, 48, 53, 54, 55, 56, 57, 58];;
gap> names{ zeros };
["3a", "3d", "3e", "3g", "6a", "6d", "6g", "6l", "6m", "6p", "9a",

"9b", "9c", "12b", "12e", "12f", "12g", "15a", "18a", "18b", "18c",
"18d", "20a"]

Computations with the GAP Character Table Library 253

Every order 3 element of U lies in an A7 subgroup of U , so among the classes of element order
3, at most the classes 3B, 3C, and 3F can have nonzero permutation character values. The excluded
classes of element order 6 are the square roots of the excluded order 3 elements, likewise the given
classes of element orders 9, 12, and 18 are excluded. The character value on 20A must be zero because
U does not contain elements of this order. So we enter the additional information about these zeros.

Example
gap> for i in zeros do
> torso[i]:= 0;
> od;
gap> torso;
[28431,,,, 0,,, 0, 0,, 0,,,,,, 0,,, 0,,, 0,,,,, 0, 0,,, 0,,,, 0, 0,

0,,,,, 0,,, 0, 0, 0,,,,, 0, 0, 0, 0, 0, 0]
gap> perms:= PermChars(o73, rec(torso:= torso, chars:= rat));
[Character(CharacterTable("O7(3)"),

[28431, 567, 567, 111, 0, 0, 243, 0, 0, 81, 0, 15, 3, 27, 15, 6,
0, 0, 27, 0, 3, 27, 0, 0, 0, 3, 9, 0, 0, 3, 3, 0, 4, 1, 1, 0,
0, 0, 0, 2, 2, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0])]

gap> PermCharInfo(o73, perms).ATLAS;
["1a+78a+168a+182a+260ab+1092a+2457a+2730a+4095b+5460a+11648a"]

We see that this character is already multiplicity free, so this holds also for its extension to O7(3).2,
and we need not compute this extension. (Of course we could compute it in the same way as in the
examples above.)

8.7 The Action of O+
8 (3).21 on the Cosets of 27.A8

We are interested in the permutation character of O+
8 (3).21 that corresponds to the action on the cosets

of a subgroup of type 27.A8. The intersection of the point stabilizer with the simple group O+
8 (3) is of

type 26.A8. First we compute the class fusion of these groups, modulo problems with ambiguities due
to table automorphisms.

Example
gap> o8p3:= CharacterTable("O8+(3)");;
gap> o8p2:= CharacterTable("O8+(2)");;
gap> fus:= PossibleClassFusions(o8p2, o8p3);;
gap> NamesOfFusionSources(o8p2);
["A9", "2^8:O8+(2)", "(D10xD10).2^2", "(3x3^3:S3):2",

"(3x3^(1+2)+:2A4).2", "2^(3+3+3).L3(2)", "NRS(O8+(2),2^(3+3+3)_a)",
"NRS(O8+(2),2^(3+3+3)_b)", "O8+(2)N2", "O8+(2)M2", "O8+(2)M3",
"O8+(2)M5", "O8+(2)M6", "O8+(2)M8", "O8+(2)M9", "(3xU4(2)):2",
"O8+(2)M11", "O8+(2)M12", "2^(1+8)_+:(S3xS3xS3)", "3^4:2^3.S4(a)",
"(A5xA5):2^2", "O8+(2)M16", "O8+(2)M17", "2^(1+8)+.O8+(2)", "7:6",
"(A5xD10).2", "(D10xA5).2", "O8+(2)N5C", "2^6:A8", "2.O8+(2)",
"2^2.O8+(2)", "S6(2)"]

gap> sub:= CharacterTable("2^6:A8");;
gap> subfus:= GetFusionMap(sub, o8p2);
[1, 3, 2, 2, 4, 5, 6, 13, 3, 6, 12, 13, 14, 7, 21, 24, 11, 30, 29,

31, 13, 17, 15, 16, 14, 17, 36, 37, 18, 41, 24, 44, 48, 28, 33, 32,
34, 35, 35, 51, 51]

gap> fus:= List(fus, x -> CompositionMaps(x, subfus));;

Computations with the GAP Character Table Library 254

gap> fus:= Set(fus);;
gap> Length(fus);
24

The ambiguities due to Galois automorphisms disappear when we are looking for the permutation
characters induced by the fusions.

Example
gap> ind:= List(fus, x -> Induced(sub, o8p3,
> [TrivialCharacter(sub)], x)[1]);;
gap> ind:= Set(ind);;
gap> Length(ind);
6

Now we try to extend the candidates to O+
8 (3).21; the choice of the fusion of O+

8 (3) into O+
8 (3).21

determines which of the candidates may extend.
Example

gap> o8p32:= CharacterTable("O8+(3).2_1");;
gap> fus:= GetFusionMap(o8p3, o8p32);;
gap> ext:= List(ind, x -> CompositionMaps(x, InverseMap(fus)));;
gap> ext:= Filtered(ext, x -> ForAll(x, IsInt));
[[3838185, 17577, 8505, 8505, 873, 0, 0, 0, 0, 6561, 0, 0, 729, 0,

9, 105, 45, 45, 105, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 189, 0, 0,
0, 9, 9, 27, 27, 0, 0, 27, 9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0],

[3838185, 17577, 8505, 8505, 873, 0, 6561, 0, 0, 0, 0, 0, 729, 0,
9, 105, 45, 45, 105, 30, 0, 0, 0, 0, 0, 0, 189, 0, 0, 0, 9, 0,
0, 0, 9, 27, 27, 0, 0, 9, 27, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

We compute the extensions of the first candidate; the other belongs to another class of subgroups,
which is the image under an outer automorphism.

Example
gap> perms:= PermChars(o8p32, rec(torso:= ext[1]));
[Character(CharacterTable("O8+(3).2_1"),

[3838185, 17577, 8505, 8505, 873, 0, 0, 0, 0, 6561, 0, 0, 729, 0,
9, 105, 45, 45, 105, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 189, 0, 0,
0, 9, 9, 27, 27, 0, 0, 27, 9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3159, 1575, 567, 63, 87,
15, 0, 0, 45, 0, 81, 9, 27, 0, 0, 3, 3, 3, 3, 5, 5, 0, 0, 0, 4,
0, 0, 27, 0, 9, 0, 0, 15, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

gap> PermCharInfo(o8p32, perms).ATLAS;
["1a+260abc+520ab+819a+2808b+9450aab+18200a+23400ac+29120b+36400aab+4\
6592abce+49140d+66339a+98280ab+163800a+189540d+232960d+332800ab+368550\
a+419328a+531441ab"]

Now we repeat the calculations for O+
8 (3).22 instead of O+

8 (3).21.

Computations with the GAP Character Table Library 255

Example
gap> o8p32:= CharacterTable("O8+(3).2_2");;
gap> fus:= GetFusionMap(o8p3, o8p32);;
gap> ext:= List(ind, x -> CompositionMaps(x, InverseMap(fus)));;
gap> ext:= Filtered(ext, x -> ForAll(x, IsInt));;
gap> perms:= PermChars(o8p32, rec(torso:= ext[1]));
[Character(CharacterTable("O8+(3).2_2"),

[3838185, 17577, 8505, 873, 0, 0, 0, 6561, 0, 0, 0, 0, 729, 0, 9,
105, 45, 105, 30, 0, 0, 0, 0, 0, 0, 189, 0, 0, 0, 9, 0, 9, 27,
0, 0, 0, 27, 27, 9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 6, 0, 0, 0, 0, 0, 0, 0, 199017, 2025, 297, 441, 73, 9, 0,
1215, 0, 0, 0, 0, 0, 81, 0, 0, 0, 0, 27, 27, 0, 1, 9, 12, 0, 0,
45, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0,
0, 0, 0, 0, 0])]

gap> PermCharInfo(o8p32, perms).ATLAS;
["1a+260aac+520ab+819a+2808a+9450aaa+18200accee+23400ac+29120a+36400a\
+46592aa+49140c+66339a+93184a+98280ab+163800a+184275ac+189540c+232960c\
+332800aa+419328a+531441aa"]

We might be interested in the extension to O+
8 (3).(2

2)122. It is clear that this cannot be multiplicity
free because of the multiplicity 9450aaa in the character induced from O+

8 (3).22. We could put the
extensions to the index two subgroups together, but it is simpler (and not expensive) to run the same
program as above.

Example
gap> o8p322:= CharacterTable("O8+(3).(2^2)_{122}");;
gap> fus:= GetFusionMap(o8p32, o8p322);;
gap> ext:= List(perms, x -> CompositionMaps(x, InverseMap(fus)));;
gap> ext:= Filtered(ext, x -> ForAll(x, IsInt));;
gap> perms:= PermChars(o8p322, rec(torso:= ext[1]));
[Character(CharacterTable("O8+(3).(2^2)_{122}"),

[3838185, 17577, 8505, 873, 0, 0, 0, 6561, 0, 0, 729, 0, 9, 105,
45, 105, 30, 0, 0, 0, 0, 0, 0, 189, 0, 0, 9, 9, 27, 0, 0, 27,
9, 0, 8, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 9, 0, 0,
0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 3159, 1575,
567, 63, 87, 15, 0, 0, 45, 0, 81, 9, 27, 0, 0, 3, 3, 3, 5, 0,
0, 4, 0, 0, 27, 0, 9, 0, 0, 15, 0, 3, 0, 0, 2, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 199017, 2025, 297, 441, 73, 9, 0,
1215, 0, 0, 0, 0, 81, 0, 0, 0, 27, 27, 0, 1, 9, 12, 0, 0, 45,
0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0,
0, 28431, 1647, 135, 63, 87, 39, 0, 0, 243, 27, 0, 0, 81, 63,
0, 0, 0, 9, 0, 3, 3, 6, 2, 0, 0, 0, 9, 0, 0, 3, 3, 3, 0, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0])]

gap> PermCharInfo(o8p322, perms).ATLAS;
["1a+260ace+819a+1040a+2808c+9450aac+18200a+23400ae+29120c+36400aac+4\
6592ac+49140g+66339a+93184a+163800b+189540g+196560a+232960g+332800ac+3\
68550a+419328a+531441ac"]

Computations with the GAP Character Table Library 256

8.8 The Action of S4(4).4 on the Cosets of 52.[25]

We want to know whether the permutation character corresponding to the action of S4(4).4
(see [CCN+85, p. 44]) on the cosets of its maximal subgroup of type 52 : [25] is multiplicity free.
The library names of subgroups for which the class fusions are stored are listed as value of the at-
tribute NamesOfFusionSources (Reference: NamesOfFusionSources), and for groups whose iso-
morphism type is not determined by the name this is the recommended way to find out whether the
table of the subgroup is contained in the GAP library and known to belong to this group. (It might be
that a table with such a name is contained in the library but belongs to another group, and it may also
be that the table of the group is contained in the library –with any name– but it is not known that this
group is isomorphic to a subgroup of S4(4).4.)

Example
gap> s444:= CharacterTable("S4(4).4");;
gap> NamesOfFusionSources(s444);
["(L3(2)xS4(4):2).2", "S4(4)", "S4(4).2"]

So we cannot simply fetch the table of the subgroup. As in the previous examples, we compute
the possible permutation characters.

Example
gap> perms:= PermChars(s444,
> rec(torso:= [Size(s444) / (5^2*2^5)]));
[Character(CharacterTable("S4(4).4"),

[4896, 384, 96, 0, 16, 32, 36, 16, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),

Character(CharacterTable("S4(4).4"),
[4896, 192, 32, 0, 0, 8, 6, 1, 0, 2, 0, 0, 36, 0, 12, 0, 0, 0, 1,

0, 6, 6, 2, 2, 0, 0, 0, 0, 1, 1]),
Character(CharacterTable("S4(4).4"),
[4896, 240, 64, 0, 8, 8, 36, 16, 0, 0, 0, 0, 0, 12, 8, 0, 4, 4, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

So there are three candidates. None of them is multiplicity free, so we need not decide which of
the candidates actually belongs to the group 52 : [25] we have in mind.

Example
gap> PermCharInfo(s444, perms).ATLAS;
["1abcd+50abcd+153abcd+170a^{4}b^{4}+680aabb",

"1a+50ac+153a+170aab+256a+680abb+816a+1020a",
"1ac+50ac+68a+153abcd+170aabbb+204a+680abb+1020a"]

(If we would be interested which candidate is the right one, we could for example look at the
intersection with S4(4), and hope for a contradiction to the fact that the group must lie in a (A5×A5) : 2
subgroup.)

8.9 The Action of Co1 on the Cosets of Involution Centralizers

We compute the permutation characters of the sporadic simple Conway group Co1 (see [CCN+85,
p. 180]) corresponding to the actions on the cosets of involution centralizers. Equivalently, we are
interested in the action of Co1 on conjugacy classes of involutions. These characters can be computed
as follows. First we take the table of Co1.

Computations with the GAP Character Table Library 257

Example
gap> t:= CharacterTable("Co1");
CharacterTable("Co1")

The centralizer of each 2A element is a maximal subgroup of Co1. This group is also contained in
the table library. So we can compute the permutation character by explicit induction, and the decom-
position in irreducibles is computed with the command PermCharInfo (Reference: PermCharInfo).

Example
gap> s:= CharacterTable(Maxes(t)[5]);
CharacterTable("2^(1+8)+.O8+(2)")
gap> ind:= Induced(s, t, [TrivialCharacter(s)]);;
gap> PermCharInfo(t, ind).ATLAS;
["1a+299a+17250a+27300a+80730a+313950a+644644a+2816856a+5494125a+1243\
2420a+24794000a"]

The centralizer of a 2B element is not maximal. First we compute which maximal subgroup can
contain it. The character tables of all maximal subgroups of Co1 are contained in the GAP’s table
library, so we may take these tables and look at the group orders.

Example
gap> centorder:= SizesCentralizers(t)[3];;
gap> maxes:= List(Maxes(t), CharacterTable);;
gap> cand:= Filtered(maxes, x -> Size(x) mod centorder = 0);
[CharacterTable("(A4xG2(4)):2")]
gap> u:= cand[1];;
gap> index:= Size(u) / centorder;
3

So there is a unique class of maximal subgroups containing the centralizer of a 2B element, as a
subgroup of index 3. We compute the unique permutation character of degree 3 of this group, and
induce this character to G.

Example
gap> subperm:= PermChars(u, rec(degree := index, bounds := false));
[Character(CharacterTable("(A4xG2(4)):2"),

[3,
3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3,
3, 3,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1])]

gap> subperm = PermChars(u, rec(torso := [3]));
true
gap> ind:= Induced(u, t, subperm);
[Character(CharacterTable("Co1"),

[2065694400, 181440, 119408, 38016, 2779920, 0, 0, 378, 30240,
864, 0, 720, 316, 80, 2520, 30, 0, 6480, 1508, 0, 0, 0, 0, 0,
38, 18, 105, 0, 600, 120, 56, 24, 0, 12, 0, 0, 0, 120, 48, 18,
0, 0, 6, 0, 360, 144, 108, 0, 0, 10, 0, 0, 0, 0, 0, 4, 2, 3, 9,
0, 0, 15, 3, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
12, 8, 0, 6, 0, 0, 3, 0, 1, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3,
0])]

Computations with the GAP Character Table Library 258

gap> PermCharInfo(t, ind).ATLAS;
["1a+1771a+8855a+27300aa+313950a+345345a+644644aa+871884aaa+1771000a+\
2055625a+4100096a+7628985a+9669660a+12432420aa+21528000aa+23244375a+24\
174150aa+24794000a+31574400aa+40370176a+60435375a+85250880aa+100725625\
a+106142400a+150732800a+184184000a+185912496a+207491625a+299710125a+30\
2176875a"]

Finally, we try the same for the centralizer of a 2C element.
Example

gap> centorder:= SizesCentralizers(t)[4];;
gap> cand:= Filtered(maxes, x -> Size(x) mod centorder = 0);
[CharacterTable("Co2"), CharacterTable("2^11:M24")]

The group order excludes all except two classes of maximal subgroups. But the 2C centralizer
cannot lie in Co2 because the involution centralizers in Co2 are too small.

Example
gap> u:= cand[1];;
gap> GetFusionMap(u, t);
[1, 2, 2, 4, 7, 6, 9, 11, 11, 10, 11, 12, 14, 17, 16, 21, 23, 20,

22, 22, 24, 28, 30, 33, 31, 32, 33, 33, 37, 42, 41, 43, 44, 48, 52,
49, 53, 55, 53, 52, 54, 60, 60, 60, 64, 65, 65, 67, 66, 70, 73, 72,
78, 79, 84, 85, 87, 92, 93, 93]

gap> centorder;
389283840
gap> SizesCentralizers(u)[4];
1474560

So we try the second candidate.
Example

gap> u:= cand[2];
CharacterTable("2^11:M24")
gap> index:= Size(u) / centorder;
1288
gap> subperm:= PermChars(u, rec(torso := [index]));
[Character(CharacterTable("2^11:M24"),

[1288, 1288, 1288, 56, 56, 56, 56, 56, 56, 48, 48, 48, 48, 48, 10,
10, 10, 10, 7, 7, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 0, 0, 0, 0, 2, 2, 2,
2, 3, 3, 3, 1, 1, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0])]

gap> subperm = PermChars(u, rec(degree:= index, bounds := false));
true
gap> ind:= Induced(u, t, subperm);
[Character(CharacterTable("Co1"),

[10680579000, 1988280, 196560, 94744, 0, 17010, 0, 945, 7560,
3432, 2280, 1728, 252, 308, 0, 225, 0, 0, 0, 270, 0, 306, 0,
46, 45, 25, 0, 0, 120, 32, 12, 52, 36, 36, 0, 0, 0, 0, 0, 45,
15, 0, 9, 3, 0, 0, 0, 0, 18, 0, 30, 0, 6, 18, 0, 3, 5, 0, 0, 0,
0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0,
6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

Computations with the GAP Character Table Library 259

gap> PermCharInfo(t, ind).ATLAS;
["1a+17250aa+27300a+80730aa+644644aaa+871884a+1821600a+2055625aaa+281\
6856a+5494125a^{4}+12432420aa+16347825aa+23244375a+24174150aa+24667500\
aa+24794000aaa+31574400a+40370176a+55255200a+66602250a^{4}+83720000aa+\
85250880aaa+91547820aa+106142400a+150732800a+184184000aaa+185912496aaa\
+185955000aaa+207491625aaa+215547904aa+241741500aaa+247235625a+2578576\
00aa+259008750a+280280000a+302176875a+326956500a+387317700a+402902500a\
+464257024a+469945476b+502078500a+503513010a+504627200a+522161640a"]

8.10 The Multiplicity Free Permutation Characters of G2(3)

We compute the multiplicity free possible permutation characters of G2(3) (see [CCN+85, p. 60]). For
each divisor d of the group order, we compute all those possible permutation characters of degree d of
G for which each irreducible constituent occurs with multiplicity at most 1; this is done by prescribing
the maxmult component of the second argument of PermChars (Reference: PermChars) to be the
list with 1 at each position.

Example
gap> t:= CharacterTable("G2(3)");
CharacterTable("G2(3)")
gap> t:= CharacterTable("G2(3)");;
gap> n:= Length(RationalizedMat(Irr(t)));;
gap> maxmult:= List([1 .. n], i -> 1);;
gap> perms:= [];;
gap> divs:= DivisorsInt(Size(t));;
gap> for d in divs do
> Append(perms,
> PermChars(t, rec(bounds := false,
> degree := d,
> maxmult := maxmult)));
> od;
gap> Length(perms);
42
gap> List(perms, Degree);
[1, 351, 351, 364, 364, 378, 378, 546, 546, 546, 546, 546, 702, 702,

728, 728, 1092, 1092, 1092, 1092, 1092, 1092, 1092, 1092, 1456,
1456, 1638, 1638, 2184, 2184, 2457, 2457, 2457, 2457, 3159, 3276,
3276, 3276, 3276, 4368, 6552, 6552]

For finding out which of these candidates are really permutation characters, we could inspect them
piece by piece, using the information in [CCN+85]. For example, the candidates of degrees 351, 364,
and 378 are induced from the trivial characters of maximal subgroups of G, whereas the candidates of
degree 546 are not permutation characters.

Since the table of marks of G is available in GAP, we can extract all permutation characters from
the table of marks, and then filter out the multiplicity free ones.

Example
gap> tom:= TableOfMarks("G2(3)");
TableOfMarks("G2(3)")
gap> tbl:= CharacterTable("G2(3)");
CharacterTable("G2(3)")

Computations with the GAP Character Table Library 260

gap> permstom:= PermCharsTom(tbl, tom);;
gap> Length(permstom);
433
gap> multfree:= Intersection(perms, permstom);;
gap> Length(multfree);
15
gap> List(multfree, Degree);
[1, 351, 351, 364, 364, 378, 378, 702, 702, 728, 728, 1092, 1092,

2184, 2184]

8.11 Degree 11200 Permutation Characters of O+
8 (2)

We compute the primitive permutation characters of degree 11200 of O+
8 (2) and O+

8 (2).2
(see [CCN+85, p. 85]). The character table of the maximal subgroup of type 34 : 23.S4 in O+

8 (2)
is not available in the GAP table library. But the group extends to a wreath product of S3 and S4 in the
group O+

8 (2).2, and the table of this wreath product can be constructed easily.
Example

gap> tbl2:= CharacterTable("O8+(2).2");;
gap> s3:= CharacterTable("Symmetric", 3);;
gap> s:= CharacterTableWreathSymmetric(s3, 4);
CharacterTable("Sym(3)wrS4")

The permutation character pi of O+
8 (2).2 can thus be computed by explicit induction, and the

character of O+
8 (2) is obtained by restriction of pi.

Example
gap> fus:= PossibleClassFusions(s, tbl2);
[[1, 41, 6, 3, 48, 9, 42, 19, 51, 8, 5, 50, 24, 49, 7, 2, 44, 22,

42, 12, 53, 17, 58, 21, 5, 47, 26, 50, 37, 52, 23, 60, 18, 4,
46, 25, 14, 61, 20, 9, 53, 30, 51, 26, 64, 8, 52, 31, 13, 56,
38]]

gap> pi:= Induced(s, tbl2, [TrivialCharacter(s)], fus[1])[1];
Character(CharacterTable("O8+(2).2"),
[11200, 256, 160, 160, 80, 40, 40, 76, 13, 0, 0, 8, 8, 4, 0, 0, 16,
16, 4, 4, 4, 1, 1, 1, 1, 5, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0,
0, 1120, 96, 0, 16, 0, 16, 8, 10, 4, 6, 7, 12, 3, 0, 0, 2, 0, 4, 0,
1, 1, 0, 0, 1, 0, 0, 0])

gap> PermCharInfo(tbl2, pi).ATLAS;
["1a+84a+168a+175a+300a+700c+972a+1400a+3200a+4200b"]
gap> tbl:= CharacterTable("O8+(2)");
CharacterTable("O8+(2)")
gap> rest:= RestrictedClassFunction(pi, tbl);
Character(CharacterTable("O8+(2)"),
[11200, 256, 160, 160, 160, 80, 40, 40, 40, 76, 13, 0, 0, 8, 8, 8,
4, 0, 0, 0, 16, 16, 16, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 5, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0])

gap> PermCharInfo(tbl, rest).ATLAS;
["1a+84abc+175a+300a+700bcd+972a+3200a+4200a"]

Computations with the GAP Character Table Library 261

8.12 A Proof of Nonexistence of a Certain Subgroup

We prove that the sporadic simple Mathieu group G = M22 (see [CCN+85, p. 39]) has no subgroup
of index 56. In [Isa76], remark after Theorem 5.18, this is stated as an example of the case that a
character may be a possible permutation character but not a permutation character. Let us consider the
possible permutation character of degree 56 of G.

Example
gap> tbl:= CharacterTable("M22");
CharacterTable("M22")
gap> perms:= PermChars(tbl, rec(torso:= [56]));
[Character(CharacterTable("M22"),

[56, 8, 2, 4, 0, 1, 2, 0, 0, 2, 1, 1])]
gap> pi:= perms[1];;
gap> Norm(pi);
2
gap> Display(tbl, rec(chars:= perms));
M22

2 7 7 2 5 4 . 2 . . 3 . .
3 2 1 2 . . . 1
5 1 1
7 1 1 1 . . .

11 1 1 1

1a 2a 3a 4a 4b 5a 6a 7a 7b 8a 11a 11b
2P 1a 1a 3a 2a 2a 5a 3a 7a 7b 4a 11b 11a
3P 1a 2a 1a 4a 4b 5a 2a 7b 7a 8a 11a 11b
5P 1a 2a 3a 4a 4b 1a 6a 7b 7a 8a 11a 11b
7P 1a 2a 3a 4a 4b 5a 6a 1a 1a 8a 11b 11a

11P 1a 2a 3a 4a 4b 5a 6a 7a 7b 8a 1a 1a

Y.1 56 8 2 4 . 1 2 . . 2 1 1

Suppose that pi is a permutation character of G. Since G is 2-transitive on the 56 cosets of the
point stabilizer S, this stabilizer is transitive on 55 points, and thus G has a subgroup U of index
56 ·55 = 3080. We compute the possible permutation character of this degree.

Example
gap> perms:= PermChars(tbl, rec(torso:= [56 * 55]));;
gap> Length(perms);
16

U is contained in S, so only those candidates must be considered that vanish on all classes where
pi vanishes. Furthermore, the index of U in S is odd, so the Sylow 2 subgroups of U and S are
isomorphic; S contains elements of order 8, hence also U does.

Example
gap> OrdersClassRepresentatives(tbl);
[1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 11, 11]
gap> perms:= Filtered(perms, x -> x[5] = 0 and x[10] <> 0);
[Character(CharacterTable("M22"),

[3080, 56, 2, 12, 0, 0, 2, 0, 0, 2, 0, 0]),

Computations with the GAP Character Table Library 262

Character(CharacterTable("M22"),
[3080, 8, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0]),
Character(CharacterTable("M22"),
[3080, 24, 11, 4, 0, 0, 3, 0, 0, 2, 0, 0]),
Character(CharacterTable("M22"),
[3080, 24, 20, 4, 0, 0, 0, 0, 0, 2, 0, 0])]

For getting an overview of the distribution of the elements of U to the conjugacy classes of G, we
use the output of PermCharInfo (Reference: PermCharInfo).

Example
gap> infoperms:= PermCharInfo(tbl, perms);;
gap> Display(tbl, infoperms.display);
M22

2 7 7 2 5 2 3
3 2 1 2 . 1 .
5 1
7 1

11 1

1a 2a 3a 4a 6a 8a
2P 1a 1a 3a 2a 3a 4a
3P 1a 2a 1a 4a 2a 8a
5P 1a 2a 3a 4a 6a 8a
7P 1a 2a 3a 4a 6a 8a

11P 1a 2a 3a 4a 6a 8a

I.1 3080 56 2 12 2 2
I.2 1 21 8 54 24 36
I.3 1 3 4 9 12 18
I.4 3080 8 2 8 2 4
I.5 1 3 8 36 24 72
I.6 1 3 4 9 12 18
I.7 3080 24 11 4 3 2
I.8 1 9 44 18 36 36
I.9 1 3 4 9 12 18
I.10 3080 24 20 4 . 2
I.11 1 9 80 18 . 36
I.12 1 3 4 9 12 18

We have four candidates. For each the above list shows first the character values, then the cardi-
nality of the intersection of U with the classes, and then lower bounds for the lengths of U-conjugacy
classes of these elements. Only those classes of G are shown that contain elements of U for at least
one of the characters.

If the first two candidates are permutation characters corresponding to U then U contains exactly 8
elements of order 3 and thus U has a normal Sylow 3 subgroup P. But the order of NG(P) is bounded
by 72, which can be shown as follows. The only elements in G with centralizer order divisible by 9 are
of order 1 or 3, so P is self-centralizing in G. The factor NG(P)/CG(P) is isomorphic with a subgroup
of Aut(G) ∼= GL(2,3) which has order divisible by 16, hence the order of NG(P) divides 144. Now
note that [G : NG(P)]≡ 1 (mod 3) by Sylow’s Theorem, and |G|/144 = 3080≡−1 (mod 3). Thus
the first two candidates are not permutation characters.

Computations with the GAP Character Table Library 263

If the last two candidates are permutation characters corresponding to U then U has self-
normalizing Sylow subgroups. This is because the index of a Sylow 2 normalizer in G is odd and
divides 9, and if it is smaller than 9 then U contains at most 3 ·15+1 elements of 2 power order; the
index of a Sylow 3 normalizer in G is congruent to 1 modulo 3 and divides 16, and if it is smaller than
16 then U contains at most 4 ·8 elements of order 3.

But since U is solvable and not a p-group, not all its Sylow subgroups can be self-normalizing;
note that U has a proper normal subgroup N containing a Sylow p subgroup P of U for a prime divisor
p of |U |, and U = N ·NU(P) holds by the Frattini argument (see [Hup67, Satz I.7.8]).

8.13 A Permutation Character of the Lyons group

Let G be a maximal subgroup with structure 32+4 : 2A5.D8 in the sporadic simple Lyons group Ly.
We want to compute the permutation character 1Ly

G . (This construction has been explained in [BP98,
Section 4.2], without showing explicit GAP code.)

In the representation of Ly as automorphism group of the rank 5 graph B with 9606125 points
(see [CCN+85, p. 174]), G is the stabilizer of an edge. A group S with structure 3.McL.2 is the point
stabilizer. So the two point stabilizer U = S∩G is a subgroup of index 2 in G. The index of U in S is
15400, and according to the list of maximal subgroups of McL.2 (see [CCN+85, p. 100]), the group
U is isomorphic to the preimage in 3.McL.2 of a subgroup H of McL.2 with structure 31+4

+ : 4S5.
Using the improved combinatorial method described in [BP98, Section 3.2], all possible permu-

tation characters of degree 15400 for the group McL are computed. (The method of [BP98, Section
3.3] is slower but also needs only a few seconds.)

Example
gap> ly:= CharacterTable("Ly");;
gap> mcl:= CharacterTable("McL");;
gap> mcl2:= CharacterTable("McL.2");;
gap> 3mcl2:= CharacterTable("3.McL.2");;
gap> perms:= PermChars(mcl, rec(degree:= 15400));
[Character(CharacterTable("McL"),

[15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 0, 2, 1, 1, 1, 0, 0, 3,
0, 0, 1, 1, 1, 1]), Character(CharacterTable("McL"),

[15400, 280, 10, 37, 20, 0, 5, 10, 1, 0, 0, 2, 1, 1, 0, 0, 0, 2,
0, 0, 0, 0, 0, 0])]

We get two characters, corresponding to the two classes of maximal subgroups of index 15400 in
McL. The permutation character π = 1McL

H∩McL is the one with nonzero value on the class 10A, since the
subgroup of structure 2S5 in H ∩McL contains elements of order 10.

Example
gap> ord10:= Filtered([1 .. NrConjugacyClasses(mcl)],
> i -> OrdersClassRepresentatives(mcl)[i] = 10);
[15]
gap> List(perms, pi -> pi[ord10[1]]);
[1, 0]
gap> pi:= perms[1];
Character(CharacterTable("McL"),
[15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 0, 2, 1, 1, 1, 0, 0, 3, 0,
0, 1, 1, 1, 1])

Computations with the GAP Character Table Library 264

The character 1McL.2
H is an extension of π , so we can use the method of [BP98, Section 3.3] to

compute all possible permutation characters for the group McL.2 that have the values of π on the
classes of McL. We find that the extension of π to a permutation character of McL.2 is unique.
Regarded as a character of 3.McL.2, this character is equal to 1S

U .
Example

gap> map:= InverseMap(GetFusionMap(mcl, mcl2));
[1, 2, 3, 4, 5, 6, 7, 8, 9, [10, 11], 12, [13, 14], 15, 16, 17,

18, [19, 20], [21, 22], [23, 24]]
gap> torso:= CompositionMaps(pi, map);
[15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 2, 1, 1, 0, 0, 3, 0, 1, 1]
gap> perms:= PermChars(mcl2, rec(torso:= torso));
[Character(CharacterTable("McL.2"),

[15400, 56, 91, 10, 12, 25, 0, 11, 2, 0, 2, 1, 1, 0, 0, 3, 0, 1,
1, 110, 26, 2, 4, 0, 0, 5, 2, 1, 1, 0, 0, 1, 1])]

gap> pi:= Inflated(perms[1], 3mcl2);
Character(CharacterTable("3.McL.2"),
[15400, 15400, 56, 56, 91, 91, 10, 12, 12, 25, 25, 0, 0, 11, 11, 2,
2, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3, 3, 0, 0, 0, 1, 1, 1, 1,
1, 1, 110, 26, 2, 4, 0, 0, 5, 2, 1, 1, 0, 0, 1, 1])

The fusion of conjugacy classes of S in Ly can be computed from the character tables of S and Ly
given in [CCN+85], it is unique up to Galois automorphisms of the table of Ly.

Example
gap> fus:= PossibleClassFusions(3mcl2, ly);; Length(fus);
4
gap> g:= AutomorphismsOfTable(ly);;
gap> OrbitLengths(g, fus, OnTuples);
[4]

Now we can induce 1S
U to Ly, which yields (1S

U)
Ly = 1Ly

U .
Example

gap> pi:= Induced(3mcl2, ly, [pi], fus[1])[1];
Character(CharacterTable("Ly"),
[147934325000, 286440, 1416800, 1082, 784, 12500, 0, 672, 42, 24,
0, 40, 0, 2, 20, 0, 0, 0, 64, 10, 0, 50, 2, 0, 0, 4, 0, 0, 0, 0, 4,
0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

All elements of odd order in G are contained in U , for such an element g we have

1Ly
G (g) = |CLy(g)|/|G| · |G∩ClLy(g)|= |CLy(g)|/(2 · |U |) · |U ∩ClLy(g)|= 1/2 ·1Ly

U (g) ,

so we can prescribe the values of 1Ly
G on all classes of odd element order. For elements g of even order

we have the weaker condition U ∩ClLy(g) ⊆ G∩ClLy(g) and thus 1Ly
G (g) ≥ 1/2 ·1Ly

U (g), which gives
lower bounds for the value of 1Ly

G on the remaining classes.
Example

gap> orders:= OrdersClassRepresentatives(ly);
[1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12,

14, 15, 15, 15, 18, 20, 21, 21, 22, 22, 24, 24, 24, 25, 28, 30, 30,
31, 31, 31, 31, 31, 33, 33, 37, 37, 40, 40, 42, 42, 67, 67, 67]

Computations with the GAP Character Table Library 265

gap> torso:= [];;
gap> for i in [1 .. Length(orders)] do
> if orders[i] mod 2 = 1 then
> torso[i]:= pi[i]/2;
> fi;
> od;
gap> torso;
[73967162500,, 708400, 541,, 6250, 0,,,, 0,,, 1,,, 0, 0,,,, 25, 1, 0,

,, 0, 0,,,,,, 0,,,, 0, 0, 0, 0, 0, 0, 0, 0, 0,,,,, 0, 0, 0]

Exactly one possible permutation character of Ly satisfies these conditions.
Example

gap> perms:= PermChars(ly, rec(torso:= torso));;
gap> Length(perms);
43
gap> perms:= Filtered(perms, cand -> ForAll([1 .. Length(orders)],
> i -> cand[i] >= pi[i] / 2));
[Character(CharacterTable("Ly"),

[73967162500, 204820, 708400, 541, 392, 6250, 0, 1456, 61, 25, 0,
22, 10, 1, 10, 0, 0, 0, 32, 5, 0, 25, 1, 0, 1, 2, 0, 0, 0, 0,
4, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0,
0, 0])]

(The permutation character 1Ly
G was used in the proof that the character χ37 of Ly (see [CCN+85, p.

175]) occurs with multiplicity at least 2 in each character of Ly that is induced from a proper subgroup
of Ly.)

8.14 Identifying two subgroups of Aut(U3(5)) (October 2001)

According to the Atlas of Finite Groups [CCN+85, p. 34], the group Aut(U3(5)) has two classes of
maximal subgroups of order 24 ·33, which have the structures 32:2S4 and 62:D12, respectively.

Example
gap> tbl:= CharacterTable("U3(5).3.2");
CharacterTable("U3(5).3.2")
gap> deg:= Size(tbl) / (2^4*3^3);
1750
gap> pi:= PermChars(tbl, rec(torso:= [deg]));
[Character(CharacterTable("U3(5).3.2"),

[1750, 70, 13, 2, 0, 0, 1, 0, 0, 0, 10, 7, 10, 4, 2, 0, 0, 0, 0,
0, 0, 30, 10, 3, 0, 0, 1, 0, 0]),

Character(CharacterTable("U3(5).3.2"),
[1750, 30, 4, 6, 0, 0, 0, 0, 0, 0, 40, 7, 0, 6, 0, 0, 0, 0, 0, 0,

0, 20, 0, 2, 2, 0, 0, 0, 0])]

Now the question is which character belongs to which subgroup. We see that the first character
vanishes on the classes of element order 8 and the second does not, so only the first one can be the
permutation character induced from 62:D12.

Computations with the GAP Character Table Library 266

Example
gap> ord8:= Filtered([1 .. NrConjugacyClasses(tbl)],
> i -> OrdersClassRepresentatives(tbl)[i] = 8);
[9, 25]
gap> List(pi, x -> x{ ord8 });
[[0, 0], [0, 2]]

Thus the question is whether the second candidate is really a permutation character. Since none
of the two candidates vanishes on any outer coset of U3(5) in Aut(U3(5)), the point stabilizers are
extensions of groups of order 23 ·32 in U3(5). The restrictions of the candidates to U3(5) are different,
so we can try to answer the question using information about this group.

Example
gap> subtbl:= CharacterTable("U3(5)");
CharacterTable("U3(5)")
gap> rest:= RestrictedClassFunctions(pi, subtbl);
[Character(CharacterTable("U3(5)"),

[1750, 70, 13, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]),
Character(CharacterTable("U3(5)"),
[1750, 30, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

The intersection of the 32:2S4 subgroup with U3(5) lies inside the maximal subgroup of type M10,
which does not contain elements of order6. Only the second character has this property.

Example
gap> ord6:= Filtered([1 .. NrConjugacyClasses(subtbl)],
> i -> OrdersClassRepresentatives(subtbl)[i] = 6);
[9]
gap> List(rest, x -> x{ ord6 });
[[1], [0]]

In order to establish the two characters as permutation characters, we could also compute the
permutation characters of the degree in question directly from the table of marks of U3(5), which is
contained in the GAP library of tables of marks.

Example
gap> tom:= TableOfMarks("U3(5)");
TableOfMarks("U3(5)")
gap> perms:= PermCharsTom(subtbl, tom);;
gap> Set(Filtered(perms, x -> x[1] = deg)) = Set(rest);
true

We were mainly interested in the multiplicities of irreducible characters in these characters. The
action of Aut(U3(5) on the cosets of 32:2S4 turns out to be multiplicity-free whereas that on the cosets
of 62:D12 is not.

Example
gap> PermCharInfo(tbl, pi).ATLAS;
["1a+21a+42a+84aac+105a+125a+126a+250a+252a+288bc",

"1a+42a+84ac+105ab+125a+126a+250a+252b+288bc"]

It should be noted that the restrictions of the multiplicity-free character to the subgroups U3(5).2
and U3(5).3 of Aut(U3(5) are not multiplicity-free.

Computations with the GAP Character Table Library 267

Example
gap> subtbl2:= CharacterTable("U3(5).2");;
gap> rest2:= RestrictedClassFunctions(pi, subtbl2);;
gap> PermCharInfo(subtbl2, rest2).ATLAS;
["1a+21aab+28aa+56aa+84a+105a+125aab+126aab+288aa",

"1a+21ab+28a+56a+84a+105ab+125aab+126a+252a+288aa"]
gap> subtbl3:= CharacterTable("U3(5).3");;
gap> rest3:= RestrictedClassFunctions(pi, subtbl3);;
gap> PermCharInfo(subtbl3, rest3).ATLAS;
["1a+21abc+84aab+105a+125abc+126abc+144bcef",

"1a+21bc+84ab+105aa+125abc+126adg+144bcef"]

8.15 A Permutation Character of Aut(O+
8 (2)) (October 2001)

According to the Atlas of Finite Groups [CCN+85, p. 85], the group G = Aut(O+
8 (2)) has a class

of maximal subgroups of order 213 · 32, thus the index of these subgroups in G is 34 · 52 · 7. The
intersection of these subgroups with H = O+

8 (2) lie inside maximal subgroups of type 26:A8. We
want to show that the permutation character of the action of G on the cosets of these subgroups is not
multiplicity-free.

Since the table of marks for H is available in GAP, but not that for G, we first compute the H-
permutation characters of the intersections with H of index 34 ·52 ·7 = 14175 subgroups in G.

(Note that these intersections have order 212 · 3 because subgroups of order 212 · 32 are contained
in O+

8 (2).2 and hence are not maximal in G.)
Example

gap> t:= CharacterTable("O8+(2).3.2");;
gap> s:= CharacterTable("O8+(2)");;
gap> tom:= TableOfMarks(s);;
gap> perms:= PermCharsTom(s, tom);;
gap> deg:= 3^4*5^2*7;
14175
gap> perms:= Filtered(perms, x -> x[1] = deg);;
gap> Length(perms);
4
gap> Length(Set(perms));
1

We see that there are four classes of subgroups S in H that may belong to maximal subgroups of
the desired index in G, and that the permutation characters are equal. They lead to such groups if they
extend to G, so we compute the possible permutation characters of G that extend these characters.

Example
gap> fus:= PossibleClassFusions(s, t);
[[1, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10, 10, 10, 11, 12, 12,

12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 16, 17, 17, 17, 18, 19,
20, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 26, 26, 26, 27,
27, 27]]

gap> fus:= fus[1];;
gap> inv:= InverseMap(fus);;
gap> comp:= CompositionMaps(perms[1], inv);
[14175, 1215, 375, 79, 0, 0, 27, 27, 99, 15, 7, 0, 0, 0, 0, 9, 3, 1,

Computations with the GAP Character Table Library 268

0, 1, 1, 0, 0, 0, 0, 0, 0]
gap> ext:= PermChars(t, rec(torso:= comp));
[Character(CharacterTable("O8+(2).3.2"),

[14175, 1215, 375, 79, 0, 0, 27, 27, 99, 15, 7, 0, 0, 0, 0, 9, 3,
1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 63, 9, 15, 7, 1, 0, 3, 3, 3, 1,
0, 0, 1, 1, 945, 129, 45, 69, 21, 25, 13, 0, 0, 0, 9, 0, 3, 3,
7, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0])]

gap> PermCharInfo(t, ext[1]).ATLAS;
["1a+50b+100a+252bb+300b+700b+972bb+1400a+1944a+3200b+4032b"]

Thus we get one permutation character of G which is not multiplicity-free.

8.16 Four Primitive Permutation Characters of the Monster Group

In this section, we compute four primitive permutation characters 1M
H of the sporadic simple Monster

group M, using the following strategy.
Let E be an elementary abelian 2-subgroup of M, and H = NM(E). For an involution z ∈ E, let

G =CM(z) and U = G∩H =CH(z) and V =CH(E), a normal subgroup of H. According to the Atlas
of Finite Groups [CCN+85, p. 234], G has the structure 2.B if z is in the class 2A of M, and G has the
structure 21+24

+ .Co1 if z is in the class 2B of M. In the latter case, let N denote the extraspecial normal
subgroup of order 225 in G. It will turn out that in our situation, U contains N.

We want to compute many values of 1M
H from the knowledge of permutation characters 1M

X , for
suitable subgroups X with the property V ≤ X ≤ U , and then use the GAP function PermChars
(Reference: PermChars) for computing all those possible permutation characters of M that take the
known values; if there is a unique solution then this is the desired character 1M

H .
(In the year 2023, the character tables of three of the four maximal subgroups H in question

became available, since then one can compute the permutation characters directly by first computing
the possible class fusions to M and then inducing the trivial character of H to M. We get the same
results this way, see below.)

rr Z

r r NrV

rVN

rU

rG r H

rM

��@@
��

��

@
@
@

@
@
@
�
�
�

B
B
B
BB

Why does this approach have a chance to be successful? Currently we do not have representations
for the subgroups H in question, but the character tables of the involution centralizers G in M are
available, and also either the character tables of X/V for the interesting subgroups X are known or we
have enough information to compute the characters 1G

X .

Computations with the GAP Character Table Library 269

And how do we compute certain values of 1M
H ? Suppose that C is a union of classes of M and I is

an index set such that (1H)C∩H = (∑i∈I ci1H
Xi
)C∩H holds for suitable rational numbers ci.

The right hand side of this equality lives in H/V , provided that C “behaves well” w.r.t. factoring
out the normal subgroup V of H, i. e., if there is a set of classes in H/V whose preimages in H form
the set H ∩C . For example, C may be the set of all those elements in M whose order is not divisible
by a particular prime p that divides |H| but not |U |.

Under these conditions, we have (1M
H)C = ((∑i∈I ci1G

Xi
)M)C , and we interpret the right hand side

as follows: If Xi contains N then 1G
Xi

can be identified with 1G/N
Xi/N . If Xi contains at least Z then 1G

Xi

can be identified with 1G/Z
Xi/Z . As mentioned above, we have good chances to compute these charac-

ters. So the main task in each of the following sections is to find, for a suitable set C of classes, a
linear combination of permutation characters of H/V whose restriction to (C ∩H)/V is constant and
nonzero.

8.16.1 The Subgroup 22.211.222.(S3×M24) (June 2009)

According to the Atlas of Finite Groups [CCN+85, p. 234], the Monster group M has a class of
maximal subgroups H of the type 22.211.222.(S3×M24). Currently the character table of H and the
class fusion into M are not available in GAP. We are interested in the permutation character 1G

H , and
we will compute it without this information.

The subgroup H normalizes a Klein four group E whose involutions lie in the class 2B. We fix an
involution z in E, and set G = CM(z), U = CH(z), and V = CH(E). Further, let N be the extraspecial
normal subgroup of order 225 in G.

So G has the structure 21+24
+ .Co1, and U has index three in H. The order of NU/N is a multiple of

22+11+22−25 ·2 · |M24|, and NU/N occurs as a subgroup of G/N ∼=Co1.
Example

gap> co1:= CharacterTable("Co1");;
gap> order:= 2^(2+11+22-25) * 2 * Size(CharacterTable("M24"));
501397585920
gap> maxes:= List(Maxes(co1), CharacterTable);;
gap> filt:= Filtered(maxes, t -> Size(t) mod order = 0);
[CharacterTable("2^11:M24")]
gap> List(filt, t -> Size(t) / order);
[1]
gap> k:= filt[1];;

The list of maximal subgroups of Co1 (see [CCN+85, p. 183]) tells us that NU/N is a maximal
subgroup K of Co1 and has the structure 211 : M24. In particular, U contains N and thus U/N ∼= K.

Let C = {g ∈M;3 - |g| or 1M
V (g3) = 0}.

Then (1H)C∩H = (1H
U − 1/31H

V)C∩H holds, as we can see from computations with H/V ∼= S3, as
follows.

Example
gap> f:= CharacterTable("Symmetric", 3);
CharacterTable("Sym(3)")
gap> OrdersClassRepresentatives(f);
[1, 2, 3]
gap> deg3:= PermChars(f, 3);
[Character(CharacterTable("Sym(3)"), [3, 1, 0])]
gap> deg6:= PermChars(f, 6);

Computations with the GAP Character Table Library 270

[Character(CharacterTable("Sym(3)"), [6, 0, 0])]
gap> deg3[1] - 1/3 * deg6[1];
ClassFunction(CharacterTable("Sym(3)"), [1, 1, 0])

The character table of G is available in GAP, so we can compute the permutation character π = 1G
U

by computing the primitive permutation character 1Co1
K , identifying it with 1G/N

U/N , and then inflating this
character to G.

Example
gap> m:= CharacterTable("M");
CharacterTable("M")
gap> g:= CharacterTable("MC2B");
CharacterTable("2^1+24.Co1")
gap> pi:= RestrictedClassFunction(TrivialCharacter(k)^co1, g);;

Next we consider the permutation character φ = 1G
V . The group V does not contain N because K

is perfect. But V contains Z because otherwise U would be a direct product of V and Z, which would
imply that N would be a direct product of V ∩N and Z. So we can regard φ as the inflation of 1G/Z

V/Z
from G/Z to G, i. e., we can perform the computations with the character table of the factor group
G/Z.

Example
gap> zclasses:= ClassPositionsOfCentre(g);;
gap> gmodz:= g / zclasses;
CharacterTable("2^1+24.Co1/[1, 2]")
gap> invmap:= InverseMap(GetFusionMap(g, gmodz));;
gap> pibar:= CompositionMaps(pi, invmap);;

Since φ(g) = [G : V] · |gG∩V |/|gG| holds for g ∈G, and since gG∩V ⊆ gG∩V N, with equality if
g has odd order, we get φ(g) = 2 ·π(g) if g has odd order, and φ(g) = 0 if π(g) = 0.

We want to compute the possible permutation characters with these values.
Example

gap> factorders:= OrdersClassRepresentatives(gmodz);;
gap> phibar:= [];;
gap> for i in [1 .. NrConjugacyClasses(gmodz)] do
> if factorders[i] mod 2 = 1 then
> phibar[i]:= 2 * pibar[i];
> elif pibar[i] = 0 then
> phibar[i]:= 0;
> fi;
> od;
gap> cand:= PermChars(gmodz, rec(torso:= phibar));;
gap> Length(cand);
1

Now we know πM = 1M
U and φ M = 1M

V , so we can write down (1M
H)C .

Example
gap> phi:= RestrictedClassFunction(cand[1], g)^m;;
gap> pi:= pi^m;;
gap> cand:= ShallowCopy(pi - 1/3 * phi);;

Computations with the GAP Character Table Library 271

gap> morders:= OrdersClassRepresentatives(m);;
gap> for i in [1 .. Length(morders)] do
> if morders[i] mod 3 = 0 and phi[PowerMap(m, 3)[i]] <> 0 then
> Unbind(cand[i]);
> fi;
> od;

We claim that 1M
H (g) ≥ πM(g)− 1/3ψM(g) for all g ∈ M. In order to see this, let H ′ denote

the index two subgroup of H, and let g ∈ M. Since H is the disjoint union of V , H ′ \V , and three
H-conjugates of U \V , we get

1M
H (g) = [M : H] · |gM ∩H|/|gM|

= [M : H] ·
(
|gM ∩V |+3|gM ∩U \V |+ |gM ∩H ′ \V |

)
/|gM|

= [M : H] ·
(
3|gM ∩U |−2|gM ∩V |+ |gM ∩H ′ \V |

)
/|gM|

= 1M
U (g)−1/3 ·1G

V (g)+ [M : H] · |gM ∩H ′ \V |/|gM|.

Possible constituents of 1M
H are those rational irreducible characters of M that are constituents of

πM.
Example

gap> constit:= Filtered(RationalizedMat(Irr(m)),
> chi -> ScalarProduct(m, chi, pi) <> 0);;

Now we compute the possible permutation characters that have the prescribed values, are compat-
ible with the given lower bounds for values, and have only constituents in the given list.

Example
gap> cand:= PermChars(m,
> rec(torso:= cand, chars:= constit,
> lower:= ShallowCopy(pi - 1/3 * phi),
> normalsubgroup:= [1 .. NrConjugacyClasses(m)],
> nonfaithful:= TrivialCharacter(m)));
[Character(CharacterTable("M"),

[16009115629875684006343550944921875, 7774182899642733721875,
120168544413337875, 4436049512692980, 215448838605,
131873639625, 760550656275, 110042727795, 943894035, 568854195,
1851609375, 0, 4680311220, 405405, 78624756, 14467005, 178605,
248265, 874650, 0, 76995, 591163, 224055, 34955, 29539, 20727,
0, 0, 375375, 15775, 0, 0, 0, 495, 116532, 3645, 62316, 1017,
11268, 357, 1701, 45, 117, 705, 0, 0, 4410, 1498, 0, 3780, 810,
0, 0, 83, 135, 31, 0, 0, 0, 0, 0, 0, 0, 255, 195, 0, 215, 0, 0,
210, 0, 42, 0, 35, 15, 1, 1, 160, 48, 9, 92, 25, 9, 9, 5, 1,
21, 0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 0, 120, 76, 10, 0, 0, 0,
0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 0,
0, 0, 18, 0, 10, 0, 3, 3, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0,
0, 0, 2, 0, 0, 0, 0, 0, 6, 12, 0, 0, 2, 0, 0, 0, 2, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0])]

There is only one candidate, so we have found the permutation character.
The character table of H is available since 2023. We can compute the permutation character

directly from this table.

Computations with the GAP Character Table Library 272

Example
gap> h:= CharacterTable("2^(2+11+22).(M24xS3)");;
gap> fus:= PossibleClassFusions(h, m);;
gap> cand = Set(fus, map -> InducedClassFunctionsByFusionMap(h, m,
> [TrivialCharacter(h)], map)[1]);
true

8.16.2 The Subgroup 23.26.212.218.(L3(2)×3.S6) (September 2009)

According to the Atlas of Finite Groups [CCN+85, p. 234], the Monster group M has a class of
maximal subgroups H of the type 23.26.212.218.(L3(2)×3.S6). Currently the character table of H and
the class fusion into M are not available in GAP. We are interested in the permutation character 1G

H ,
and we will compute it without this information.

The subgroup H normalizes an elementary abelian group E of order eight whose involutions lie in
the class 2B. We fix an involution z in E, and set G =CM(z), U =CH(z), and V =CH(E). Further, let
N be the extraspecial normal subgroup of order 225 in G.

So G has the structure 21+24
+ .Co1, and U has index seven in H. The order of NU/N is a multiple

of 23+6+12+18−25 · |L3(2)| · |3.S6|/7, and NU/N occurs as a subgroup of G/N ∼=Co1.
Example

gap> co1:= CharacterTable("Co1");;
gap> order:= 2^(3+6+12+18-25) * 168 * 3 * Factorial(6) / 7;
849346560
gap> maxes:= List(Maxes(co1), CharacterTable);;
gap> filt:= Filtered(maxes, t -> Size(t) mod order = 0);
[CharacterTable("2^(1+8)+.O8+(2)"),

CharacterTable("2^(4+12).(S3x3S6)")]
gap> List(filt, t -> Size(t) / order);
[105, 1]
gap> o8p2:= CharacterTable("O8+(2)");;
gap> PermChars(o8p2, rec(torso:= [105]));
[]
gap> k:= filt[2];;

The list of maximal subgroups of Co1 (see [CCN+85, p. 183]) tells us that NU/N is a maximal
subgroup K of Co1 and has the structure 24+12.(S3×3.S6). (Note that the group O+

8 (2) has no proper
subgroup of index 105.) In particular, U contains N and thus U/N ∼= K.

Let C be the set of elements in M whose order is not divisible by 7. Then (1H)C∩H = (1H
U −

1/31H
V N +1/211H

V)C∩H holds, as we can see from computations with H/V ∼= L3(2), as follows.
So S4, V4, 1 suffice! –>

Example
gap> f:= CharacterTable("L3(2)");
CharacterTable("L3(2)")
gap> OrdersClassRepresentatives(f);
[1, 2, 3, 4, 7, 7]
gap> deg7:= PermChars(f, 7);
[Character(CharacterTable("L3(2)"), [7, 3, 1, 1, 0, 0])]
gap> deg42:= PermChars(f, 42);
[Character(CharacterTable("L3(2)"), [42, 2, 0, 2, 0, 0]),

Character(CharacterTable("L3(2)"), [42, 6, 0, 0, 0, 0])]

Computations with the GAP Character Table Library 273

gap> deg168:= PermChars(f, 168);
[Character(CharacterTable("L3(2)"), [168, 0, 0, 0, 0, 0])]
gap> deg7[1] - 1/3 * deg42[2] + 1/21 * deg168[1];
ClassFunction(CharacterTable("L3(2)"), [1, 1, 1, 1, 0, 0])

(Note that V N/V is a Klein four group, and there is only one transitive permutation character of
L3(2) that is induced from such subgroups.)

The character table of G is available in GAP, so we can compute the permutation character π = 1G
U

by computing the primitive permutation character 1Co1
K , identifying it with 1G/N

U/N , and then inflating this
character to G.

Example
gap> m:= CharacterTable("M");
CharacterTable("M")
gap> g:= CharacterTable("MC2B");
CharacterTable("2^1+24.Co1")
gap> pi:= RestrictedClassFunction(TrivialCharacter(k)^co1, g);;

The permutation character ψ = 1G
V N can be computed as the inflation of 1G/N

V N/N = (1U/N
V N/N)

G/N ,

where 1U/N
V N/N is a character of K that can be identified with the regular permutation character of

U/V N ∼= S3.
Example

gap> nsg:= ClassPositionsOfNormalSubgroups(k);;
gap> nsgsizes:= List(nsg, x -> Sum(SizesConjugacyClasses(k){ x }));;
gap> nn:= nsg[Position(nsgsizes, Size(k) / 6)];;
gap> psi:= 0 * [1 .. NrConjugacyClasses(k)];;
gap> for i in nn do
> psi[i]:= 6;
> od;
gap> psi:= InducedClassFunction(k, psi, co1);;
gap> psi:= RestrictedClassFunction(psi, g);;

Next we consider the permutation character φ = 1G
V . The group V does not contain N because

K does not have a factor group of the type S4. But V contains Z because U/V is centerless. So we
can regard φ as the inflation of 1G/Z

V/Z from G/Z to G, i. e., we can perform the computations with the
character table of the factor group G/Z.

Example
gap> zclasses:= ClassPositionsOfCentre(g);;
gap> gmodz:= g / zclasses;
CharacterTable("2^1+24.Co1/[1, 2]")
gap> invmap:= InverseMap(GetFusionMap(g, gmodz));;
gap> psibar:= CompositionMaps(psi, invmap);;

Since φ(g) = [G : V] · |gG∩V |/|gG| holds for g ∈G, and since gG∩V ⊆ gG∩V N, with equality if
g has odd order, we get φ(g) = 4 ·ψ(g) if g has odd order, and φ(g) = 0 if ψ(g) = 0.

We want to compute the possible permutation characters with these values. This is easier if we
“go down” from V N to V in two steps.

Computations with the GAP Character Table Library 274

Example
gap> factorders:= OrdersClassRepresentatives(gmodz);;
gap> phibar:= [];;
gap> upperphibar:= [];;
gap> for i in [1 .. NrConjugacyClasses(gmodz)] do
> if factorders[i] mod 2 = 1 then
> phibar[i]:= 2 * psibar[i];
> elif psibar[i] = 0 then
> phibar[i]:= 0;
> fi;
> upperphibar[i]:= 2 * psibar[i];
> od;
gap> cand:= PermChars(gmodz, rec(torso:= phibar,
> upper:= upperphibar,
> normalsubgroup:= [1 .. NrConjugacyClasses(gmodz)],
> nonfaithful:= TrivialCharacter(gmodz)));;
gap> Length(cand);
3

One of the candidates computed in this first step is excluded by the fact that it is induced from a
subgroup that contains N/Z.

Example
gap> nn:= First(ClassPositionsOfNormalSubgroups(gmodz),
> x -> Sum(SizesConjugacyClasses(gmodz){x}) = 2^24);
[1 .. 4]
gap> cont:= PermCharInfo(gmodz, cand).contained;;
gap> cand:= cand{ Filtered([1 .. Length(cand)],
> i -> Sum(cont[i]{ nn }) < 2^24) };;
gap> Length(cand);
2

Now we run the second step. After excluding the candidates that cannot be induced from sub-
groups whose intersection with N/Z has index four in N/Z, we get four solutions.

Example
gap> poss:= [];;
gap> for v in cand do
> phibar:= [];
> upperphibar:= [];
> for i in [1 .. NrConjugacyClasses(gmodz)] do
> if factorders[i] mod 2 = 1 then
> phibar[i]:= 2 * v[i];
> elif v[i] = 0 then
> phibar[i]:= 0;
> fi;
> upperphibar[i]:= 2 * v[i];
> od;
> Append(poss, PermChars(gmodz, rec(torso:= phibar,
> upper:= upperphibar,
> normalsubgroup:= [1 .. NrConjugacyClasses(gmodz)],
> nonfaithful:= TrivialCharacter(gmodz))));
> od;

Computations with the GAP Character Table Library 275

gap> Length(poss);
6
gap> cont:= PermCharInfo(gmodz, poss).contained;;
gap> poss:= poss{ Filtered([1 .. Length(poss)],
> i -> Sum(cont[i]{ nn }) < 2^23) };;
gap> Length(poss);
4
gap> phicand:= RestrictedClassFunctions(poss, g);;

Since we have several candidates for 1G
V , we form the linear combinations for all these candidates.

Example
gap> phicand:= RestrictedClassFunctions(poss, g);;
gap> phicand:= InducedClassFunctions(phicand, m);;
gap> psi:= psi^m;;
gap> pi:= pi^m;;
gap> cand:= List(phicand,
> phi -> ShallowCopy(pi - 1/3 * psi + 1/21 * phi));;
gap> morders:= OrdersClassRepresentatives(m);;
gap> for x in cand do
> for i in [1 .. Length(morders)] do
> if morders[i] mod 7 = 0 then
> Unbind(x[i]);
> fi;
> od;
> od;

Exactly one of the candidates has only integral values.
Example

gap> cand:= Filtered(cand, x -> ForAll(x, IsInt));
[[4050306254358548053604918389065234375, 148844831270071996434375,

2815847622206994375, 14567365753025085, 3447181417680,
659368198125, 3520153823175, 548464353255, 5706077895,
3056566695, 264515625, 0, 19572895485, 6486480, 186109245,
61410960, 758160, 688365,,, 172503, 1264351, 376155, 137935,
99127, 52731, 0, 0, 119625, 3625, 0, 0, 0, 0, 402813, 29160,
185301, 2781, 21069, 1932, 4212, 360, 576, 1125, 0, 0,,,, 2160,
810, 0, 0, 111, 179, 43, 0, 0, 0, 0, 0, 0, 0, 185, 105, 0, 65,
0, 0,,,,, 0, 0, 0, 0, 337, 105, 36, 157, 37, 18, 18, 16, 4, 21,
0, 0, 0, 0, 0,,,,, 0, 0, 60, 40, 10, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0,,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0,,,,, 0, 0, 0, 0,
0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,,,, 0, 0, 0, 6, 8, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0,,, 0, 0, 0, 0, 0,,,, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,, 0]]

Possible constituents of 1M
H are those rational irreducible characters of M that are constituents of

πM.
Example

gap> constit:= Filtered(RationalizedMat(Irr(m)),
> chi -> ScalarProduct(m, chi, pi) <> 0);;

Computations with the GAP Character Table Library 276

Now we compute the possible permutation characters that have the prescribed values and have
only constituents in the given list.

Example
gap> cand:= PermChars(m, rec(torso:= cand[1], chars:= constit));
[Character(CharacterTable("M"),

[4050306254358548053604918389065234375, 148844831270071996434375,
2815847622206994375, 14567365753025085, 3447181417680,
659368198125, 3520153823175, 548464353255, 5706077895,
3056566695, 264515625, 0, 19572895485, 6486480, 186109245,
61410960, 758160, 688365, 58310, 0, 172503, 1264351, 376155,
137935, 99127, 52731, 0, 0, 119625, 3625, 0, 0, 0, 0, 402813,
29160, 185301, 2781, 21069, 1932, 4212, 360, 576, 1125, 0, 0,
1302, 294, 0, 2160, 810, 0, 0, 111, 179, 43, 0, 0, 0, 0, 0, 0,
0, 185, 105, 0, 65, 0, 0, 224, 0, 14, 0, 0, 0, 0, 0, 337, 105,
36, 157, 37, 18, 18, 16, 4, 21, 0, 0, 0, 0, 0, 70, 38, 14, 0,
0, 0, 60, 40, 10, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 10, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 5, 1, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 8, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0])]

There is only one candidate, so we have found the permutation character.
The character table of H is available since 2023. We can compute the permutation character

directly from this table. (The class fusion from H to M is unique up to table automorphisms, but its
computation is a bit tricky, thus we do not compute this fusion here.)

Example
gap> h:= CharacterTable("2^[39].(L3(2)x3.S6)");;
gap> cand[1] = TrivialCharacter(h)^m;
true

8.16.3 The Subgroup 25.210.220.(S3×L5(2)) (October 2009)

According to the Atlas of Finite Groups [CCN+85, p. 234], the Monster group M has a class of
maximal subgroups H of the type 25.210.220.(S3×L5(2)). Currently the character table of H and the
class fusion into M are not available in GAP. We are interested in the permutation character 1G

H , and
we will compute it without this information.

The subgroup H normalizes an elementary abelian group E of order 32 whose involutions lie in
the class 2B. We fix an involution z in E, and set G =CM(z), U =CH(z), and V =CH(E). Further, let
N be the extraspecial normal subgroup of order 225 in G.

So G has the structure 21+24
+ .Co1, and U has index 31 in H. The order of NU/N is a multiple of

25+10+20−25 · |L5(2)| · |S3|/31, and NU/N occurs as a subgroup of G/N ∼=Co1.
Example

gap> co1:= CharacterTable("Co1");;
gap> order:= 2^35*Size(CharacterTable("L5(2)"))*6 / 2^25 / 31;
1981808640
gap> maxes:= List(Maxes(co1), CharacterTable);;
gap> filt:= Filtered(maxes, t -> Size(t) mod order = 0);
[CharacterTable("2^11:M24"), CharacterTable("2^(1+8)+.O8+(2)"),

CharacterTable("2^(2+12):(A8xS3)")]

Computations with the GAP Character Table Library 277

gap> List(filt, t -> Size(t) / order);
[253, 45, 1]
gap> m24:= CharacterTable("M24");;
gap> cand:= PermChars(m24, rec(torso:=[253]));
[Character(CharacterTable("M24"),

[253, 29, 13, 10, 1, 5, 5, 1, 3, 2, 1, 1, 1, 1, 3, 0, 2, 1, 1, 1,
0, 0, 1, 1, 0, 0])]

gap> TestPerm5(m24, cand, m24 mod 11);
[]
gap> PermChars(CharacterTable("O8+(2)"), rec(torso:=[45]));
[]
gap> k:= filt[3];;

The list of maximal subgroups of Co1 (see [CCN+85, p. 183]) tells us that NU/N is a maximal
subgroup K of Co1 and has the structure 22+12.(A8× S3). (Note that the group M24 has no proper
subgroup of index 253, which is shown above using the 11-modular Brauer table of M24. Furthermore,
the group O+

8 (2) has no subgroup of index 45.) In particular, U contains N and thus U/N ∼= K.
Let C be the set of elements in M whose order is not divisible by 31 or 21. We want to find an

index set I and subgroups Xi, for i ∈ I, with the property that V ≤ Xi ≤U and

(1H)C∩H =

(
∑
i∈I

ci1H
Xi

)
C∩H

holds for suitable rational integers ci. Let W be the full preimage of the elementary normal subgroup of
order 16 in U/V ∼= 24.A8 under the natural epimorphism from U to U/V , and set I1 = {i ∈ I;W ≤ Xi}
and I2 = I \ I1.

Using the known table of marks of U/V , we will find a solution such that [W : (W ∩Xi)] = 2 for
all i ∈ I2. First we compute the permutation characters 1U/V

S for all subgroups S of U/V that contain
W/V , and induce them to H/V .

Example
gap> subtbl:= CharacterTable("2^4:A8");;
gap> subtom:= TableOfMarks(subtbl);;
gap> perms:= PermCharsTom(subtbl, subtom);;
gap> nsg:= ClassPositionsOfNormalSubgroups(subtbl);
[[1], [1, 2], [1 .. 25]]
gap> above:= Filtered(perms, x -> x[1] = x[2]);;
gap> tbl:= CharacterTable("L5(2)");;
gap> above:= Set(Induced(subtbl, tbl, above));;

Next we compute the permutation characters 1U/V
S for all subgroups S of U/V whose intersection

with W/V has index two in W/V . Afterwards we exclude certain subgroups that would slow down
later computations, and induce also these characters to H/V .

Example
gap> index2:= Filtered(perms,
> x -> Sum(PermCharInfo(subtbl, [x]).contained[1]{ [1,2] }) = 8);;
gap> index2:= Filtered(index2, x -> not x[1] in [630, 840, 1260, 1680]);;
gap> index2:= Set(Induced(subtbl, tbl, index2));;

Computations with the GAP Character Table Library 278

Now we induce the permutation characters to H/V , and compute the coefficients of a linear com-
bination as desired.

Example
gap> orders:= OrdersClassRepresentatives(tbl);;
gap> goodclasses:= Filtered([1 .. NrConjugacyClasses(tbl)],
> i -> not orders[i] in [21, 31]);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
gap> matrix:= List(Concatenation(above, index2), x -> x{ goodclasses });;
gap> sol:= SolutionMat(matrix,
> ListWithIdenticalEntries(Length(goodclasses), 1));
[692/651, 57/217, -78/217, -26/217, 0, 74/651, 11/217, 0, 3/217,

151/651, 0, 22/651, 0, 0, 0, -11/217, 0, 0, 0, 0, 0, 0, 0, 0,
-115/651, 0, -3/31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -34/93,
-11/651, 0, 2/21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/31, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0]

gap> nonzero:= Filtered([1 .. Length(sol)], i -> sol[i] <> 0);
[1, 2, 3, 4, 6, 7, 9, 10, 12, 16, 25, 27, 106, 107, 109, 120]
gap> sol:= sol{ nonzero };;

Now we transfer this linear combination to the character tables which are given in our situation.
Those constituents that are induced from subgroups of H above W can be identified uniquely via

their degrees and their values distribution; we compute these characters in the character table of U/W
obtained as a factor table of the character table of U/N, lift them back to U/N, induce them to G/N,
inflate them to G, and then induce them fo M.

Example
gap> a8degrees:= List(above{ Filtered(nonzero,
> x -> x <= Length(above)) },
> x -> x[1]) / 31;
[1, 8, 15, 28, 56, 56, 70, 105, 120, 168, 336, 336]
gap> a8tbl:= subtbl / [1, 2];;
gap> invtoa8:= InverseMap(GetFusionMap(subtbl, a8tbl));;
gap> nsg:= ClassPositionsOfNormalSubgroups(k);;
gap> nn:= First(nsg, x -> Sum(SizesConjugacyClasses(k){ x }) = 6*2^14);;
gap> a8tbl_other:= k / nn;;
gap> g:= CharacterTable("MC2B");
CharacterTable("2^1+24.Co1")
gap> constit:= [];;
gap> for i in [1 .. Length(a8degrees)] do
> cand:= PermChars(a8tbl_other, rec(torso:= [a8degrees[i]]));
> filt:= Filtered(perms, x -> x^tbl = above[nonzero[i]]);
> filt:= List(filt, x -> CompositionMaps(x, invtoa8));
> cand:= Filtered(cand,
> x -> ForAny(filt, y -> Collected(x) = Collected(y)));
> Add(constit, List(Induced(Restricted(Induced(

Computations with the GAP Character Table Library 279

> Restricted(cand, k), co1), g), m), ValuesOfClassFunction));
> od;
gap> List(constit, Length);
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Dealing with the remaining constituents is more involved. For a permutation character 1U/V
X/V , we

compute 1U/V
WX/V , a character whose degree is half as large and which can be regarded as a character

of U/W . This character can be treated like the ones above: We lift it to U/N, induce it to G/N, and
inflate it to G/Z(G); let this character be 1G/Z(G)

Y , for some subgroup Y . Then we compute the possible
permutation characters of G/Z(G) that can be induced from a subgroup of index two inside Y , inflate
these characters to G and then induce them to M.

Example
gap> downdegrees:= List(index2{ Filtered(nonzero,
> x -> x > Length(above))
> - Length(above) },
> x -> x[1]) / 31;
[30, 210, 210, 1920]
gap> f:= g / ClassPositionsOfCentre(g);;
gap> forders:= OrdersClassRepresentatives(f);;
gap> inv:= InverseMap(GetFusionMap(g, f));;
gap> for j in [1 .. Length(downdegrees)] do
> chars:= [];
> cand:= PermChars(a8tbl_other, rec(torso:= [downdegrees[j]/2]));
> filt:= Filtered(perms, x -> x^tbl = index2[nonzero[
> j + Length(a8degrees)] - Length(above)]);
> filt:= Induced(subtbl, a8tbl, filt,
> GetFusionMap(subtbl, a8tbl));
> cand:= Filtered(cand, x -> ForAny(filt,
> y -> Collected(x) = Collected(y)));
> cand:= Restricted(Induced(Restricted(cand, k), co1), g);
> for chi in cand do
> cchi:= CompositionMaps(chi, inv);
> upper:= [];
> pphi:= [];
> for i in [1 .. NrConjugacyClasses(f)] do
> if forders[i] mod 2 = 1 then
> pphi[i]:= 2 * cchi[i];
> elif cchi[i] = 0 then
> pphi[i]:= 0;
> fi;
> upper[i]:= 2* cchi[i];
> od;
> Append(chars, PermChars(f, rec(torso:= ShallowCopy(pphi),
> upper:= upper,
> normalsubgroup:= [1 .. 4],
> nonfaithful:= cchi)));
> od;
> Add(constit, List(Induced(Restricted(chars, g), m),
> ValuesOfClassFunction));
> od;

Computations with the GAP Character Table Library 280

gap> List(constit, Length);
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 10, 10, 2]

Now we form the possible linear combinations.
Example

gap> cand:= List(Cartesian(constit), l -> sol * l);;
gap> m:= CharacterTable("M");
CharacterTable("M")
gap> morders:= OrdersClassRepresentatives(m);;
gap> for x in cand do
> for i in [1 .. Length(morders)] do
> if morders[i] mod 31 = 0 or morders[i] mod 21 = 0 then
> Unbind(x[i]);
> fi;
> od;
> od;

Exactly one of the candidates has only integral values.
Example

gap> cand:= Filtered(cand, x -> ForAll(x, IsInt));
[[391965121389536908413379198941796875, 23914487292951376996875,

474163138042468875, 9500455925885925, 646346515815,
334363486275, 954161764875, 147339103275, 1481392395,
1313281515, 0, 8203125, 9827885925, 1216215, 91556325, 9388791,
115911, 587331, 874650, 0, 79515, 581955, 336375, 104371,
62331, 36855, 0, 0, 0, 0, 28125, 525, 1125, 0, 188325, 16767,
88965, 2403, 9477, 1155, 891, 207, 351, 627, 0, 0, 4410, 1498,
0, 0, 0, 30, 150, 91, 151, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 125,
0, 5, 5,,,,, 0, 0, 0, 0, 141, 45, 27, 61, 27, 9, 9, 7, 3, 15,
0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 30, 0, 0, 0, 6, 6, 6,,, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,,,,, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0,
0, 0, 2, 2, 0, 2,,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,,,, 0,
0, 0, 0, 0, 0,,, 0, 0, 0, 0, 0, 0,, 0, 0, 0]]

Now we compute the possible permutation characters that have the prescribed values.
Example

gap> cand:= PermChars(m, rec(torso:= cand[1]));
[Character(CharacterTable("M"),

[391965121389536908413379198941796875, 23914487292951376996875,
474163138042468875, 9500455925885925, 646346515815,
334363486275, 954161764875, 147339103275, 1481392395,
1313281515, 0, 8203125, 9827885925, 1216215, 91556325, 9388791,
115911, 587331, 874650, 0, 79515, 581955, 336375, 104371,
62331, 36855, 0, 0, 0, 0, 28125, 525, 1125, 0, 188325, 16767,
88965, 2403, 9477, 1155, 891, 207, 351, 627, 0, 0, 4410, 1498,
0, 0, 0, 30, 150, 91, 151, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 125,
0, 5, 5, 210, 0, 42, 0, 0, 0, 0, 0, 141, 45, 27, 61, 27, 9, 9,
7, 3, 15, 0, 0, 0, 0, 0, 98, 74, 42, 0, 0, 30, 0, 0, 0, 6, 6,
6, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Computations with the GAP Character Table Library 281

1, 1, 0, 18, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 3, 3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0])]

There is only one candidate, so we have found the permutation character.

8.16.4 The Subgroup 210+16.O+
10(2) (November 2009)

According to the Atlas of Finite Groups [CCN+85, p. 234], the Monster group M has a class of
maximal subgroups H of the type 210+16.O+

10(2). Currently the character table of H and the class
fusion into M are not available in GAP. We are interested in the permutation character 1M

H , and we
will compute it without this information.

The subgroup H normalizes an elementary abelian group E of order 210 which contains 496 invo-
lutions in the class 2A and 527 involutions in the class 2B. Let V denote the normal subgroup of order
226 in H, and set H̄ = H/N. Since the smallest two indices of maximal subgroups of H̄ are 496 and
527, respectively, H acts transitively on both the 2A and the 2B involutions in E, and the centralizers
of these involutions contain V .

Example
gap> Hbar:= CharacterTable("O10+(2)");;
gap> U_Abar:= CharacterTable("O10+(2)M1");
CharacterTable("S8(2)")
gap> Index(Hbar, U_Abar);
496
gap> U_Bbar:= CharacterTable("O10+(2)M2");
CharacterTable("2^8:O8+(2)")
gap> Index(Hbar, U_Bbar);
527

We fix a 2A involution zA in E, and set GA =CM(zA) and UA =CH(zA). So GA has the structure 2.B
and UA has the structure 210+16.S8(2). From the list of maximal subgroups of B we see that the image
of GA under the natural epimorphism from GA to B is a maximal subgroup of B and has the structure
29+16.S8(2).

Example
gap> b:= CharacterTable("B");
CharacterTable("B")
gap> Horder:= 2^26 * Size(Hbar);
1577011055923770163200
gap> order:= Horder / (2 * 496);
1589728887019929600
gap> maxes:= List(Maxes(b), CharacterTable);;
gap> filt:= Filtered(maxes, t -> Size(t) mod order = 0);
[CharacterTable("2^(9+16).S8(2)")]
gap> List(filt, t -> Size(t) / order);
[1]
gap> u1:= filt[1];
CharacterTable("2^(9+16).S8(2)")

Computations with the GAP Character Table Library 282

Analogously, we fix a 2B involution zB in E, and set GB = CM(zB) and UB = CH(zB), Further, let
N be the extraspecial normal subgroup of order 225 in GB. So GB has the structure 21+24

+ .Co1, and UB

has index 527 in GB. From the list of maximal subgroups of Co1 we see that the image of UB under the
natural epimorphism from GB to Co1 is a maximal subgroup of Co1 and has the structure 21+8

+ .O+
8 (2).

Example
gap> co1:= CharacterTable("Co1");;
gap> order:= Horder / (2^25 * 527);
89181388800
gap> maxes:= List(Maxes(co1), CharacterTable);;
gap> filt:= Filtered(maxes, t -> Size(t) mod order = 0);
[CharacterTable("2^(1+8)+.O8+(2)")]
gap> List(filt, t -> Size(t) / order);
[1]
gap> u2:= filt[1];
CharacterTable("2^(1+8)+.O8+(2)")

First we compute the permutation characters πA = 1M
UA

and πB = 1M
UB

.

Example
gap> m:= CharacterTable("M");
CharacterTable("M")
gap> 2b:= CharacterTable("MC2A");
CharacterTable("2.B")
gap> mm:= CharacterTable("MC2B");
CharacterTable("2^1+24.Co1")
gap> pi_A:= RestrictedClassFunction(TrivialCharacter(u1)^b, 2b)^m;;
gap> pi_B:= RestrictedClassFunction(TrivialCharacter(u2)^co1, mm)^m;;

The degree of 1M
H is of course known.

Example
gap> torso:= [Size(m) / Horder];
[512372707698741056749515292734375]

Next we compute some zero values of 1M
H , using the following conditions.

• For g ∈M, if |g| does not divide |H| or if |g| is not the product of an element order in H/V and
a 2-power. (In fact we could use that the exponent of V is 4, but this would not improve the
result.)

• Let U ≤ H ≤ G, and let p be a prime that does not divide [H : U]. Then U contains a Sylow p
subgroup of H, so each element of order p in H is conjugate in H to an element in U . For g∈G,
g = gph, where the order of gp is a power of p such that 1G

U(gp) = 0 holds, we have 1G
H(g) = 0.

We apply this to U ∈ {UA,UB}.
Example

gap> morders:= OrdersClassRepresentatives(m);;
gap> 2parts:= Union([1], Filtered(Set(morders),
> x -> IsPrimePowerInt(x) and IsEvenInt(x)));
[1, 2, 4, 8, 16, 32]
gap> factorders:= Set(OrdersClassRepresentatives(Hbar));;
gap> primes_A:= Filtered(PrimeDivisors(Horder), p -> 496 mod p <> 0);

Computations with the GAP Character Table Library 283

[3, 5, 7, 17]
gap> primes_B:= Filtered(PrimeDivisors(Horder), p -> 527 mod p <> 0);
[2, 3, 5, 7]
gap> primes:= Union(primes_A, primes_B);;
gap> n:= NrConjugacyClasses(m);;
gap> for i in [1 .. n] do
> if Horder mod morders[i] <> 0 then
> torso[i]:= 0;
> elif ForAll(factorders, x -> not morders[i] / x in 2parts) then
> torso[i]:= 0;
> else
> for p in primes do
> if morders[i] mod p = 0 then
> pprime:= morders[i];
> while pprime mod p = 0 do pprime:= pprime / p; od;
> pos:= PowerMap(m, pprime)[i];
> if p in primes_A and pi_A[pos] = 0 then
> torso[i]:= 0;
> elif p in primes_B and pi_B[pos] = 0 then
> torso[i]:= 0;
> fi;
> fi;
> od;
> fi;
> od;
gap> torso;
[512372707698741056749515292734375,,,,, 0,,,,,,,,,,,, 0,, 0,,,,,,,,,,

,,,, 0,,,, 0,,,,,, 0, 0, 0,,, 0,,,, 0,,,,,,,,,, 0,,,,,,,, 0, 0, 0,
0, 0, 0, 0,,,,, 0,,,,, 0, 0, 0, 0, 0, 0,,,, 0, 0,,,,, 0,,,,,,, 0, 0,
, 0, 0,,,,, 0, 0, 0, 0, 0,,,,, 0,, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0, 0,
, 0,, 0, 0, 0, 0,, 0, 0, 0, 0, 0,,,,,, 0,,, 0, 0,, 0, 0, 0, 0, 0,
0, 0, 0, 0,, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]

Now we want to compute as many nonzero values of 1M
H as possible, using the same approach as

in the previous sections. For that, we first compute several permutation characters 1M
X , for subgroups

X with the property V < X < UA or V < X < UB. Then we find several subsets C of M, each being
a union of conjugacy classes of M such that (1H)C∩H is a linear combination of the characters 1H

X ,
restricted to C ∩H. This yields the values of 1M

H on the classes in C .
The actual computations are performed with the characters 1H/V

X/V . So we build two parallel lists
cand and candbar of permutation characters of M and of H/V , respectively. For that, we write two
small GAP functions:

• In the function AddSubgroupOfS82, we choose a subgroup Y of S8(2)∼=UA/V , compute 1UA/V
Y ,

inflate it to a character of UA, induce this character to B, inflate the result to GA, and finally
induce this character to M.

• In the function AddSubgroupOfO8p2, we choose a subgroup Y of the factor group F ∼=O+
8 (2) of

UB/N, compute 1F
Y , inflate it to a character of UB/N, induce this to a character of GB/N ∼=Co1,

inflate this to a character of GB, and finally induce this character to M.

Computations with the GAP Character Table Library 284

One difficulty in this case is that choosing a subgroup X/V of H/V involves fixing the class
fusion into H/V , but it is not clear which is a compatible class fusion of the corresponding
subgroup X into M; therefore, each entry of cand is in fact not the permutation character of M
in question but a list of possibilities.

Example
gap> cand:= [[pi_A], [pi_B]];;
gap> candbar:= [TrivialCharacter(U_Abar)^Hbar,
> TrivialCharacter(U_Bbar)^Hbar];;
gap> AddSubgroupOfS82:= function(subname)
> local psis82;
>
> psis82:= TrivialCharacter(CharacterTable(subname))^U_Abar;
> Add(cand, [Restricted(Restricted(psis82, u1)^b, 2b)^m]);
> Add(candbar, psis82 ^ Hbar);
> end;;
gap> tt1:= CharacterTable("O8+(2)");
CharacterTable("O8+(2)")
gap> AddSubgroupOfO8p2:= function(subname)
> local psi, list, char;
>
> psi:= TrivialCharacter(CharacterTable(subname))^tt1;
> list:= [];
> for char in Orbit(AutomorphismsOfTable(tt1), psi, Permuted) do
> AddSet(list, Restricted(Restricted(char, u2) ^ co1, mm) ^ m);
> od;
> Add(cand, list);
> Add(candbar, Restricted(psi, U_Bbar) ^ Hbar);
> end;;

Now we choose the subgroups that will turn out to be sufficient for our computations.
Example

gap> AddSubgroupOfS82("O8+(2).2");
gap> AddSubgroupOfO8p2("S6(2)");
gap> AddSubgroupOfS82("O8-(2).2");
gap> AddSubgroupOfS82("A10.2");
gap> AddSubgroupOfS82("S4(4).2");
gap> AddSubgroupOfS82("L2(17)");
gap> AddSubgroupOfO8p2("A9");
gap> AddSubgroupOfO8p2("2^6:A8");
gap> AddSubgroupOfO8p2("(3xU4(2)):2");
gap> AddSubgroupOfO8p2("(A5xA5):2^2");
gap> AddSubgroupOfS82("S8(2)M4");

In the case of A5 < S8(2), the function AddSubgroupOfS82 does not work because there are
several class fusions of A5 into S8(2). We choose one fusion; the fact that it really describes an em-
bedding of an A5 type subgroup of S8(2) can be checked using the function NrPolyhedralSubgroups
(Reference: NrPolyhedralSubgroups).

Example
gap> a5:= CharacterTable("A5");;
gap> fus:= PossibleClassFusions(a5, U_Abar)[1];;

Computations with the GAP Character Table Library 285

gap> NrPolyhedralSubgroups(U_Abar, fus[2], fus[3], fus[4]);
rec(number := 548352, type := "A5")
gap> psis82:= Induced(a5, U_Abar, [TrivialCharacter(a5)], fus)[1];;
gap> Add(cand, [Restricted(Restricted(psis82, u1)^b, 2b)^m]);
gap> Add(candbar, psis82 ^ Hbar);
gap> List(cand, Length);
[1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1]

The following function takes a condition on conjugacy classes in terms of their element orders,
which gives a set C of elements in M. It forms the corresponding set of elements in H/V and tries
to express the restriction of 1H/V as a linear combination of the characters 1H/V

X that are stored in the
list candbar. If this works and if the corresponding linear combination of the candidates in cand is
unique, the newly found values of 1M

H are entered into the list torso.
Example

gap> Hbarorders:= OrdersClassRepresentatives(Hbar);;
gap> TryCondition:= function(cond)
> local pos, sol, lincomb, oldknown, i;
>
> pos:= Filtered([1 .. Length(Hbarorders)],
> i -> cond(Hbarorders[i]));
> sol:= SolutionMat(candbar{[1..Length(candbar)]}{ pos },
> ListWithIdenticalEntries(Length(pos), 1));
> if sol = fail then
> return "no solution";
> fi;
>
> pos:= Filtered([1 .. Length(morders)], i -> cond(morders[i]));
> lincomb:= Filtered(Set(Cartesian(cand), x -> sol * x),
> x -> ForAll(pos, i -> IsPosInt(x[i]) or x[i] = 0));
> if Length(lincomb) <> 1 then
> return "solution is not unique";
> fi;
>
> lincomb:= lincomb[1];;
> oldknown:= Number(torso);
> for i in pos do
> if IsBound(torso[i]) then
> if torso[i] <> lincomb[i] then
> Error("contradiction of new and known value at position ", i);
> fi;
> elif not IsInt(lincomb[i]) or lincomb[i] < 0 then
> Error("new value at position ", i, " is not a nonneg. integer");
> fi;
> torso[i]:= lincomb[i];
> od;
> return Concatenation("now ", String(Number(torso)), " values (",
> String(Number(torso) - oldknown), " new)");
> end;;

This procedure makes sense only if the elements of H that satisfy the condition are contained in
the full preimage of the classes of H/V that satisfy the condition. Note that this is in fact the case for

Computations with the GAP Character Table Library 286

the conditions used below. This is clear for condition concerning only odd element orders, because V
is a 2-group. Also the set of all elements of the orders 9, 18, and 36 is such a “closed” set, since M
has no elements of order 72. Finally, the set of all elements of the orders 1, 2, and 4 in H is admissible
because it is contained in the preimage of the set of all elements of these orders in H/V .

Example
gap> TryCondition(x -> x mod 7 = 0 and x mod 3 <> 0);
"now 99 values (7 new)"
gap> TryCondition(x -> x mod 17 = 0 and x mod 3 <> 0);
"now 102 values (3 new)"
gap> TryCondition(x -> x mod 5 = 0 and x mod 3 <> 0);
"now 119 values (17 new)"
gap> TryCondition(x -> 4 mod x = 0);
"now 125 values (6 new)"
gap> TryCondition(x -> 9 mod x = 0);
"now 129 values (4 new)"
gap> TryCondition(x -> x in [9, 18, 36]);
"now 138 values (9 new)"

Possible constituents of 1M
H are those rational irreducible characters of M that are constituents of

πM.
Example

gap> constit:= Filtered(RationalizedMat(Irr(m)),
> x -> ScalarProduct(m, x, pi_A) <> 0
> and ScalarProduct(m, x, pi_B) <> 0);;

For the missing values, we can provide at least lower bounds, using that U ≤ H ≤ G implies
1G

H(g)≥ 1G
U(g)/[H : U] = [G : H] ·1G

U(g)/1G
U(1).

Example
gap> lower:= [];;
gap> Hindex:= Size(m) / Horder;
512372707698741056749515292734375
gap> for i in [1 .. NrConjugacyClasses(m)] do
> lower[i]:= Maximum(pi_A[i] / (pi_A[1] / Hindex),
> pi_B[i] / (pi_B[1] / Hindex));
> if not IsInt(lower[i]) then
> lower[i]:= Int(lower[i] + 1);
> fi;
> od;

Now we compute the possible permutation characters that have the prescribed values, are compat-
ible with the given lower bounds for values, and have only constituents in the given list.

Example
gap> cand:= PermChars(m, rec(torso:= torso, chars:= constit,
> lower:= lower, normalsubgroup:= [1 .. NrConjugacyClasses(m)],
> nonfaithful:= TrivialCharacter(m)));
[Character(CharacterTable("M"),

[512372707698741056749515292734375, 405589064025344574375,
29628786742129575, 658201521662685, 215448838605, 0,
121971774375, 28098354375, 335229607, 108472455, 164587500,

Computations with the GAP Character Table Library 287

4921875, 2487507165, 2567565, 26157789, 6593805, 398925, 0,
437325, 0, 44983, 234399, 90675, 21391, 41111, 12915, 6561,
6561, 177100, 7660, 6875, 315, 275, 0, 113373, 17901, 57213, 0,
4957, 1197, 909, 301, 397, 0, 0, 0, 3885, 525, 0, 2835, 90, 45,
0, 103, 67, 43, 28, 81, 189, 9, 9, 9, 0, 540, 300, 175, 20, 15,
7, 420, 0, 0, 0, 0, 0, 0, 0, 165, 61, 37, 37, 0, 9, 9, 13, 5,
0, 0, 0, 0, 0, 0, 77, 45, 13, 0, 0, 45, 115, 19, 10, 0, 5, 5,
9, 9, 1, 1, 0, 0, 4, 0, 0, 9, 9, 3, 1, 0, 0, 0, 0, 0, 0, 4, 1,
1, 0, 24, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 3, 3, 1, 1, 2, 0, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0])]

There is only one candidate, so we have found the permutation character.
The character table of H is available since 2023. We can compute the permutation character

directly from this table.
Example

gap> h:= CharacterTable("2^(10+16).O10+(2)");;
gap> fus:= PossibleClassFusions(h, m);;
gap> cand = Set(fus, map -> InducedClassFunctionsByFusionMap(h, m,
> [TrivialCharacter(h)], map)[1]);
true

8.17 A permutation character of the Baby Monster (June 2012)

We compute the character of the Baby Monster that is induced from the trivial character of a Sylow
2-subgroup. (Gabriel Navarro had asked me how GAP can compute this character.) We start with the
computation of those transitive permutation characters of the symmetric group on five points that have
degree 15. Note that the function PermChars (Reference: PermChars) computes in general only
candidates, but here we are sure that the result consists of permutation characters because it is unique.

Example
gap> t:= CharacterTable("S5");
CharacterTable("A5.2")
gap> pi:= PermChars(t, rec(torso:= [15]));
[Character(CharacterTable("A5.2"), [15, 3, 0, 0, 3, 1, 0])]

Next, we regard this character as a character of the group 25 : S5 that occurs as a maximal subgroup
of index 231 in M22 : 2.

Example
gap> m222:= CharacterTable("M22.2");
CharacterTable("M22.2")
gap> mx:= List(Maxes(m222), CharacterTable);;
gap> mx:= Filtered(mx, x -> Size(m222) / Size(x) = 231);
[CharacterTable("M22.2M4")]
gap> pi:= pi[1]{ GetFusionMap(mx[1], t) };
[15, 15, 3, 3, 3, 0, 0, 3, 3, 1, 1, 0, 15, 15, 3, 3, 3, 0, 0, 3, 3,

1, 1, 0]

Computations with the GAP Character Table Library 288

We induce this character to M22 : 2. (Note that this is the character that is induced from the trivial
character of a Sylow 2-subgroup of M22 : 2.)

Example
gap> pi:= InducedClassFunction(mx[1], pi, m222);
ClassFunction(CharacterTable("M22.2"),
[3465, 105, 0, 9, 5, 0, 0, 0, 0, 1, 0, 189, 45, 9, 13, 0, 1, 0, 0,
0, 0])

Next, we regard this character as a character of the group 210 : M22 : 2 that occurs as a maximal
subgroup of index 46575 in Co2.

Example
gap> co2:= CharacterTable("Co2");
CharacterTable("Co2")
gap> mx:= List(Maxes(co2), CharacterTable);;
gap> mx:= Filtered(mx, x -> Size(co2) / Size(x) = 46575);
[CharacterTable("2^10:m22:2")]
gap> pi:= pi{ GetFusionMap(mx[1], m222) };
[3465, 3465, 3465, 3465, 105, 105, 105, 105, 105, 105, 105, 105, 0,

0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 189, 189, 189, 189, 189, 189, 45, 45, 45, 45,
9, 9, 9, 9, 13, 13, 13, 13, 13, 13, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0]

We induce this character to Co2.
Example

gap> pi:= InducedClassFunction(mx[1], pi, co2);
ClassFunction(CharacterTable("Co2"),
[161382375, 626535, 162855, 27495, 0, 0, 6615, 3975, 2727, 855,
567, 975, 115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 51, 19, 27, 35, 7, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0])

Next, we regard this character as a character of the group 21+22.Co2 that occurs as a maximal
subgroup of index 11707448673375 in the Baby Monster.

Example
gap> b:= CharacterTable("B");
CharacterTable("B")
gap> mx:= List(Maxes(b), CharacterTable);;
gap> mx:= Filtered(mx, x -> Size(b) / Size(x) = 11707448673375);
[CharacterTable("2^(1+22).Co2")]
gap> pi:= pi{ GetFusionMap(mx[1], co2) };;
gap> pi[1];
161382375

We induce this character to the Baby Monster.
Example

gap> pi:= InducedClassFunction(mx[1], pi, b);
ClassFunction(CharacterTable("B"),
[1889375872099856765625, 2609385408855225, 62316674429625,

Computations with the GAP Character Table Library 289

207818526825, 268788490425, 0, 0, 13052741625, 7537207545,
128298681, 270580905, 46366425, 74315385, 35633385, 3937689,
201825, 1233225, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 713097,
241425, 320625, 88521, 275265, 57705, 19305, 20089, 9441, 6489,
2577, 1825, 5345, 753, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
273, 417, 105, 97, 185, 33, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

8.18 A permutation character of 2.B (October 2017)

We compute the character of the double cover 2.B of the Baby Monster that is induced from the trivial
character of a subgroup U of the structure 21+22.McL.

This subgroup occurs as the intersection of two conjugates of 2.B inside the Monster group M.
More precisely, we consider 2.B as the centralizer of an involution a in M, and we are interested in
the permutation action of M on the cosets of 2.B (or, equivalently, on the conjugacy class in M of this
involution). The restriction of this action to 2.B has nine orbits. One of them has point stabilizer U .

Background information can be found in [GJMS89]. The decomposition into the nine orbits ap-
pears in Definition (3.4.9) on p 587, and our orbit is characterized in Table VII (on p. 582) by the facts
that its points c have order 4 and the squares of ac lie in the class 2B of M. This implies that a and c
do not commute, hence a does not lie in U .

From this description, we know that U is a subgroup of a maximal subgroup of the type 22+22.Co2
in 2.B, and the group 〈U,a〉 has the type 22+22.McL.

Thus we can proceed in two steps. First we induce the trivial character of 〈U,a〉 to 2.B. Then we
use the variant of the GAP function PermChars (Reference: PermChars) that allows us to prescribe
the permutation character of the closure with a normal subgroup, which is 〈a〉 in our case.

The first step can be performed by inducing the trivial character of McL to Co2, . . .
Example

gap> mcl:= CharacterTable("McL");
CharacterTable("McL")
gap> co2:= CharacterTable("Co2");
CharacterTable("Co2")
gap> ind:= Induced(mcl, co2, [TrivialCharacter(mcl)])[1];
Character(CharacterTable("Co2"),
[47104, 0, 1024, 0, 16, 160, 0, 0, 0, 0, 64, 0, 0, 4, 24, 16, 0, 0,
0, 16, 0, 8, 0, 0, 0, 0, 0, 8, 4, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4,
0, 0, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])

. . . regarding this character as a character of 21+22.Co2, . . .
Example

gap> m:= CharacterTable("BM2");
CharacterTable("2^(1+22).Co2")
gap> infl:= ind{ GetFusionMap(m, co2) };
[47104, 47104, 47104, 47104, 47104, 47104, 47104, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,

Computations with the GAP Character Table Library 290

1024, 1024, 1024, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 16, 16, 16, 16, 160, 160, 160, 160, 160, 160, 160, 160,
160, 160, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 0, 0,
0, 0,
0, 0, 0, 0, 4, 4, 4, 24, 24, 24, 24, 24, 24, 24, 24, 16, 16, 16,
16, 0,
0, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
8, 8, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4,
4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0,
0, 0,
1, 1, 1, 1]

. . . inducing this character to B, . . .
Example

gap> b:= CharacterTable("B");
CharacterTable("B")
gap> ind:= Induced(m, b, [infl])[1];
ClassFunction(CharacterTable("B"),
[551467662310656000, 186911262720, 272993634304, 0, 634521600,
194594400, 69984, 8495104, 17465344, 129024, 276480, 2073600,
16384, 798720, 46080, 0, 5120, 138600, 1000, 110880, 252000,
112480, 432, 12960, 0, 1312, 8352, 864, 432, 0, 2520, 0, 2880,
2880, 3072, 2880, 0, 0, 256, 64, 1152, 576, 640, 192, 96, 0, 108,
2520, 744, 0, 104, 120, 40, 30, 160, 16, 1120, 1024, 0, 0, 96, 288,
64, 144, 0, 96, 0, 108, 16, 48, 0, 32, 12, 0, 0, 0, 168, 0, 104,
48, 0, 4, 0, 0, 0, 0, 32, 16, 8, 8, 0, 24, 12, 4, 0, 0, 0, 0, 24,
4, 24, 24, 0, 0, 0, 0, 4, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 8, 0, 16, 8, 4, 0, 0, 0, 0, 0, 4, 2,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

. . . and regarding the result as a character of 2.B.
Example

gap> 2b:= CharacterTable("2.B");
CharacterTable("2.B")
gap> infl:= ind{ GetFusionMap(2b, b) };
[551467662310656000, 551467662310656000, 186911262720, 272993634304,

272993634304, 0, 634521600, 194594400, 194594400, 69984, 69984,
8495104, 17465344, 129024, 276480, 2073600, 2073600, 16384, 798720,
46080, 0, 5120, 138600, 138600, 1000, 1000, 110880, 252000, 112480,
112480, 432, 12960, 0, 1312, 1312, 8352, 864, 864, 432, 0, 2520,

Computations with the GAP Character Table Library 291

2520, 0, 2880, 2880, 3072, 2880, 0, 0, 256, 64, 1152, 576, 576,
640, 192, 96, 0, 0, 108, 108, 2520, 744, 744, 0, 104, 104, 120, 40,
40, 30, 30, 160, 16, 1120, 1024, 0, 0, 0, 96, 288, 64, 144, 144, 0,
96, 0, 108, 108, 16, 48, 0, 32, 12, 12, 0, 0, 0, 0, 168, 0, 104,
104, 48, 0, 0, 4, 4, 0, 0, 0, 0, 32, 16, 8, 8, 8, 0, 0, 24, 12, 4,
4, 0, 0, 0, 0, 0, 0, 24, 4, 24, 24, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6,
6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
0, 0, 0, 0, 0, 0, 8, 0, 16, 8, 4, 4, 0, 0, 0, 0, 0, 0, 4, 4, 2, 2,
2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Now we have the character ψ that represents the “nonfaithful half” of the desired permutation
character. We have to “fill it up” with faithful characters of 2.B of total degree ψ(1) such that the sum
with ψ can be a permutation character of 2.B.

The GAP function PermChars (Reference: PermChars) is designed for this situation. We spec-
ify the normal subgroup N = 〈a〉 by listing the positions of its conjugacy classes in the character table
of 2.B, we enter the known permutation character 12.B

UN , and of course we specify the degree of the
possible permutation characters.

Example
gap> centre:= ClassPositionsOfCentre(2b);
[1, 2]
gap> pi:= PermChars(2b, rec(torso:= [2 * infl[1], 0],
> normalsubgroup:= centre,
> nonfaithful:= infl));
[Character(CharacterTable("2.B"),

[1102935324621312000, 0, 186911262720, 541790208000, 4197060608,
0, 634521600, 389188800, 0, 139968, 0, 8495104, 17465344,
129024, 276480, 4026240, 120960, 16384, 798720, 46080, 0, 5120,
277200, 0, 2000, 0, 110880, 252000, 190080, 34880, 432, 12960,
0, 2592, 32, 8352, 1728, 0, 432, 0, 5040, 0, 0, 2880, 2880,
3072, 2880, 0, 0, 256, 64, 1152, 1008, 144, 640, 192, 96, 0, 0,
216, 0, 2520, 960, 528, 0, 200, 8, 120, 80, 0, 60, 0, 160, 16,
1120, 1024, 0, 0, 0, 96, 288, 64, 216, 72, 0, 96, 0, 216, 0,
16, 48, 0, 32, 24, 0, 0, 0, 0, 0, 168, 0, 160, 48, 48, 0, 0, 8,
0, 0, 0, 0, 0, 32, 16, 8, 12, 4, 0, 0, 24, 12, 0, 8, 0, 0, 0,
0, 0, 0, 24, 4, 24, 24, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6, 6, 8, 4,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0,
0, 0, 0, 0, 8, 0, 16, 8, 8, 0, 0, 0, 0, 0, 0, 0, 8, 0, 2, 2, 2,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]

gap> MatScalarProducts(2b, Irr(2b), pi);
[[1, 1, 2, 1, 2, 0, 2, 3, 2, 0, 0, 1, 4, 1, 2, 0, 3, 2, 0, 2, 0, 0,

2, 2, 0, 0, 2, 3, 1, 5, 0, 4, 3, 2, 0, 0, 3, 2, 0, 6, 4, 0, 1,
1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 5, 0, 5, 2, 0, 0, 2, 0, 0, 4, 1,
0, 2, 0, 4, 2, 4, 4, 3, 0, 2, 4, 2, 4, 0, 3, 0, 3, 2, 5, 0, 1,
0, 3, 1, 0, 1, 1, 2, 5, 3, 1, 1, 4, 5, 1, 1, 0, 3, 0, 0, 3, 2,
1, 1, 2, 1, 1, 4, 0, 3, 2, 3, 1, 3, 0, 1, 3, 0, 2, 2, 1, 3, 3,
0, 0, 2, 0, 0, 0, 0, 3, 0, 3, 3, 3, 1, 0, 3, 0, 4, 0, 1, 0, 0,
2, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1,

Computations with the GAP Character Table Library 292

1, 1, 1, 1, 0, 2, 1, 1, 3, 3, 0, 0, 0, 1, 1, 1, 1, 2, 3, 2, 0,
0, 2, 2, 4, 3, 5, 2, 4, 0, 0, 0, 0, 5, 2, 0, 0, 0, 1, 1, 0, 0,
0, 0, 0, 0, 7, 0, 0, 1, 7, 7, 0, 0, 0, 1, 6, 4, 5, 0, 0, 3, 0,
0, 0, 0, 0, 4, 1, 1, 3, 8, 3, 2, 2, 5, 0, 1]]

We are lucky: There is a unique solution, and its computation is quite fast.

8.19 Generation of sporadic simple groups by π- and π ′-subgroups (De-
cember 2021)

This section shows the computations that are needed in order to show the following statements from
[BG].

Proposition 2.2: Let S be a sporadic simple group and let P be a Sylow 2-subgroup of S. If
1 6= x ∈ S, then S = 〈P,xg〉 for some g ∈ S.

Theorem 7.1: Let S be a sporadic simple group and let p≤ q be primes each dividing |S|. Then S
can be generated by a Sylow p-subgroup and a Sylow q-subgroup.

A stronger version of Theorem 7.1: Let S be a sporadic simple group, p be a prime dividing |S|,
and P be a Sylow p-subgroup of S. If 1 6= x ∈ S, then S = 〈P,xg〉 for some g ∈ S.

First we show [BG, Proposition 2.2]. Let S be a sporadic simple group, fix a Sylow 2-subgroup P
of S, and let x be a nonidentity element in S. We use known information about maximal subgroups of
S to show that xS is not a subset of the union of those maximal subgroups in S that contain P.

Let M be a maximal subgroup of S with the property P ≤M. The number of S-conjugates of M
that contain P is equal to |NS(P)|/|NM(P)| ≤ [NS(P) : P], thus these subgroups can contain at most
[NS(P) : P]|xS∩M| elements from the class xS.

Thus the number of elements in xS that generate a proper subgroup of S together with P is bounded
from above by [NS(P) : P]∑M |xS ∩M|, where the sum is taken over representatives M of conjugacy
classes of maximal subgroups of odd index in S.

Let 1S
M denote the permutation character of the action of S on the cosets of M. We have |xS∩M|=

|xS|1S
M(x)/1S

M(1). Hence we are done when we show that

[NS(P) : P]∑
M

1S
M(x)/1S

M(1)< 1

holds.
The numbers [NS(P) : P] can be read off from [Wil98, Table I]. Here we use the fact that the

character table of the Sylow 2-normalizer of S is available except if S is one of Co1, J4, F3+, B, or M,
and that the Sylow 2-subgroup if self-normalizing in these cases.

Example
gap> names:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false : OrderedBy:= Size);
["M11", "M12", "J1", "M22", "J2", "M23", "HS", "J3", "M24", "McL",

"He", "Ru", "Suz", "ON", "Co3", "Co2", "Fi22", "HN", "Ly", "Th",
"Fi23", "Co1", "J4", "F3+", "B", "M"]

gap> normindices:= rec(Co1:= 1, J4:= 1, F3\+:= 1, B:= 1, M:= 1);;
gap> for name in names do
> n:= CharacterTable(Concatenation(name, "N2"));
> if n = fail then
> Print(name, "\n");

Computations with the GAP Character Table Library 293

> else
> 2part:= 2^Length(Positions(Factors(Size(n)), 2));
> normindices.(name):= Size(n) / 2part;
> fi;
> od;
Co1
J4
F3+
B
M

For all sporadic simple groups S except the Monster group, the primitive permutation characters
1S

M can be computed from the data about maximal subgroups contained in GAP’s library of character
tables.

Example
gap> maxbound:= [];;
gap> for name in Filtered(names, x -> x <> "M") do
> t:= CharacterTable(name);
> mx:= List(Maxes(t), CharacterTable);
> odd:= Filtered(mx, s -> (Size(t) / Size(s)) mod 2 <> 0);
> primperm:= List(odd, s -> TrivialCharacter(s)^t);
> sum:= normindices.(name) * Sum(primperm, pi -> pi / pi[1]);
> Add(maxbound,
> [name, Maximum(sum{ [2 .. Length(sum)] })]);
> od;
gap> SortBy(maxbound, x -> - x[2]);
gap> maxbound[1];
["J2", 3/5]

We see that the left hand side of the above inequality is always less than or equal to 3/5, in
particular it is less than 1.

The Monster group is known to contain exactly five classes of maximal subgroups of odd in-
dex, of the structures 21+24.Co1 (the normalizer of a 2B element in the Monster), 210+16.O+

10(2),
22+11+22.(M24×S3), 25+10+20.(S3×L5(2)), [239].(L3(2)×3S6). The corresponding permutation char-
acters are known, see Section 8.16. First we read the information about the known primitive permuta-
tion characters of the Monster into the GAP session, and extract the primitive permutation characters
of odd degree.

Example
gap> dir:= DirectoriesPackageLibrary("ctbllib", "data");;
gap> filename:= Filename(dir, "prim_perm_M.json");;
gap> Monster_prim_data:= EvalString(StringFile(filename))[2];;
gap> Length(Monster_prim_data);
46
gap> t:= CharacterTable("M");;
gap> monstermaxindices:= [];;
gap> monstermaxtables:= [];;
gap> for entry in Monster_prim_data do
> if Length(entry) = 1 then
> s:= CharacterTable(entry[1]);
> Add(monstermaxtables, s);

Computations with the GAP Character Table Library 294

> Add(monstermaxindices, Size(t) / Size(s));
> else
> Add(monstermaxtables, fail);
> Add(monstermaxindices, entry[2][1]);
> fi;
> od;
gap> odd_prim:= [];;
gap> for i in [1 .. Length(Monster_prim_data)] do
> if monstermaxindices[i] mod 2 <> 0 then
> if monstermaxtables[i] <> fail then
> Add(odd_prim, TrivialCharacter(monstermaxtables[i])^t);
> else
> Add(odd_prim, Monster_prim_data[i][2]);
> fi;
> fi;
> od;
gap> Length(odd_prim);
5

Now we can use the same approach as before.
Example

gap> sum:= normindices.M * Sum(odd_prim, pi -> pi / pi[1]);;
gap> max:= Maximum(sum{ [2 .. Length(sum)] });
12784979/103007903752128375
gap> max < 10^-9;
true

Next we show [BG, Theorem 7.1] and its stronger version stated above. Let us first assume that S
is not the Monster.

As a first step, we generalize the approach from the above computations in order to check for which
prime divisors p of |S| and for which nontrivial conjugacy classes xS of S the group S is generated by
a Sylow p-subgroup P together with a conjugate of x.

The upper bound [NS(P) : P] for |NS(P)|/|NM(P)|, for a maximal subgroup M of S that contains P,
is not good enough in some of the cases considered here. Instead of it, we compute the upper bound
u(S,M, p) which is defined as follows; we assume that we know |NS(P)|.

• If P is cyclic then we can compute |NM(P)| from the character table of M, and set u(S,M, p) =
|NS(P)|/|NM(P)|.

• Otherwise, if P is normal in M, we set u(S,M, p) = |NS(P)|/|M|.

• Otherwise, if we know a subgroup U of M such that P is a proper normal subgroup of U , we set
u(S,M, p) = |NS(P)|/|U |.

• Otherwise, we set u(S,M, p) = |NS(P)|/|P|.
Example

gap> upper_bound:= function(tblS, tblM, p)
> local ppart, ppartposS, ppartposM, n, N_S, f, subname, u;
>
> ppart:= Product(Filtered(Factors(Size(tblS)), x -> x = p), 1);

Computations with the GAP Character Table Library 295

> ppartposS:= Positions(OrdersClassRepresentatives(tblS), ppart);
> if 0 < Length(ppartposS) then
> # P is cyclic.
> if tblM = fail then
> return (SizesCentralizers(tblS)[ppartposS[1]] * Phi(ppart)
> / Length(ppartposS)) / ppart;
> else
> ppartposM:= Positions(OrdersClassRepresentatives(tblM), ppart);
> return (SizesCentralizers(tblS)[ppartposS[1]] * Phi(ppart)
> / Length(ppartposS)) /
> (SizesCentralizers(tblM)[ppartposM[1]] * Phi(ppart)
> / Length(ppartposM));
> fi;
> fi;
>
> # Compute |N_S(P)|.
> n:= CharacterTable(Concatenation(Identifier(tblS), "N",
> String(p)));
> if n <> fail then
> N_S:= Size(n);
> elif p = 2 then
> N_S:= ppart * normindices.(Identifier(tblS));
> elif Identifier(tblS) = "M" and p = 3 then
> # The Sylow 3-normalizer is contained in 3^(3+2+6+6):(L3(3)xSD16)
> N_S:= ppart * 2^6;
> elif Identifier(tblS) = "F3+" and p = 3 then
> N_S:= ppart * 8;
> else
> Error("cannot compute |N_S(P)|");
> fi;
>
> if tblM = fail then
> return N_S / ppart;
> elif Sum(SizesConjugacyClasses(tblM){
> ClassPositionsOfPCore(tblM, p) }) = ppart then
> # P is normal in M.
> return N_S / Size(tblM);
> fi;
>
> # Inspect known character tables of subgroups of M.
> f:= N_S / ppart;
> for subname in NamesOfFusionSources(tblM) do
> u:= CharacterTable(subname);
> if ClassPositionsOfKernel(GetFusionMap(u, tblM)) = [1] and
> Sum(SizesConjugacyClasses(u){
> ClassPositionsOfPCore(u, p) }) = ppart then
> f:= Minimum(f, N_S / Size(u));
> fi;
> od;
>
> return f;
> end;;

Computations with the GAP Character Table Library 296

We run over the sporadic simple groups (except the Monster), and collect in the list
badcases_strong those “bad” prime divisors p of |S| and conjugacy class representatives x of non-
identity elements in S for which

∑
M

u(S,M, p)1S
M(x)/1S

M(1)≥ 1

holds, where the sum is taken over representatives M of conjugacy classes of maximal subgroups of S
whose index in S is coprime to p. In these cases, we have to find other arguments.

For the proof of [BG, Theorem 7.1], we can discard all those entries from the list of “bad” p and x
where x is not a q-element, for some prime q, or where another nonidentity q-element exists that does
not occur in the list. This is done by collecting a second list badcases_thm of the remaining “bad”
cases.

For the proof of the stronger version, we will later explicitly compute group elements from the
classes in question that generate S together with a Sylow p-subgroup. (The only technical complication
is that the class fusion of maximal subgroups of the type (22×F4(2)) : 2 of the Baby Monster is
currently not known, thus we cannot simply induce the trivial character in this case. However, the
permutation character is uniquely determined by the two character tables.)

Example
gap> badcases_thm:= [];;
gap> badcases_strong:= [];;
gap> for name in Filtered(names, x -> x <> "M") do
> t:= CharacterTable(name);
> orders:= OrdersClassRepresentatives(t);
> n:= NrConjugacyClasses(t);
> mx:= List(Maxes(t), CharacterTable);
> for p in PrimeDivisors(Size(t)) do
> good:= Filtered(mx, s -> (Size(t) / Size(s)) mod p <> 0);
> primperm:= [];
> for s in good do
> if GetFusionMap(s, t) <> fail then
> Add(primperm, TrivialCharacter(s)^t);
> else
> ind:= Set(PossibleClassFusions(s, t),
> map -> InducedClassFunctionsByFusionMap(s, t,
> [TrivialCharacter(s)], map)[1]);
> if Length(ind) <> 1 then
> Error("permutation character not uniquely determined");
> fi;
> Add(primperm, ind[1]);
> fi;
> od;
> sum:= Sum([1 .. Length(good)],
> i -> upper_bound(t, good[i], p)
> * primperm[i] / primperm[i][1]);
> badpos:= Filtered([2 .. Length(sum)], i -> sum[i] >= 1);
> if badpos <> [] then
> Add(badcases_strong, [name, p, ShallowCopy(badpos)]);
> for i in ShallowCopy(badpos) do
> q:= SmallestRootInt(orders[i]);
> if IsPrimeInt(q) then
> if ForAny([2 .. n],

Computations with the GAP Character Table Library 297

> j -> SmallestRootInt(orders[j]) = q
> and not j in badpos) then
> RemoveSet(badpos, i);
> fi;
> fi;
> od;
> if not IsEmpty(badpos) then
> Add(badcases_thm, [name, p, badpos]);
> fi;
> fi;
> od;
> od;
gap> badcases_thm;
[["M23", 3, [3]], ["HS", 3, [4, 11]]]
gap> badcases_strong;
[["M11", 5, [2]], ["M12", 5, [3, 4]], ["M22", 3, [2]],

["M22", 5, [2]], ["J2", 3, [2]], ["M23", 3, [2, 3]],
["M23", 5, [2]], ["M23", 7, [2]],
["HS", 3, [2, 3, 4, 5, 6, 7, 9, 11]], ["HS", 5, [2, 3, 5]],
["M24", 5, [2, 4]], ["M24", 7, [2, 4]], ["He", 5, [2]],
["Co2", 3, [2, 3]], ["Fi22", 5, [2]], ["Fi22", 7, [2]],
["Fi23", 5, [2, 3, 5]], ["Fi23", 7, [2]], ["B", 7, [2]]

]

Most of these open cases can be ruled out by constructing the group S and a Sylow p-subgroup P
in question and then finding explicit elements x such that S is generated by P and x. For that, we use
the data from the Atlas of Group Representations [WWT+].

The following function tries to find random elements from all conjugacy classes of nonidentity
elements that have the desired property. It returns fail if no straight line program is available for
computing class representatives, and returns P and the list of class representatives that generate to-
gether with P if such elements were found. Thus the function will not return if the generation property
does not hold.

Example
gap> prove_generation:= function(name, p)
> local S, prg, P, reps, good, x, g, U;
>
> prg:= AtlasProgram(name, "classes");
> if prg = fail then
> return fail;
> fi;
>
> S:= AtlasGroup(name);
> P:= SylowSubgroup(S, p);
> reps:= ResultOfStraightLineProgram(prg.program, GeneratorsOfGroup(S));
> good:= [];
> for x in Filtered(reps, x -> Order(x) <> 1) do
> repeat
> g:= Random(S);
> U:= ClosureGroup(P, x^g);
> until Size(U) = Size(S);
> Add(good, x^g);
> od;

Computations with the GAP Character Table Library 298

>
> return [P, good];
> end;;
gap> for entry in badcases_strong do
> res:= prove_generation(entry[1], entry[2]);
> if res = fail then
> Print("no classes script for ", entry, "\n");
> fi;
> od;
no classes script for ["He", 5, [2]]
no classes script for ["Fi22", 5, [2]]
no classes script for ["Fi22", 7, [2]]
no classes script for ["Fi23", 5, [2, 3, 5]]
no classes script for ["Fi23", 7, [2]]
no classes script for ["B", 7, [2]]

In the remaining cases, we show only the generation property for the class representatives in the list.
These are involutions from the class 2A, and for the group Fi23 and p = 5 additionally elements from
the classes 2B and 3A.

A 2A element in the group He can be found as the fifth power of any element of order 10.
Example

gap> S:= AtlasGroup("He");;
gap> repeat
> x:= Random(S);
> until Order(x) = 10;
gap> x:= x^5;;
gap> P5:= SylowSubgroup(S, 5);;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P5, x^g);
> until Size(U) = Size(S);

A 2A element in the group Fi22 can be found as the 15-th power of any element of order 30.
Example

gap> S:= AtlasGroup("Fi22");;
gap> repeat
> x:= Random(S);
> until Order(x) = 30;
gap> x:= x^15;;
gap> P5:= SylowSubgroup(S, 5);;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P5, x^g);
> until Size(U) = Size(S);
gap> P7:= SylowSubgroup(S, 7);;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P7, x^g);
> until Size(U) = Size(S);

A 2A element in the group Fi23 can be found as the 21-st power of any element of order 42.

Computations with the GAP Character Table Library 299

Example
gap> S:= AtlasGroup("Fi23");;
gap> repeat
> x:= Random(S);
> until Order(x) = 42;
gap> x:= x^21;;
gap> P5:= SylowSubgroup(S, 5);;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P5, x^g);
> until Size(U) = Size(S);
gap> P7:= SylowSubgroup(S, 7);;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P7, x^g);
> until Size(U) = Size(S);

A 2B element in the group Fi23 can be found as the 30-th power of any element of order 60.
Example

gap> repeat
> x:= Random(S);
> until Order(x) = 60;
gap> x:= x^30;;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P5, x^g);
> until Size(U) = Size(S);

A 3A element in the group Fi23 can be found as the 20-th power of any element of order 60.
Example

gap> repeat
> x:= Random(S);
> until Order(x) = 60;
gap> x:= x^20;;
gap> repeat
> g:= Random(S);
> U:= ClosureGroup(P5, x^g);
> until Size(U) = Size(S);

In the open case for the Baby Monster, we have to show that the group is generated by a 2A element
and an element of order 7. This can be done character-theoretically, for example as follows. There
are such elements x and y whose product xy has order 47, and the only proper subgroups of the Baby
Monster that contain elements of order 47 are contained in maximal subgroups of the type 47 : 23.
Thus x and y generate the Baby Monster.

Example
gap> t:= CharacterTable("B");;
gap> 7pos:= Positions(OrdersClassRepresentatives(t), 7);
[31]
gap> 47pos:= Positions(OrdersClassRepresentatives(t), 47);
[172, 173]

Computations with the GAP Character Table Library 300

gap> ClassMultiplicationCoefficient(t, 2, 7pos[1], 47pos[1]);
7332
gap> Filtered(Maxes(t),
> x -> Size(CharacterTable(x)) mod 47 = 0);
["47:23"]

Now consider the case that S is the Monster, which is special because the complete list of classes
of maximal subgroups of S is currently not known. From [NW13] and [Wil] we know 44 classes of
maximal subgroups, and that each possible additional maximal subgroup is almost simple and has
socle L2(13), U3(4), U3(8), or Sz(8). This implies that we know all those maximal subgroups that
contain a Sylow p-subgroup of S except in the case p = 19, where maximal subgroups with socle
U3(8) may arise.

Thus let us first consider that at least one of p, r is different from 19. In this situation, we use the
same approach as for the other sporadic simple groups. The only complication is that not all permu-
tation characters 1S

M, for the relevant maximal subgroups M of S, are known; however, if this happens
then the character table of M is known, and we can compute the possible permutation characters, and
take the common upper bounds for these characters. In each case, we get that the claimed property
holds.

Example
gap> t:= CharacterTable("M");;
gap> orders:= OrdersClassRepresentatives(t);;
gap> for p in Difference(PrimeDivisors(Size(t)), [19]) do
> goodpos:= Filtered([1 .. Length(Monster_prim_data)],
> i -> monstermaxindices[i] mod p <> 0);
> sum:= ListWithIdenticalEntries(NrConjugacyClasses(t), 0);
> for i in goodpos do
> if Length(Monster_prim_data[i]) = 2 then
> # We know the permutation character but not the subgroup table.
> sum:= sum + upper_bound(t, fail, p)
> * Monster_prim_data[i][2] / monstermaxindices[i];
> else
> s:= monstermaxtables[i];
> if GetFusionMap(s, t) <> fail then
> # We can compute the permutation character.
> sum:= sum + upper_bound(t, s, p)
> * TrivialCharacter(s)^t / monstermaxindices[i];
> else
> # We get only candidates for the permutation character.
> cand:= Set(PossibleClassFusions(s, t),
> map -> InducedClassFunctionsByFusionMap(s, t,
> [TrivialCharacter(s)], map)[1]);
> # For each class, take the maximum of the possible values.
> sum:= sum + upper_bound(t, s, p)
> * List(TransposedMat(cand), Maximum)
> / monstermaxindices[i];
> fi;
> fi;
> od;
> badpos:= Filtered([2 .. Length(sum)], i -> sum[i] >= 1);
> if badpos <> [] then
> Error("check open cases in ", badpos, "\n");

Computations with the GAP Character Table Library 301

> fi;
> od;

Finally, let p = r = 19. The group S has exactly one class of elements of order 19. Let x be such
an element. From the character table of S, we compute that there exist conjugates y of x such that xy
has order 71. Since 〈x,y〉= 〈x,xy〉 holds and no maximal subgroup of S has order divisible by 19 ·71,
we have 〈x,y〉= S.

Example
gap> pos19:= Positions(OrdersClassRepresentatives(t), 19);
[63]
gap> pos71:= Positions(OrdersClassRepresentatives(t), 71);
[169, 170]
gap> ClassMultiplicationCoefficient(t, pos19[1], pos19[1], pos71[1]);
621743152370566020417806353602387433415016198936
gap> ForAny(monstermaxindices,
> x -> (Size(t) / x) mod (19 * 71) = 0);
false
gap> ForAny(["L2(13)", "U3(4)", "U3(8)", "Sz(8)"],
> x -> Size(CharacterTable(x)) mod 71 = 0);
false

Remark added in December 2023:
Meanwhile the complete list of conjugacy classes of maximal subgroups of the Monster group is

known, due to [DLP23]. The result is that there are two more classes than had been known before,
which consist of groups of the structures L2(13).2 and U3(4).4, respectively.

Chapter 9

Ambiguous Class Fusions in the GAP
Character Table Library

Date: January 11th, 2004
This is a collection of examples showing how class fusions between character tables can be de-

termined using the GAP system [GAP21]. In each of these examples, the fusion is ambiguous in
the sense that the character tables do not determine it up to table automorphisms. Our strategy is to
compute first all possibilities with the GAP function PossibleClassFusions (Reference: Possi-
bleClassFusions), and then to use either other character tables or information about the groups for
excluding some of these candidates until only one (orbit under table automorphisms) remains.

The purpose of this writeup is twofold. On the one hand, the computations are documented this
way. On the other hand, the GAP code shown for the examples can be used as test input for automatic
checking of the data and the functions used; therefore, each example ends with a comparison of the
result with the fusion that is actually stored in the GAP Character Table Library [Bre24].

The examples use the GAP Character Table Library, so we first load this package.
Example

gap> LoadPackage("ctbllib", false);
true

9.1 Some GAP Utilities

The function SetOfComposedClassFusions takes two list of class fusions, where the first list con-
sists of fusions between the character tables of the groups H and G, say, and the second list consists
of class fusions between the character tables of the groups U and H, say; the return value is the set
of compositions of each map in the first list with each map in the second list (via CompositionMaps
(Reference: CompositionMaps)).

Note that the returned list may be a proper subset of the set of all possible class fusions between U
and G, which can be computed with PossibleClassFusions (Reference: PossibleClassFusions).

Example
gap> SetOfComposedClassFusions:= function(hfusg, ufush)
> local result, map1, map2;
> result:= [];;
> for map2 in hfusg do
> for map1 in ufush do

302

Computations with the GAP Character Table Library 303

> AddSet(result, CompositionMaps(map2, map1));
> od;
> od;
> return result;
> end;;

9.2 Fusions Determined by Factorization through Intermediate Sub-
groups

This situation clearly occurs only for nonmaximal subgroups. Interesting examples are Sylow normal-
izers.

9.2.1 Co3N5→Co3 (September 2002)

Let H be the Sylow 5 normalizer in the sporadic simple group Co3. The class fusion of H into Co3 is
not uniquely determined by the character tables of the two groups.

Example
gap> co3:= CharacterTable("Co3");
CharacterTable("Co3")
gap> h:= CharacterTable("Co3N5");
CharacterTable("5^(1+2):(24:2)")
gap> hfusco3:= PossibleClassFusions(h, co3);;
gap> Length(RepresentativesFusions(h, hfusco3, co3));
2

As H is not maximal in Co3, we look at those maximal subgroups of Co3 whose order is divisible
by that of H.

Example
gap> mx:= Maxes(co3);
["McL.2", "HS", "U4(3).(2^2)_{133}", "M23", "3^5:(2xm11)",

"2.S6(2)", "U3(5).3.2", "3^1+4:4s6", "2^4.a8", "L3(4).D12",
"2xm12", "2^2.[2^7*3^2].S3", "s3xpsl(2,8).3", "a4xs5"]

gap> maxes:= List(mx, CharacterTable);;
gap> filt:= Filtered(maxes, x -> Size(x) mod Size(h) = 0);
[CharacterTable("McL.2"), CharacterTable("HS"),

CharacterTable("U3(5).3.2")]

According to the Atlas (see [CCN+85, pp. 34 and 100]), H occurs as the Sylow 5 normalizer in
U3(5).3.2 and in McL.2; however, H is not a subgroup of HS, since otherwise H would be contained
in subgroups of type U3(5).2 (see [CCN+85, p. 80]), but the only possible subgroups in these groups
are too small (see [CCN+85, p. 34]).

We compute the possible class fusions from H into McL.2 and from McL.2 to Co3, and then form
the compositions of these maps.

Example
gap> max:= filt[1];;
gap> hfusmax:= PossibleClassFusions(h, max);;
gap> maxfusco3:= PossibleClassFusions(max, co3);;
gap> comp:= SetOfComposedClassFusions(maxfusco3, hfusmax);;

Computations with the GAP Character Table Library 304

gap> Length(comp);
2
gap> reps:= RepresentativesFusions(h, comp, co3);
[[1, 2, 3, 4, 8, 8, 7, 9, 10, 11, 17, 17, 19, 19, 22, 23, 27, 27,

30, 33, 34, 40, 40, 40, 40, 42]]

So factoring through a maximal subgroup of type McL.2 determines the fusion from H to Co3
uniquely up to table automorphisms.

Alternatively, we can use the group U3(5).3.2 as intermediate subgroup, which leads to the same
result.

Example
gap> max:= filt[3];;
gap> hfusmax:= PossibleClassFusions(h, max);;
gap> maxfusco3:= PossibleClassFusions(max, co3);;
gap> comp:= SetOfComposedClassFusions(maxfusco3, hfusmax);;
gap> reps2:= RepresentativesFusions(h, comp, co3);;
gap> reps2 = reps;
true

Finally, we compare the result with the map that is stored on the library table of H.
Example

gap> GetFusionMap(h, co3) in reps;
true

9.2.2 31 : 15→ B (March 2003)

The Sylow 31 normalizer H in the sporadic simple group B has the structure 31 : 15.
Example

gap> b:= CharacterTable("B");;
gap> h:= CharacterTable("31:15");;
gap> hfusb:= PossibleClassFusions(h, b);;
gap> Length(RepresentativesFusions(h, hfusb, b));
2

We determine the correct fusion using the fact that H is contained in a (maximal) subgroup of type
T h in B.

Example
gap> th:= CharacterTable("Th");;
gap> hfusth:= PossibleClassFusions(h, th);;
gap> thfusb:= PossibleClassFusions(th, b);;
gap> comp:= SetOfComposedClassFusions(thfusb, hfusth);;
gap> Length(comp);
2
gap> reps:= RepresentativesFusions(h, comp, b);
[[1, 145, 146, 82, 82, 19, 82, 7, 19, 82, 82, 19, 7, 82, 19, 82, 82

]]
gap> GetFusionMap(h, b) in reps;
true

Computations with the GAP Character Table Library 305

9.2.3 SuzN3→ Suz (September 2002)

The class fusion from the Sylow 3 normalizer into the sporadic simple group Suz is not uniquely
determined by the character tables of these groups.

Example
gap> h:= CharacterTable("SuzN3");
CharacterTable("3^5:(3^2:SD16)")
gap> suz:= CharacterTable("Suz");
CharacterTable("Suz")
gap> hfussuz:= PossibleClassFusions(h, suz);;
gap> Length(RepresentativesFusions(h, hfussuz, suz));
2

Since H is not maximal in Suz, we try to factorize the fusion through a suitable maximal subgroup.
Example

gap> maxes:= List(Maxes(suz), CharacterTable);;
gap> filt:= Filtered(maxes, x -> Size(x) mod Size(h) = 0);
[CharacterTable("3_2.U4(3).2_3’"), CharacterTable("3^5:M11"),

CharacterTable("3^2+4:2(2^2xa4)2")]

The group 32.U4(3).2′3 does not admit a fusion from H.
Example

gap> PossibleClassFusions(h, filt[1]);
[]

Definitely 35 : M11 contains a group isomorphic with H, because the Sylow 3 normalizer in M11
has the structure 32 : SD16; using 32+4 : 2(22×A4)2 would lead to the same result as we get below.
We compute the compositions of possible class fusions.

Example
gap> max:= filt[2];;
gap> hfusmax:= PossibleClassFusions(h, max);;
gap> maxfussuz:= PossibleClassFusions(max, suz);;
gap> comp:= SetOfComposedClassFusions(maxfussuz, hfusmax);;
gap> repr:= RepresentativesFusions(h, comp, suz);
[[1, 2, 2, 4, 5, 4, 5, 5, 5, 5, 5, 6, 9, 9, 14, 15, 13, 16, 16, 14,

15, 13, 13, 13, 16, 15, 14, 16, 16, 16, 21, 21, 23, 22, 29, 29,
29, 38, 39]]

So the factorization determines the fusion map up to table automorphisms. We check that this map
is equal to the stored one.

Example
gap> GetFusionMap(h, suz) in repr;
true

Computations with the GAP Character Table Library 306

9.2.4 F3+N5→ F3+ (March 2002)

The class fusion from the table of the Sylow 5 normalizer H in the sporadic simple group F3+ into F3+
is ambiguous.

Example
gap> f3p:= CharacterTable("F3+");;
gap> h:= CharacterTable("F3+N5");;
gap> hfusf3p:= PossibleClassFusions(h, f3p);;
gap> Length(RepresentativesFusions(h, hfusf3p, f3p));
2

H is not maximal in F3+, so we look for tables of maximal subgroups that can contain H.
Example

gap> maxes:= List(Maxes(f3p), CharacterTable);;
gap> filt:= Filtered(maxes, x -> Size(x) mod Size(h) = 0);
[CharacterTable("Fi23"), CharacterTable("2.Fi22.2"),

CharacterTable("(3xO8+(3):3):2"), CharacterTable("O10-(2)"),
CharacterTable("(A4xO8+(2).3).2"), CharacterTable("He.2"),
CharacterTable("F3+M14"), CharacterTable("(A5xA9):2")]

gap> possfus:= List(filt, x -> PossibleClassFusions(h, x));
[[], [], [], [],

[[1, 69, 110, 12, 80, 121, 4, 72, 113, 11, 11, 79, 79, 120, 120,
3, 71, 11, 79, 23, 91, 112, 120, 132, 29, 32, 97, 100, 37,
37, 105, 105, 139, 140, 145, 146, 155, 155, 156, 156, 44,
44, 167, 167, 48, 48, 171, 171, 57, 57, 180, 180, 66, 66,
189, 189],

[1, 69, 110, 12, 80, 121, 4, 72, 113, 11, 11, 79, 79, 120,
120, 3, 71, 11, 79, 23, 91, 112, 120, 132, 29, 32, 97, 100,
37, 37, 105, 105, 140, 139, 146, 145, 156, 156, 155, 155,
44, 44, 167, 167, 48, 48, 171, 171, 57, 57, 180, 180, 66,
66, 189, 189]], [], [], []]

We see that from the eight possible classes of maximal subgroups in F3+ that might contain H,
only the group of type (A4×O+

8 (2).3).2 admits a class fusion from H. Hence we can compute the
compositions of the possible fusions from H into this group with the possible fusions from this group
into F3+.

Example
gap> max:= filt[5];
CharacterTable("(A4xO8+(2).3).2")
gap> hfusmax:= possfus[5];;
gap> maxfusf3p:= PossibleClassFusions(max, f3p);;
gap> comp:= SetOfComposedClassFusions(maxfusf3p, hfusmax);;
gap> Length(comp);
2
gap> repr:= RepresentativesFusions(h, comp, f3p);
[[1, 2, 4, 12, 35, 54, 3, 3, 16, 9, 9, 11, 11, 40, 40, 2, 3, 9, 11,

35, 36, 13, 40, 90, 7, 22, 19, 20, 43, 43, 50, 50, 8, 8, 23,
23, 46, 46, 47, 47, 10, 10, 9, 9, 10, 10, 11, 11, 26, 26, 28,
28, 67, 67, 68, 68]]

Finally, we check whether the map stored in the table library is correct.

Computations with the GAP Character Table Library 307

Example
gap> GetFusionMap(h, f3p) in repr;
true

Note that we did not determine the class fusion from the maximal subgroup (A4×O+
8 (2).3).2 into

F3+ up to table automorphisms (see Section 9.3.2 for this problem), since also the ambiguous result
was enough for computing the fusion from H into F3+.

9.3 Fusions Determined Using Commutative Diagrams Involving
Smaller Subgroups

In each of the following examples, the class fusion of a (not necessarily maximal) subgroup M of a
group G into G is determined by considering a proper subgroup U of M whose class fusion into G can
be computed, perhaps using another subgroup S of G that also contains U .

rbU
bbM bSrG

@@ ��
�� @@

9.3.1 BN7→ B (March 2002)

Let H be a Sylow 7 normalizer in the sporadic simple group B. The class fusion of H into B is not
uniquely determined by the character tables of the two groups.

Example
gap> b:= CharacterTable("B");
CharacterTable("B")
gap> h:= CharacterTable("BN7");
CharacterTable("BN7")
gap> hfusb:= PossibleClassFusions(h, b);;
gap> Length(RepresentativesFusions(h, hfusb, b));
2

Let us consider a maximal subgroup of the type T h in B (cf. [CCN+85, p. 217]). By [CCN+85, p.
177], the Sylow 7 normalizers in T h are maximal subgroups of T h and have the structure 72 : (3×2S4).
Let U be such a subgroup.

Note that the only maximal subgroups of T h whose order is divisible by the order of a Sylow 7
subgroup of B have the types 3D4(2).3 and 72 : (3×2S4), and the Sylow 7 normalizers in the former
groups have the structure 72 : (3×2A4), cf. [CCN+85, p. 89].

Example
gap> Number(Factors(Size(b)), x -> x = 7);
2
gap> th:= CharacterTable("Th");
CharacterTable("Th")

Computations with the GAP Character Table Library 308

gap> Filtered(Maxes(th), x -> Size(CharacterTable(x)) mod 7^2 = 0);
["3D4(2).3", "7^2:(3x2S4)"]

The class fusion of U into B via T h is uniquely determined by the character tables of these groups.
Example

gap> thn7:= CharacterTable("ThN7");
CharacterTable("7^2:(3x2S4)")
gap> comp:= SetOfComposedClassFusions(PossibleClassFusions(th, b),
> PossibleClassFusions(thn7, th));
[[1, 31, 7, 7, 5, 28, 28, 17, 72, 72, 6, 6, 7, 28, 27, 27, 109,

109, 17, 45, 45, 72, 72, 127, 127, 127, 127]]

The condition that the class fusion of U into B factors through H determines the class fusion of H
into B up to table automorphisms.

Example
gap> thn7fush:= PossibleClassFusions(thn7, h);;
gap> filt:= Filtered(hfusb, x ->
> ForAny(thn7fush, y -> CompositionMaps(x, y) in comp));;
gap> Length(RepresentativesFusions(h, filt, b));
1

Finally, we compare the result with the map that is stored on the library table of H.
Example

gap> GetFusionMap(h, b) in filt;
true

9.3.2 (A4×O+
8 (2).3).2→ Fi′24 (November 2002)

The class fusion of the maximal subgroup M ∼= (A4×O+
8 (2).3).2 of G = Fi′24 is ambiguous.

Example
gap> m:= CharacterTable("(A4xO8+(2).3).2");;
gap> t:= CharacterTable("F3+");;
gap> mfust:= PossibleClassFusions(m, t);;
gap> repr:= RepresentativesFusions(m, mfust, t);;
gap> Length(repr);
2

We first observe that the elements of order three in the normal subgroup of type A4 in M lie in the
class 3A of Fi′24.

Example
gap> a4inm:= Filtered(ClassPositionsOfNormalSubgroups(m),
> n -> Sum(SizesConjugacyClasses(m){ n }) = 12);
[[1, 69, 110]]
gap> OrdersClassRepresentatives(m){ a4inm[1] };
[1, 2, 3]
gap> List(repr, map -> map[110]);
[4, 4]
gap> OrdersClassRepresentatives(t){ [1 .. 4] };
[1, 2, 2, 3]

Computations with the GAP Character Table Library 309

Let us take one such element g, say. Its normalizer S in G has the structure (3×O+
8 (3).3).2; this

group is maximal in G, and its character table is available in GAP.
Example

gap> s:= CharacterTable("F3+N3A");
CharacterTable("(3xO8+(3):3):2")

The intersection NM(g) = S∩M contains a subgroup U of the type 3×O+
8 (2).3, and in the fol-

lowing we compute the class fusions of U into S and M, and then utilize the fact that only those class
fusions from M into G are possible whose composition with the class fusion from U into M equals a
composition of class fusions from U into S and from S into G.

Example
gap> u:= CharacterTable("Cyclic", 3) * CharacterTable("O8+(2).3");
CharacterTable("C3xO8+(2).3")
gap> ufuss:= PossibleClassFusions(u, s);;
gap> ufusm:= PossibleClassFusions(u, m);;
gap> sfust:= PossibleClassFusions(s, t);;
gap> comp:= SetOfComposedClassFusions(sfust, ufuss);;
gap> Length(comp);
6
gap> filt:= Filtered(mfust,
> x -> ForAny(ufusm, map -> CompositionMaps(x, map) in comp));;
gap> repr:= RepresentativesFusions(m, filt, t);;
gap> Length(repr);
1
gap> GetFusionMap(m, t) in repr;
true

So the class fusion from M into G is determined up to table automorphisms by the commutative
diagram.

9.3.3 A6×L2(8).3→ Fi′24 (November 2002)

The class fusion of the maximal subgroup M ∼= A6×L2(8).3 of G = Fi′24 is ambiguous.
Example

gap> m:= CharacterTable("A6xL2(8):3");;
gap> t:= CharacterTable("F3+");;
gap> mfust:= PossibleClassFusions(m, t);;
gap> Length(RepresentativesFusions(m, mfust, t));
2

We will use the fact that the direct factor of the type A6 in M contains elements in the class 3A of
G. This fact can be shown as follows.

Example
gap> dppos:= ClassPositionsOfDirectProductDecompositions(m);
[[[1, 12 .. 67], [1 .. 11]]]
gap> List(dppos[1], l -> Sum(SizesConjugacyClasses(t){ l }));
[17733424133316996808705, 4545066196775803392]
gap> List(dppos[1], l -> Sum(SizesConjugacyClasses(m){ l }));
[360, 1512]

Computations with the GAP Character Table Library 310

gap> 3Apos:= Position(OrdersClassRepresentatives(t), 3);
4
gap> 3Ainm:= List(mfust, map -> Position(map, 3Apos));
[23, 23, 23, 23, 34, 34, 34, 34]
gap> ForAll(3Ainm, x -> x in dppos[1][1]);
true

Since the normalizer of an element of order three in A6 has the form 32 : 2, such a 3A element in
M contains a subgroup U of the structure 32 : 2×L2(8).3 which is contained in the 3A normalizer S in
G, which has the structure (3×O+

8 (3).3).2.
(Note that all classes in the 32 : 2 type group are rational, and its character table is available in the

GAP Character Table Library with the identifier "3^2:2".)
Example

gap> u:= CharacterTable("3^2:2") * CharacterTable("L2(8).3");
CharacterTable("3^2:2xL2(8).3")
gap> s:= CharacterTable("F3+N3A");
CharacterTable("(3xO8+(3):3):2")
gap> ufuss:= PossibleClassFusions(u, s);;
gap> comp:= SetOfComposedClassFusions(sfust, ufuss);;
gap> ufusm:= PossibleClassFusions(u, m);;
gap> filt:= Filtered(mfust,
> map -> ForAny(ufusm,
> map2 -> CompositionMaps(map, map2) in comp));;
gap> repr:= RepresentativesFusions(m, filt, t);;
gap> Length(repr);
1
gap> GetFusionMap(m, t) in repr;
true

9.3.4 (32 : D8×U4(3).22).2→ B (June 2007)

Let G be a maximal subgroup of the type (32 : D8×U4(3).22).2 in the sporadic simple group B,
cf. [CCN+85, p. 217]. Computing the class fusion of G into B just from the character tables of the
two groups takes extremely long. So we use additional information.

According to [CCN+85, p. 217], G is the normalizer in B of an elementary abelian group 〈x,y〉 of
order 9, with x,y in the class 3A of B, and N = NB(〈x〉) has the structure S3×Fi22.2. The intersection
G∩N has the structure S3× S3×U4(3).22, which is the direct product of S3 and the normalizer in
Fi22.2 of a 3A element of Fi22.2, see [CCN+85, p. 163]. Thus we may use that the class fusions from
G∩N into B through G or N coincide.

The class fusion from N into B is uniquely determined by the character tables.
Example

gap> b:= CharacterTable("B");;
gap> n:= CharacterTable("BN3A");
CharacterTable("S3xFi22.2")
gap> nfusb:= PossibleClassFusions(n, b);;
gap> Length(nfusb);
1
gap> nfusb:= nfusb[1];;

Computations with the GAP Character Table Library 311

The computation of the class fusion from G∩N into N is sped up by computing first the class
fusion modulo the direct factor S3, and then lifting these fusion maps.

Example
gap> fi222:= CharacterTable("Fi22.2");;
gap> fi222n3a:= CharacterTable("S3xU4(3).(2^2)_{122}");;
gap> s3:= CharacterTable("S3");;
gap> inter:= s3 * fi222n3a;;
gap> intermods3fusnmods3:= PossibleClassFusions(fi222n3a, fi222);;
gap> Length(intermods3fusnmods3);
2
gap> Length(RepresentativesFusions(fi222n3a, intermods3fusnmods3, fi222));
1

We get two equivalent possibilities, and need to consider only one of them. For lifting it to a map
between G∩N and N, the safe way is to use the fusion map between the two factors for computing an
approximation. (Additionally, we could interpret the known maps as fusions between two subgroups,
and use this for improving the approximation, but in this case the speedup is not worth the effort.)

Example
gap> interfusn:= CompositionMaps(InverseMap(GetFusionMap(n, fi222)),
> CompositionMaps(intermods3fusnmods3[1],
> GetFusionMap(inter, fi222n3a)));;
gap> interfusn:= PossibleClassFusions(inter, n,
> rec(fusionmap:= interfusn, quick:= true));;
gap> Length(interfusn);
1

The lift is unique. Since we lift a class fusion to direct products, we could also “extend” the fusion
directly. But note that this would assume the ordering of classes in character tables of direct products.
This alternative would work as follows.

Example
gap> nccl:= NrConjugacyClasses(fi222);;
gap> interfusn[1] = Concatenation(List([0 .. 2],
> i -> intermods3fusnmods3[1] + i * nccl));
true

Next we compute the class fusions from G∩N to G. We get two equivalent solutions.
Example

gap> tblg:= CharacterTable("BM14");
CharacterTable("(3^2:D8xU4(3).2^2).2")
gap> interfusg:= PossibleClassFusions(inter, tblg);;
gap> Length(interfusg);
2
gap> Length(RepresentativesFusions(inter, interfusg, tblg));
1

The approximation of the class fusion from G to B is computed by composing the known maps.
Because we have chosen one of the two possible maps from G∩N to N, here we consider the two
possibilities. From these approximations, we compute the possible class fusions.

Computations with the GAP Character Table Library 312

Example
gap> interfusb:= CompositionMaps(nfusb, interfusn[1]);;
gap> approx:= List(interfusg,
> map -> CompositionMaps(interfusb, InverseMap(map)));;
gap> gfusb:= Set(Concatenation(List(approx,
> map -> PossibleClassFusions(tblg, b,
> rec(fusionmap:= map)))));;
gap> Length(gfusb);
4
gap> Length(RepresentativesFusions(tblg, gfusb, b));
1

Finally, we compare the result with the class fusion that is stored on the library table.
Example

gap> GetFusionMap(tblg, b) in gfusb;
true

9.3.5 71+4 : (3×2.S7)→M (May 2009)

The class fusion of the maximal subgroup U of type 71+4 : (3×2.S7) of the Monster group M into M
is ambiguous.

Example
gap> tblu:= CharacterTable("7^(1+4):(3x2.S7)");;
gap> m:= CharacterTable("M");;
gap> ufusm:= PossibleClassFusions(tblu, m);;
gap> Length(RepresentativesFusions(tblu, ufusm, m));
2

The subgroup U contains a Sylow 7-subgroup of M, and the only maximal subgroups of M with
this property are the class of U and another class of subgroups, of the type 72+1+2 : GL2(7). Moreover,
it turns out that the Sylow 7 normalizers in the subgroups in both classes have the same order, hence
they are the Sylow 7 normalizers in M.

For that, we use representations from the Atlas of Group Representations [WWT+], and access
these representations via the GAP package AtlasRep ([WPN+22]).

Example
gap> LoadPackage("atlasrep", false);
true
gap> g1:= AtlasGroup("7^(2+1+2):GL2(7)");;
gap> s1:= SylowSubgroup(g1, 7);;
gap> n1:= Normalizer(g1, s1);;
gap> g2:= AtlasGroup("7^(1+4):(3x2.S7)");;
gap> s2:= SylowSubgroup(g2, 7);;
gap> n2:= Normalizer(g2, s2);;
gap> Size(n1) = Size(n2);
true
gap> (Size(m) / Size(s1)) mod 7 <> 0;
true

Computations with the GAP Character Table Library 313

So let N be a Sylow 7 normalizer in U , and choose a subgroup S of the type 72+1+2 : GL2(7) that
contains N.

We compute the character table of N. Computing the possible class fusions of N into M directly
yields two possibilities, but the class fusion of N into M via S is uniquely determined by the character
tables.

Example
gap> tbln:= CharacterTable(Image(IsomorphismPcGroup(n1)));;
gap> tbls:= CharacterTable("7^(2+1+2):GL2(7)");;
gap> nfusm:= PossibleClassFusions(tbln, m);;
gap> Length(RepresentativesFusions(tbln, nfusm, m));
2
gap> nfuss:= PossibleClassFusions(tbln, tbls);;
gap> sfusm:= PossibleClassFusions(tbls, m);;
gap> nfusm:= SetOfComposedClassFusions(sfusm, nfuss);;
gap> Length(nfusm);
1

Now we use the condition that the class fusions from N into M factors through U . This determines
the class fusion of U into M up to table automorphisms.

Example
gap> nfusu:= PossibleClassFusions(tbln, tblu);;
gap> ufusm:= Filtered(ufusm, map2 -> ForAny(nfusu,
> map1 -> CompositionMaps(map2, map1) in nfusm));;
gap> Length(RepresentativesFusions(tblu, ufusm, m));
1

Let C be the centralizer in U of the normal subgroup of order 7; note that C is the 7B centralizer on
M. We can use the information about the class fusion of U into M for determining the class fusion of
C into M. The class fusion of C into M is not determined by the character tables, but the class fusion
of C into U is determined up to table automorphisms, so the same holds for the class fusion of C into
M.

Example
gap> tblc:= CharacterTable("MC7B");
CharacterTable("7^1+4.2A7")
gap> cfusm:= PossibleClassFusions(tblc, m);;
gap> Length(RepresentativesFusions(tblc, cfusm, m));
2
gap> cfusu:= PossibleClassFusions(tblc, tblu);;
gap> cfusm:= SetOfComposedClassFusions(ufusm, cfusu);;
gap> Length(RepresentativesFusions(tblc, cfusm, m));
1

9.3.6 37.O7(3) : 2→ Fi24 (November 2010)

The class fusion of the maximal subgroup M ∼= 37.O7(3) : 2 of G = Fi24 = F3+.2 is ambiguous.
Example

gap> m:= CharacterTable("3^7.O7(3):2");;
gap> t:= CharacterTable("F3+.2");;
gap> mfust:= PossibleClassFusions(m, t);;
gap> Length(RepresentativesFusions(m, mfust, t));
2

Computations with the GAP Character Table Library 314

We will use the fact that the elementary abelian normal subgroup of order 37 in M contains an
element x, say, in the class 3A of G. This fact can be shown as follows.

Example
gap> nsg:= ClassPositionsOfNormalSubgroups(m);
[[1], [1 .. 4], [1 .. 158], [1 .. 291]]
gap> Sum(SizesConjugacyClasses(m){ nsg[2] });
2187
gap> 3^7;
2187
gap> rest:= Set(mfust, map -> map{ nsg[2] });
[[1, 4, 5, 6]]
gap> List(rest, l -> ClassNames(t, "Atlas"){ l });
[["1A", "3A", "3B", "3C"]]

The normalizer S of 〈x〉 in G has the form S3×O+
8 (3) : S3, and the order of U = S∩M = NM(〈x〉)

is 53059069440, so U has index 3360 in S.
Example

gap> s:= CharacterTable("F3+.2N3A");
CharacterTable("S3xO8+(3):S3")
gap> PowerMap(m, 2)[4];
4
gap> size_u:= 2 * SizesCentralizers(m)[2];
53059069440
gap> Size(s) / size_u;
3360

Using the list of maximal subgroups of O+
8 (3), we see that only the maximal subgroups of the

type 36 : L4(3) have index dividing 3360 in O+
8 (3). (There are three classes of such subgroups.) This

implies that U contains a subgroup of the type S3×36 : L4(3).
Example

gap> o8p3:= CharacterTable("O8+(3)");;
gap> mx:= List(Maxes(o8p3), CharacterTable);;
gap> filt:= Filtered(mx, x -> 3360 mod Index(o8p3, x) = 0);
[CharacterTable("3^6:L4(3)"), CharacterTable("O8+(3)M8"),

CharacterTable("O8+(3)M9")]
gap> List(filt, x -> Index(o8p3, x));
[1120, 1120, 1120]

We compute the possible class fusions from U into M and S in two steps, because this is faster.
First the possible class fusions from U ′′∼= 36 : L4(3) into M and S are computed, and then these fusions
are used to derive approximations for the fusions from U into M and S.

Example
gap> uu:= filt[1];;
gap> u:= CharacterTable("Symmetric", 3) * uu;
CharacterTable("Sym(3)x3^6:L4(3)")
gap> uufusm:= PossibleClassFusions(uu, m);;
gap> Length(uufusm);
8
gap> approx:= List(uufusm, map -> CompositionMaps(map,

Computations with the GAP Character Table Library 315

> InverseMap(GetFusionMap(uu, u))));;
gap> ufusm:= Concatenation(List(approx, map ->
> PossibleClassFusions(u, m, rec(fusionmap:= map))));;
gap> Length(ufusm);
8
gap> uufuss:= PossibleClassFusions(uu, s);;
gap> Length(uufuss);
8
gap> approx:= List(uufuss, map -> CompositionMaps(map,
> InverseMap(GetFusionMap(uu, u))));;
gap> ufuss:= Concatenation(List(approx, map ->
> PossibleClassFusions(u, s, rec(fusionmap:= map))));;
gap> Length(ufuss);
8

Now we compute the possible class fusions from S into G, and the compositions of these maps
with the possible class fusions from U into S.

Example
gap> sfust:= PossibleClassFusions(s, t);;
gap> comp:= SetOfComposedClassFusions(sfust, ufuss);;
gap> Length(comp);
8

It turns out that only one orbit of the possible class fusions from M to G is compatible with these
possible class fusions from U to G.

Example
gap> filt:= Filtered(mfust, map2 -> ForAny(ufusm, map1 ->
> CompositionMaps(map2, map1) in comp));;
gap> Length(filt);
4
gap> Length(RepresentativesFusions(m, filt, t));
1

The class fusion stored in the GAP Character Table Library is one of them.
Example

gap> GetFusionMap(m, t) in filt;
true

9.3.7 2E6(2)N3C→ 2E6(2) (January 2019)

Let G = 2E6(2), and g ∈ G in the conjugacy class 3C. Using a permutation representation of G, Frank
Lübeck has computed a representation and the character table of the maximal subgroup N = NG(〈g〉)
of G.

Example
gap> t:= CharacterTable("2E6(2)");;
gap> pos3CinG:= Position(ClassNames(t), "3c");
7
gap> n:= CharacterTable("2E6(2)N3C");;
gap> nclasses:= SizesConjugacyClasses(n);;

Computations with the GAP Character Table Library 316

gap> pos3CinN:= Filtered([1 .. NrConjugacyClasses(n)],
> i -> nclasses[i] = 2);
[2]
gap> nfust:= PossibleClassFusions(n, t);;
gap> ForAll(nfust, x -> x[pos3CinN[1]] = pos3CinG);
true
gap> Size(n) = 2 * SizesCentralizers(t)[pos3CinG];
true
gap> ForAll(Irr(n), x -> IsInt(x[pos3CinN[1]]));
true

The class fusion of N in G is ambiguous.
Example

gap> rep:= RepresentativesFusions(n, nfust, t);;
gap> Length(rep);
4

We use the fact that g is contained in a subgroup S∼= Fi22 of G, . . .
Example

gap> s:= CharacterTable("Fi22");;
gap> sfust:= PossibleClassFusions(s, t);;
gap> ForAll(sfust, x -> x[6] = pos3CinG);
true
gap> pos3CinS:= 6;;

. . . and that U = NS(〈g〉) ∼= 31+6 : 23+4 : 32 : 2 is a maximal subgroup of S whose character table is
available. Thus U ≤ N, of index four.

Example
gap> u:= CharacterTable(Maxes(s)[11]);
CharacterTable("3^(1+6):2^(3+4):3^2:2")
gap> uclasses:= SizesConjugacyClasses(u);;
gap> pos3CinU:= Filtered([1 .. NrConjugacyClasses(u)],
> i -> uclasses[i] = 2);
[2]
gap> ufuss:= PossibleClassFusions(u, s);;
gap> ForAll(ufuss, x -> x[pos3CinU[1]] = pos3CinS);
true
gap> Size(n) / Size(u);
4

Composing the class fusions of U in N and N in G must be equal to the composition of the class
fusions of U in S and S in G. This reduces the number of candidates for the fusion of N in G from four
to two.

Example
gap> ufusn:= PossibleClassFusions(u, n);;
gap> comp:= SetOfComposedClassFusions(sfust, ufuss);;
gap> good:= Filtered(nfust, map2 -> ForAny(ufusn,
> map1 -> CompositionMaps(map2, map1) in comp));;
gap> Length(good);
1728

Computations with the GAP Character Table Library 317

gap> goodrep:= RepresentativesFusions(n, good, t);;
gap> Length(goodrep);
2

Next we use the fact that g and thus N is invariant under an outer automorphism α , say, of order
three of G. Note that such an automorphism acts nontrivially on the conjugacy classes of G, for
example because the class fusion of G into G.3 = 〈G,α〉 shows the existence of orbits of length three,
and that the permutation action of α on the classes of G is given by the unique subgroup of order three
in the group of table automorphisms of G.

Example
gap> tfust3:= GetFusionMap(t, CharacterTable("2E6(2).3"));;
gap> Number(InverseMap(tfust3), IsList);
14
gap> autt:= AutomorphismsOfTable(t);;
gap> ord3:= Filtered(autt, x -> Order(x) = 3);;
gap> Length(ord3);
2
gap> alpha:= ord3[1];;
gap> pos3CinG ^ alpha = pos3CinG;
true

The character table of N has 26 table automorphisms of order three. We do not know which
of them (or perhaps the identity permutation) is induced by the restriction αN of α to N, but the
embedding ι :N→G satisfies α ◦ ι = ι ◦αN , and we can check each fusion candidate for the existence
of a candidate for αN such that this relation holds.

Example
gap> autn:= AutomorphismsOfTable(n);;
gap> ord3:= Filtered(autn, x -> Order(x) = 3);;
gap> Length(ord3);
26
gap> Add(ord3, ());
gap> filt:= Filtered(rep, map -> ForAny(ord3, beta ->
> OnTuples(map, alpha) = Permuted(map, beta)));;
gap> Length(filt);
2

Again, the number of candidates for the fusion of N in G is reduced from four to two. Moreover,
we are lucky because only one candidate satifies also the first criterion we have checked.

Example
gap> inter:= Intersection(good, filt);
[[1, 7, 5, 6, 7, 2, 3, 4, 27, 30, 24, 32, 25, 26, 9, 11, 12, 13,

10, 14, 19, 19, 19, 16, 17, 18, 21, 58, 61, 62, 67, 68, 69, 57,
72, 59, 75, 76, 77, 78, 79, 80, 64, 65, 66, 60, 81, 82, 5, 6,
7, 6, 7, 7, 7, 7, 6, 7, 6, 7, 7, 24, 25, 27, 26, 28, 30, 29,
31, 32, 31, 32, 32, 32, 32, 31, 32, 31, 32, 51, 52, 52, 52, 52,
74, 76, 77, 77, 75, 74, 76, 74, 75, 99, 100, 101, 102, 4, 20,
29, 31, 32, 36, 36, 42, 42, 39, 40, 41, 49, 49, 49, 49, 49, 49,
71, 112, 112, 114, 115, 116]]

The class fusion stored in the GAP Character Table Library is this candidate.

Computations with the GAP Character Table Library 318

Example
gap> GetFusionMap(n, t) = inter[1];
true

Remark:
Note that the structure of N is 31+6 : 23+6 : 32 : 2, as is stated in [Nor]. The structure

31+6.23+6.(S3×3) claimed in the Atlas [CCN+85, p. 191] is wrong, as we can read off for example
from the fact that N has exactly two linear characters.

Example
gap> Length(LinearCharacters(n));
2

9.4 Fusions Determined Using Commutative Diagrams Involving Fac-
tor Groups

9.4.1 3.A7→ 3.Suz (December 2010)

The maximal subgroups of type A7 in the sporadic simple Suzuki group Suz lift to groups of the type
3.A7 in 3.Suz. This can be seen from the fact that 3.Suz does not admit a class fusion from A7.

Example
gap> t:= CharacterTable("Suz");;
gap> 3t:= CharacterTable("3.Suz");;
gap> s:= CharacterTable("A7");;
gap> 3s:= CharacterTable("3.A7");;
gap> PossibleClassFusions(s, 3t);
[]

The class fusion of 3.A7 into 3.Suz is ambiguous.
Example

gap> 3sfus3t:= PossibleClassFusions(3s, 3t);;
gap> Length(3sfus3t);
6
gap> RepresentativesFusions(3s, 3sfus3t, 3t);
[[1, 2, 3, 7, 8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48,

49, 50, 48, 49, 50],
[1, 11, 12, 4, 36, 37, 13, 16, 23, 82, 83, 32, 100, 101, 44, 38,

41, 48, 112, 116, 48, 115, 113]]
gap> ClassPositionsOfCentre(3t);
[1, 2, 3]

We see that the possible fusions in the second orbit avoid the centre of 3.Suz. Since the preimages
in 3.Suz of the A7 type subgroups of Suz contain the centre of 3.Suz, we know that the class fusion of
these preimages belong to the first orbit. This can be formalized by checking the commutativity of the
diagram of fusions between 3.A7, 3.Suz, and their factors A7 and Suz.

Example
gap> sfust:= PossibleClassFusions(s, t);;
gap> Length(sfust);

Computations with the GAP Character Table Library 319

1
gap> filt:= Filtered(3sfus3t, map -> CompositionMaps(GetFusionMap(3t, t),
> map)
> = CompositionMaps(sfust[1], GetFusionMap(3s, s)));
[[1, 2, 3, 7, 8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48,

49, 50, 48, 49, 50],
[1, 3, 2, 7, 9, 8, 16, 16, 26, 28, 27, 32, 34, 33, 47, 47, 47, 48,

50, 49, 48, 50, 49]]

So the class fusion of maximal 3.A7 type subgroups of 3.Suz is determined up to table automor-
phisms. One of these fusions is stored on the table of 3.A7.

Example
gap> RepresentativesFusions(3s, filt, 3t);
[[1, 2, 3, 7, 8, 9, 16, 16, 26, 27, 28, 32, 33, 34, 47, 47, 47, 48,

49, 50, 48, 49, 50]]
gap> GetFusionMap(3s, 3t) in filt;
true

Also the class fusions in the other orbit belong to subgroups of type 3.A7 in 3.Suz. Note that
Suz contains maximal subgroups of the type 32.U4(3).2′3 (see [CCN+85, p. 131]), and the A7 type
subgroups of U4(3) (see [CCN+85, p. 52]) lift to groups of the type 3.A7 in 32.U4(3) because 32.U4(3)
does not admit a class fusion from A7. The preimages in 3.Suz of the 3.A7 type subgroups of Suz have
the structure 3×3.A7.

Example
gap> u:= CharacterTable("3_2.U4(3)");;
gap> PossibleClassFusions(s, u);
[]
gap> Length(PossibleClassFusions(3s, u));
8

9.4.2 S6→U4(2) (September 2011)

The simple group G =U4(2) contains a maximal subgroup U of type S6. The class fusion from U to
G is unique up to table automorphisms.

Example
gap> s:= CharacterTable("S6");
CharacterTable("A6.2_1")
gap> t:= CharacterTable("U4(2)");
CharacterTable("U4(2)")
gap> sfust:= PossibleClassFusions(s, t);
[[1, 3, 6, 7, 9, 10, 3, 2, 9, 16, 15],

[1, 3, 7, 6, 9, 10, 2, 3, 9, 15, 16]]
gap> Length(RepresentativesFusions(s, sfust, t));
1

In the double cover 2.G of G, U lifts to the double cover 2.U of U (which is unique up to isomor-
phism). Also the class fusion from 2.U to 2.G is unique up to table automorphisms.

Computations with the GAP Character Table Library 320

Example
gap> 2t:= CharacterTable("2.U4(2)");
CharacterTable("2.U4(2)")
gap> 2s:= CharacterTable("2.A6.2_1");
CharacterTable("2.A6.2_1")
gap> 2sfus2t:= PossibleClassFusions(2s, 2t);
[[1, 2, 4, 11, 12, 9, 10, 15, 16, 17, 3, 4, 15, 24, 25, 26, 26],

[1, 2, 4, 11, 12, 9, 10, 15, 16, 17, 3, 4, 15, 25, 24, 26, 26]]
gap> Length(RepresentativesFusions(2s, 2sfus2t, 2t));
1

However, the two possible fusions from 2.U to 2.G are lifts of the same class fusion from U to G.
Example

gap> 2sfuss:= GetFusionMap(2s, s);
[1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 11]
gap> 2tfust:= GetFusionMap(2t, t);;
gap> induced:= Set(2sfus2t, x -> CompositionMaps(2tfust,
> CompositionMaps(x, InverseMap(2sfuss))));
[[1, 3, 7, 6, 9, 10, 2, 3, 9, 15, 16]]

The point is that the outer automorphism of S6 that makes the two fusions from U to G equivalent
does not lift to 2.U , and that we have silently assumed a fixed factor fusion from 2.U to U . Note
that composing this factor fusion with the automorphism of U would also yield a factor fusion, and
w. r. t. the commutative diagram involving this factor fusion, the other possible class fusion from U to
G is induced by the possible fusions from 2.U to 2.G.

Example
gap> auts:= AutomorphismsOfTable(s);
Group([(3,4)(7,8)(10,11)])
gap> other:= OnTuples(2sfuss, GeneratorsOfGroup(auts)[1]);
[1, 1, 2, 4, 4, 3, 3, 5, 6, 6, 8, 7, 9, 11, 11, 10, 10]
gap> Set(2sfus2t, x -> CompositionMaps(2tfust,
> CompositionMaps(x, InverseMap(other))));
[[1, 3, 6, 7, 9, 10, 3, 2, 9, 16, 15]]

The library table of U stores the class fusion to G that is compatible with the stored factor fusion
from 2.U to U .

Example
gap> GetFusionMap(s, t) in induced;
true

9.5 Fusions Determined Using Commutative Diagrams Involving Auto-
morphic Extensions

9.5.1 U3(8).31→ 2E6(2) (December 2010)

According to the Atlas (see [CCN+85, p. 191]), the group G = 2E6(2) contains a maximal subgroup
U of the type U3(8).31. The class fusion of U into G is ambiguous.

Computations with the GAP Character Table Library 321

Example
gap> s:= CharacterTable("U3(8).3_1");;
gap> t:= CharacterTable("2E6(2)");;
gap> sfust:= PossibleClassFusions(s, t);;
gap> Length(sfust);
24
gap> Length(RepresentativesFusions(s, sfust, t));
2

In the automorphic extension G.2 = 2E6(2).2 of G, the subgroup U extends to a group U.2 of the
type U3(8).6 (again, see [CCN+85, p. 191]). The class fusion of U.2 into G.2 is unique up to table
automorphisms.

Example
gap> s2:= CharacterTable("U3(8).6");;
gap> t2:= CharacterTable("2E6(2).2");;
gap> s2fust2:= PossibleClassFusions(s2, t2);;
gap> Length(s2fust2);
2
gap> Length(RepresentativesFusions(s2, s2fust2, t2));
1

Only half of the possible class fusions from U into G are compatible with the embeddings of U
into G.2 via U.2 and G, and the compatible maps form one orbit under table automorphisms.

Example
gap> sfuss2:= PossibleClassFusions(s, s2);;
gap> comp:= SetOfComposedClassFusions(s2fust2, sfuss2);;
gap> tfust2:= PossibleClassFusions(t, t2);;
gap> filt:= Filtered(sfust, map -> ForAny(tfust2,
> map2 -> CompositionMaps(map2, map) in comp));;
gap> Length(filt);
12
gap> Length(RepresentativesFusions(s, filt, t));
1

Let us see which classes of U and G are involved in the disambiguation of the class fusion. The
“good” fusion candidates differ from the excluded ones on the classes at the positions 31 to 36: Under
all possible class fusions, two pairs of classes are mapped to the classes 81 and 82 of G; from these
classes, the excluded maps fuse classes at odd positions with classes at even positions, whereas the
“good” class fusions do not have this property.

Example
gap> Set(filt, x -> x{ [31 .. 36] });
[[74, 74, 81, 82, 81, 82], [74, 74, 82, 81, 82, 81],

[81, 82, 74, 74, 81, 82], [81, 82, 81, 82, 74, 74],
[82, 81, 74, 74, 82, 81], [82, 81, 82, 81, 74, 74]]

gap> Set(Difference(sfust, filt), x -> x{ [31 .. 36] });
[[74, 74, 81, 82, 82, 81], [74, 74, 82, 81, 81, 82],

[81, 82, 74, 74, 82, 81], [81, 82, 82, 81, 74, 74],
[82, 81, 74, 74, 81, 82], [82, 81, 81, 82, 74, 74]]

Computations with the GAP Character Table Library 322

None of the possible class fusions from U to U.2 fuses classes at odd positions in the interval from
31 to 36 with classes at even positions.

Example
gap> Set(sfuss2, x -> x{ [31 .. 36] });
[[28, 29, 30, 31, 30, 31], [29, 28, 31, 30, 31, 30],

[30, 31, 28, 29, 30, 31], [30, 31, 30, 31, 28, 29],
[31, 30, 29, 28, 31, 30], [31, 30, 31, 30, 29, 28]]

This suffices to exclude the “bad” fusion candidates because no further fusion of the relevant
classes of G happens in G.2.

Example
gap> List(tfust2, x -> x{ [74, 81, 82] });
[[65, 70, 71], [65, 70, 71], [65, 71, 70], [65, 71, 70],

[65, 70, 71], [65, 70, 71], [65, 71, 70], [65, 71, 70],
[65, 70, 71], [65, 70, 71], [65, 71, 70], [65, 71, 70]]

(The same holds for the fusion of the relevant classes of U.2 in G.2.)
Example

gap> List(s2fust2, x -> x{ [28 .. 31] });
[[65, 65, 70, 71], [65, 65, 71, 70]]

Finally, we check that a correct map is stored on the library table.
Example

gap> GetFusionMap(s, t) in filt;
true

9.5.2 L3(4).21→U6(2) (December 2010)

According to the Atlas (see [CCN+85, p. 115]), the group G = U6(2) contains a maximal subgroup
U of the type L3(4).21. The class fusion of U into G is ambiguous.

Example
gap> s:= CharacterTable("L3(4).2_1");;
gap> t:= CharacterTable("U6(2)");;
gap> sfust:= PossibleClassFusions(s, t);;
gap> Length(sfust);
27
gap> Length(RepresentativesFusions(s, sfust, t));
3

In the automorphic extension G.3 = U6(2).3 of G, the subgroup U extends to a group U.3 of the
type L3(4).6 (again, see [CCN+85, p. 115]). The class fusion of U.3 into G.3 is unique up to table
automorphisms.

Example
gap> s3:= CharacterTable("L3(4).6");;
gap> t3:= CharacterTable("U6(2).3");;
gap> s3fust3:= PossibleClassFusions(s3, t3);;
gap> Length(s3fust3);
2
gap> Length(RepresentativesFusions(s3, s3fust3, t3));
1

Computations with the GAP Character Table Library 323

Here the argument used in Section 9.5.1 does not work, because all possible class fusions from U
into G are compatible with the embeddings of U into G.3 via U.3 and G.

Example
gap> sfuss3:= PossibleClassFusions(s, s3);;
gap> comp:= SetOfComposedClassFusions(s3fust3, sfuss3);;
gap> tfust3:= PossibleClassFusions(t, t3);;
gap> sfust = Filtered(sfust, map -> ForAny(tfust3,
> map2 -> CompositionMaps(map2, map) in comp));
true

Consider the elements of order four in U . There are three such classes inside U ′ ∼= L3(4), which
fuse to one class of U.3.

Example
gap> OrdersClassRepresentatives(s);
[1, 2, 3, 4, 4, 4, 5, 7, 2, 4, 6, 8, 8, 8]
gap> sfuss3;
[[1, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 10, 10]]

These classes of U fuse into some of the classes 10 to 12 of G. In G.3, these three classes fuse into
one class.

Example
gap> Set(sfust, map -> map{ [4 .. 6] });
[[10, 10, 10], [10, 10, 11], [10, 10, 12], [10, 11, 10],

[10, 11, 11], [10, 11, 12], [10, 12, 10], [10, 12, 11],
[10, 12, 12], [11, 10, 10], [11, 10, 11], [11, 10, 12],
[11, 11, 10], [11, 11, 11], [11, 11, 12], [11, 12, 10],
[11, 12, 11], [11, 12, 12], [12, 10, 10], [12, 10, 11],
[12, 10, 12], [12, 11, 10], [12, 11, 11], [12, 11, 12],
[12, 12, 10], [12, 12, 11], [12, 12, 12]]

gap> Set(tfust3, map -> map{ [10 .. 12] });
[[10, 10, 10]]

This means that the automorphism α of G that is induced by the action of G.3 permutes the classes
10 to 12 of G transitively. The fact that U extends to U.3 in G.3 means that U is invariant under α .
This implies that U contains either no elements from the classes 10 to 12 or elements from all of these
classes. The possible class fusions from U to G satisfying this condition form one orbit under table
automprhisms.

Example
gap> Filtered(sfust, map -> Intersection(map, [10 .. 12]) = []);
[]
gap> filt:= Filtered(sfust, map -> IsSubset(map, [10 .. 12]));
[[1, 3, 7, 10, 11, 12, 15, 24, 4, 14, 23, 26, 27, 28],

[1, 3, 7, 10, 12, 11, 15, 24, 4, 14, 23, 26, 28, 27],
[1, 3, 7, 11, 10, 12, 15, 24, 4, 14, 23, 27, 26, 28],
[1, 3, 7, 11, 12, 10, 15, 24, 4, 14, 23, 27, 28, 26],
[1, 3, 7, 12, 10, 11, 15, 24, 4, 14, 23, 28, 26, 27],
[1, 3, 7, 12, 11, 10, 15, 24, 4, 14, 23, 28, 27, 26]]

gap> Length(RepresentativesFusions(s, filt, t));
1

Computations with the GAP Character Table Library 324

Finally, we check that a correct map is stored on the library table.
Example

gap> GetFusionMap(s, t) in filt;
true

9.6 Conditions Imposed by Brauer Tables

The examples in this section show that symmetries can be broken as soon as the class fusions between
two ordinary tables shall be compatible with the corresponding Brauer character tables. More pre-
cisely, we assume that the class fusion from each Brauer table to its ordinary table is already fixed;
choosing these fusions consistently can be a nontrivial task, solving so-called “generality problems”
may require the construction of certain modules, similar to the arguments used in 9.6.3 below.

9.6.1 L2(16).4→ J3.2 (January 2004)

It can happen that Brauer tables decide ambiguities of class fusions between the corresponding ordi-
nary tables. An easy example is the class fusion of L2(16).4 into J3.2. The ordinary tables admit four
possible class fusions, of which two are essentially different.

Example
gap> s:= CharacterTable("L2(16).4");;
gap> t:= CharacterTable("J3.2");;
gap> fus:= PossibleClassFusions(s, t);
[[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13],

[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23],
[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13],
[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23]]

gap> RepresentativesFusions(s, fus, t);
[[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 5, 5, 8, 8, 13, 13],

[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23]]

Using Brauer tables, we will see that just one fusion is admissible.
We can exclude two possible fusions by the fact that their images all lie inside the normal subgroup

J3, but J3 does not contain a subgroup of type L2(16).4; so still one orbit of length two remains.
Example

gap> j3:= CharacterTable("J3");;
gap> PossibleClassFusions(s, j3);
[]
gap> GetFusionMap(j3, t);
[1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 15, 16,

17, 17]
gap> filt:= Filtered(fus,
> x -> not IsSubset(ClassPositionsOfDerivedSubgroup(t), x));
[[1, 2, 3, 6, 14, 15, 16, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23],

[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23]]

Now the remaining wrong fusion is excluded by the fact that the table automorphism of J3.2 that
swaps the two classes of element order 17 –which swaps two of the possible class fusions– does not
live in the 2-modular table.

Computations with the GAP Character Table Library 325

Example
gap> smod2:= s mod 2;;
gap> tmod2:= t mod 2;;
gap> admissible:= [];;
gap> for map in filt do
> modmap:= CompositionMaps(InverseMap(GetFusionMap(tmod2, t)),
> CompositionMaps(map, GetFusionMap(smod2, s)));
> if not fail in Decomposition(Irr(smod2),
> List(Irr(tmod2), chi -> chi{ modmap }), "nonnegative") then
> AddSet(admissible, map);
> fi;
> od;
gap> admissible;
[[1, 2, 3, 6, 14, 16, 15, 2, 5, 7, 12, 19, 19, 22, 22, 23, 23]]

The test of all available Brauer tables is implemented in the function
CTblLib.Test.Decompositions of the GAP Character Table Library ([Bre24]).

Example
gap> CTblLib.Test.Decompositions(s, fus, t) = admissible;
true

We see that p-modular tables alone determine the class fusion uniquely; in fact the primes 2 and 3
suffice for that.

Example
gap> GetFusionMap(s, t) in admissible;
true

Remark:
In May 2015, the 19-modular character table of J3 has been corrected, by swapping the two classes

of element order 17. Since the class fusion of L2(16).4 into J3.2 is uniquely determined by the 2-
modular tables of L2(16).4 and J3.2 and since this class fusion has been compatible with the previous
version of the 19-modular table of J3, the correction does not affect the above arguments.

9.6.2 L2(17)→ S8(2) (July 2004)

The class fusion of the maximal subgroup M ∼= L2(17) of G = S8(2) is ambiguous.
Example

gap> m:= CharacterTable("L2(17)");;
gap> t:= CharacterTable("S8(2)");;
gap> mfust:= PossibleClassFusions(m, t);;
gap> Length(RepresentativesFusions(m, mfust, t));
4

The Brauer tables for M and G determine the class fusion up to table automorphisms.
Example

gap> filt:= CTblLib.Test.Decompositions(m, mfust, t);;
gap> repr:= RepresentativesFusions(m, filt, t);;
gap> Length(repr);
1
gap> GetFusionMap(m, t) in repr;
true

Computations with the GAP Character Table Library 326

9.6.3 L2(19)→ J3 (April 2003)

It can happen that Brauer tables impose conditions such that ambiguities arise which are not visible if
one considers only ordinary tables.

The class fusion between the ordinary character tables of L2(19) and J3 is unique up to table
automorphisms.

Example
gap> s:= CharacterTable("L2(19)");;
gap> t:= CharacterTable("J3");;
gap> sfust:= PossibleClassFusions(s, t);
[[1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 20, 21],

[1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 21, 20],
[1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21],
[1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 21, 20],
[1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21],
[1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 21, 20],
[1, 2, 4, 7, 6, 10, 11, 12, 14, 13, 20, 21],
[1, 2, 4, 7, 6, 10, 11, 12, 14, 13, 21, 20],
[1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 20, 21],
[1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 21, 20],
[1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 20, 21],
[1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 21, 20]]

gap> fusreps:= RepresentativesFusions(s, sfust, t);
[[1, 2, 4, 6, 7, 10, 11, 12, 13, 14, 20, 21]]

The Galois automorphism that permutes the three classes of element order 9 in the tables of
(L2(19) and) J3 does not live in characteristic 19. For example, the unique irreducible Brauer character
of degree 110 in the 19-modular table of J3 is ϕ3, and the value of this character on the class 9A is
-1+2y9+&4.

Example
gap> tmod19:= t mod 19;
BrauerTable("J3", 19)
gap> deg110:= Filtered(Irr(tmod19), phi -> phi[1] = 110);
[Character(BrauerTable("J3", 19),

[110, -2, 5, 2, 2, 0, 0, 1, 0,
-2*E(9)^2+E(9)^3-E(9)^4-E(9)^5+E(9)^6-2*E(9)^7,
E(9)^2+E(9)^3-E(9)^4-E(9)^5+E(9)^6+E(9)^7,
E(9)^2+E(9)^3+2*E(9)^4+2*E(9)^5+E(9)^6+E(9)^7, -2, -2, -1, 0,
0, E(17)^3+E(17)^5+E(17)^6+E(17)^7+E(17)^10+E(17)^11+E(17)^12

+E(17)^14,
E(17)+E(17)^2+E(17)^4+E(17)^8+E(17)^9+E(17)^13+E(17)^15+E(17)^16

])]
gap> 9A:= Position(OrdersClassRepresentatives(tmod19), 9);
10
gap> deg110[1][9A];
-2*E(9)^2+E(9)^3-E(9)^4-E(9)^5+E(9)^6-2*E(9)^7
gap> AtlasIrrationality("-1+2y9+&4") = deg110[1][9A];
true

It turns out that four of the twelve possible class fusions are not compatible with the 19-modular
tables.

Computations with the GAP Character Table Library 327

Example
gap> smod19:= s mod 19;
BrauerTable("L2(19)", 19)
gap> compatible:= [];;
gap> for map in sfust do
> comp:= CompositionMaps(InverseMap(GetFusionMap(tmod19, t)),
> CompositionMaps(map, GetFusionMap(smod19, s)));
> rest:= List(Irr(tmod19), phi -> phi{ comp });
> if not fail in Decomposition(Irr(smod19), rest, "nonnegative") then
> Add(compatible, map);
> fi;
> od;
gap> compatible;
[[1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21],

[1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 21, 20],
[1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21],
[1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 21, 20],
[1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 20, 21],
[1, 2, 4, 7, 6, 11, 12, 10, 14, 13, 21, 20],
[1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 20, 21],
[1, 2, 4, 7, 6, 12, 10, 11, 14, 13, 21, 20]]

Moreover, the subgroups of those table automorphisms of the ordinary tables that leave the set of
compatible fusions invariant make two orbits on this set. Indeed, the two orbits belong to essentially
different decompositions of the restriction of ϕ3.

Example
gap> reps:= RepresentativesFusions(s, compatible, t);
[[1, 2, 4, 6, 7, 11, 12, 10, 13, 14, 20, 21],

[1, 2, 4, 6, 7, 12, 10, 11, 13, 14, 20, 21]]
gap> compatiblemod19:= List(reps, map -> CompositionMaps(
> InverseMap(GetFusionMap(tmod19, t)),
> CompositionMaps(map, GetFusionMap(smod19, s))));
[[1, 2, 4, 6, 7, 11, 12, 10, 13, 14],

[1, 2, 4, 6, 7, 12, 10, 11, 13, 14]]
gap> rest:= List(compatiblemod19, map -> Irr(tmod19)[3]{ map });;
gap> dec:= Decomposition(Irr(smod19), rest, "nonnegative");
[[0, 0, 1, 2, 1, 2, 2, 1, 0, 1], [0, 2, 0, 2, 0, 1, 2, 0, 2, 1]]
gap> List(Irr(smod19), phi -> phi[1]);
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

In order to decide which class fusion is correct, we take the matrix representation of J3 that affords
ϕ3, restrict it to L2(19), which is the second maximal subgroup of J3, and compute the composition
factors. For that, we use a representation from the Atlas of Group Representations [WWT+], and
access it via the GAP package AtlasRep ([WPN+22]).

Example
gap> LoadPackage("atlasrep", false);
true
gap> prog:= AtlasProgram("J3", "maxes", 2);
rec(groupname := "J3", identifier := ["J3", "J3G1-max2W1", 1],

program := <straight line program>, size := 3420,
standardization := 1, subgroupname := "L2(19)", version := "1")

Computations with the GAP Character Table Library 328

gap> gens:= OneAtlasGeneratingSetInfo("J3", Characteristic, 19,
> Dimension, 110);;
gap> gens:= AtlasGenerators(gens);
rec(charactername := "110a", constituents := [3],

contents := "core", dim := 110,
generators := [< immutable compressed matrix 110x110 over GF(19) >,

< immutable compressed matrix 110x110 over GF(19) >],
groupname := "J3", id := "",
identifier := ["J3", ["J3G1-f19r110B0.m1", "J3G1-f19r110B0.m2"],

1, 19], repname := "J3G1-f19r110B0", repnr := 35,
ring := GF(19), size := 50232960, standardization := 1,
type := "matff")

gap> restgens:= ResultOfStraightLineProgram(prog.program, gens.generators);
[< immutable compressed matrix 110x110 over GF(19) >,

< immutable compressed matrix 110x110 over GF(19) >]
gap> module:= GModuleByMats(restgens, GF(19));;
gap> facts:= SMTX.CollectedFactors(module);;
gap> Length(facts);
7
gap> List(facts, x -> x[1].dimension);
[5, 7, 9, 11, 13, 15, 19]
gap> List(facts, x -> x[2]);
[1, 2, 1, 2, 2, 1, 1]

This means that there are seven pairwise nonisomorphic composition factors, the smallest one of
dimension five. In other words, the first of the two maps is the correct one. Let us check whether this
map equals the one that is stored on the library table.

Example
gap> GetFusionMap(s, t) = reps[1];
true

Remark:
In May 2015, the 19-modular character table of J3 has been corrected, by swapping the two classes

of element order 17. This affects the above computations only in one place, where the values of the
character deg110 are shown.

9.7 Fusions Determined by Information about the Groups

In the examples in this section, character theoretic arguments do not suffice for determining the class
fusions. So we use computations with the groups in question or information about these groups beyond
the character table, and perhaps additionally character theoretic arguments.

The group representations are taken from the Atlas of Group Representations [WWT+] and are
accessed via the GAP package AtlasRep ([WPN+22]).

Example
gap> LoadPackage("atlasrep", false);
true

Computations with the GAP Character Table Library 329

9.7.1 U3(3).2→ Fi′24 (November 2002)

The group G = Fi′24 contains a maximal subgroup H of type U3(3).2. From the character tables of G
and H, one gets a lot of essentially different possibilities (and additionally this takes quite some time).
We use the description of H as the normalizer in G of a U3(3) type subgroup containing elements in
the classes 2B, 3D, 3E, 4C, 4C, 6J, 7B, 8C, and 12M (see [BN95]).

Example
gap> t:= CharacterTable("F3+");
CharacterTable("F3+")
gap> s:= CharacterTable("U3(3).2");
CharacterTable("U3(3).2")
gap> tnames:= ClassNames(t, "ATLAS");
["1A", "2A", "2B", "3A", "3B", "3C", "3D", "3E", "4A", "4B", "4C",

"5A", "6A", "6B", "6C", "6D", "6E", "6F", "6G", "6H", "6I", "6J",
"6K", "7A", "7B", "8A", "8B", "8C", "9A", "9B", "9C", "9D", "9E",
"9F", "10A", "10B", "11A", "12A", "12B", "12C", "12D", "12E",
"12F", "12G", "12H", "12I", "12J", "12K", "12L", "12M", "13A",
"14A", "14B", "15A", "15B", "15C", "16A", "17A", "18A", "18B",
"18C", "18D", "18E", "18F", "18G", "18H", "20A", "20B", "21A",
"21B", "21C", "21D", "22A", "23A", "23B", "24A", "24B", "24C",
"24D", "24E", "24F", "24G", "26A", "27A", "27B", "27C", "28A",
"29A", "29B", "30A", "30B", "33A", "33B", "35A", "36A", "36B",
"36C", "36D", "39A", "39B", "39C", "39D", "42A", "42B", "42C",
"45A", "45B", "60A"]

gap> OrdersClassRepresentatives(s);
[1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 2, 4, 6, 8, 12, 12]
gap> sfust:= List(["1A", "2B", "3D", "3E", "4C", "4C", "6J", "7B", "8C",
> "12M"], x -> Position(tnames, x));
[1, 3, 7, 8, 11, 11, 22, 25, 28, 50]
gap> sfust:= PossibleClassFusions(s, t, rec(fusionmap:= sfust));
[[1, 3, 7, 8, 11, 11, 22, 25, 28, 50, 3, 9, 23, 28, 43, 43],

[1, 3, 7, 8, 11, 11, 22, 25, 28, 50, 3, 11, 23, 28, 50, 50]]
gap> OrdersClassRepresentatives(s);
[1, 2, 3, 3, 4, 4, 6, 7, 8, 12, 2, 4, 6, 8, 12, 12]

So we still have two possibilities, which differ on the outer classes of element order 4 and 12.
Our idea is to take a subgroup U of H that contains such elements, and to compute the possible

class fusions of U into G, via the factorization through a suitable maximal subgroup M of G.
We take U = NH(〈g〉) where g is an element in the first class of order three elements of H; this is

a maximal subgroup of H, of order 216.
Example

gap> Maxes(s);
["U3(3)", "3^(1+2):SD16", "L3(2).2", "2^(1+4).S3", "4^2:D12"]
gap> SizesCentralizers(s);
[12096, 192, 216, 18, 96, 32, 24, 7, 8, 12, 48, 48, 6, 8, 12, 12]
gap> u:= CharacterTable(Maxes(s)[2]);;
gap> ufuss:= GetFusionMap(u, s);
[1, 2, 11, 3, 4, 5, 12, 7, 13, 9, 9, 15, 16, 10]

Candidates for M are those subgroups of G that contain elements in the class 3D of G whose
centralizer is the full 3D centralizer in G.

Computations with the GAP Character Table Library 330

Example
gap> 3Dcentralizer:= SizesCentralizers(t)[7];
153055008
gap> cand:= [];;
gap> for name in Maxes(t) do
> m:= CharacterTable(name);
> mfust:= GetFusionMap(m, t);
> if ForAny([1 .. Length(mfust)],
> i -> mfust[i] = 7 and SizesCentralizers(m)[i] = 3Dcentralizer)
> then
> Add(cand, m);
> fi;
> od;
gap> cand;
[CharacterTable("3^7.O7(3)"),

CharacterTable("3^2.3^4.3^8.(A5x2A4).2")]

For these two groups M, we show that the possible class fusions from U to G via M factorize
through H only if the second possible class fusion from H to G is chosen.

Example
gap> possufust:= List(sfust, x -> CompositionMaps(x, ufuss));
[[1, 3, 3, 7, 8, 11, 9, 22, 23, 28, 28, 43, 43, 50],

[1, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50]]
gap> m:= cand[1];;
gap> ufusm:= PossibleClassFusions(u, m);;
gap> Length(ufusm);
242
gap> comp:= List(ufusm, x -> CompositionMaps(GetFusionMap(m, t), x));;
gap> Intersection(possufust, comp);
[[1, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50]]
gap> m:= cand[2];;
gap> ufusm:= PossibleClassFusions(u, m);;
gap> Length(ufusm);
256
gap> comp:= List(ufusm, x -> CompositionMaps(GetFusionMap(m, t), x));;
gap> Intersection(possufust, comp);
[[1, 3, 3, 7, 8, 11, 11, 22, 23, 28, 28, 50, 50, 50]]

Finally, we check that the correct fusion is stored in the GAP Character Table Library.
Example

gap> GetFusionMap(s, t) = sfust[2];
true

9.7.2 L2(13).2→ Fi′24 (September 2002)

The class fusion of maximal subgroups U of type L2(13).2 in G = Fi′24 is ambiguous.
Example

gap> t:= CharacterTable("F3+");;
gap> u:= CharacterTable("L2(13).2");;
gap> fus:= PossibleClassFusions(u, t);;

Computations with the GAP Character Table Library 331

gap> repr:= RepresentativesFusions(u, fus, t);;
gap> Length(repr);
3

In [LW91, p. 155], it is stated that U ′ contains elements in the classes 2B, 3D, and 7B of G. (Note
that the two conjugacy classes of groups isomorphic to U have the same class fusion because the outer
automorphism of G fixes the relevant classes.)

Example
gap> filt:= Filtered(repr, x -> t.2b in x and t.3d in x and t.7b in x);
[[1, 3, 7, 22, 25, 25, 25, 51, 3, 9, 43, 43, 53, 53, 53],

[1, 3, 7, 22, 25, 25, 25, 51, 3, 11, 50, 50, 53, 53, 53]]
gap> ClassNames(t){ [43, 50] };
["12f", "12m"]

So we have to decide whether U contains elements in the class 12F or in 12M of G.
The order 12 elements in question lie inside subgroups of type 13 : 12 in U . These subgroups are

clearly contained in the Sylow 13 normalizers of G, which are contained in maximal subgroups of
type (32 : 2×G2(3)).2 in G; the class fusion of the latter groups is unique up to table automorphisms.

Example
gap> pos:= Position(OrdersClassRepresentatives(t), 13);
51
gap> SizesCentralizers(t)[pos];
234
gap> ClassOrbit(t, pos);
[51]
gap> cand:= [];;
gap> for name in Maxes(t) do
> m:= CharacterTable(name);
> pos:= Position(OrdersClassRepresentatives(m), 13);
> if pos <> fail and
> SizesCentralizers(m)[pos] = 234
> and ClassOrbit(m, pos) = [pos] then
> Add(cand, m);
> fi;
> od;
gap> cand;
[CharacterTable("(3^2:2xG2(3)).2")]
gap> s:= cand[1];;
gap> sfust:= PossibleClassFusions(s, t);;

As no 13 : 12 type subgroup is contained in the derived subgroup of (32 : 2×G2(3)).2, we look at
the elements of order 12 in the outer half.

Example
gap> der:= ClassPositionsOfDerivedSubgroup(s);;
gap> outer:= Difference([1 .. NrConjugacyClasses(s)], der);;
gap> sfust:= PossibleClassFusions(s, t);;
gap> imgs:= Set(Flat(List(sfust, x -> x{ outer })));
[2, 3, 10, 11, 15, 17, 18, 19, 21, 22, 26, 44, 45, 49, 50, 52, 62,

83, 87, 98]
gap> t.12f in imgs;

Computations with the GAP Character Table Library 332

false
gap> t.12m in imgs;
true

So L2(13).2\L2(13) does not contain 12F elements of G, i. e., we have determined the class fusion
of U in G.

Finally, we check whether the correct fusion is stored in the GAP Character Table Library.
Example

gap> GetFusionMap(u, t) = filt[2];
true

9.7.3 M11→ B (April 2009)

The sporadic simple group B contains a maximal subgroup M of the type M11 whose class fusion is
ambiguous.

Example
gap> b:= CharacterTable("B");;
gap> m11:= CharacterTable("M11");;
gap> m11fusb:= PossibleClassFusions(m11, b);;
gap> Length(m11fusb);
31
gap> CompositionMaps(ClassNames(b, "ATLAS"), Parametrized(m11fusb));
["1A", ["2B", "2D"], ["3A", "3B"],

["4B", "4E", "4G", "4H", "4J"], ["5A", "5B"],
["6C", "6E", "6H", "6I", "6J"],
["8B", "8E", "8G", "8J", "8K", "8L", "8M", "8N"],
["8B", "8E", "8G", "8J", "8K", "8L", "8M", "8N"], "11A", "11A"]

According to [Wil93a, Thm. 12.1], M contains no 5A elements of B. By the proof of [Wil99, Prop.
4.1], the involutions in any S5 type subgroup U of M lie in the class 2C or 2D of B, and since the possible
class fusions of M computed above admit only involutions in the class 2B or 2D, all involutions of U
lie in the class 2D. Again by the proof of [Wil99, Prop. 4.1], U is contained in a maximal subgroup of
type T h in B.

Now we use the embedding of U into B via M and T h for determining the class fusion of M into
B. The class fusion of the embedding of U via T h is uniquely determined.

Example
gap> th:= CharacterTable("Th");;
gap> s5:= CharacterTable("S5");;
gap> s5fusth:= PossibleClassFusions(s5, th);
[[1, 2, 4, 8, 2, 7, 11]]
gap> thfusb:= PossibleClassFusions(th, b);;
gap> s5fusb:= Set(thfusb, x -> CompositionMaps(x, s5fusth[1]));
[[1, 5, 7, 19, 5, 17, 29]]

Also the class fusion of U into M is unique, and this determines the class fusion of M into B.
Example

gap> s5fusm11:= PossibleClassFusions(s5, m11);
[[1, 2, 3, 5, 2, 4, 6]]

Computations with the GAP Character Table Library 333

gap> m11fusb:= Filtered(m11fusb,
> map -> CompositionMaps(map, s5fusm11[1]) = s5fusb[1]);
[[1, 5, 7, 17, 19, 29, 45, 45, 54, 54]]
gap> CompositionMaps(ClassNames(b, "ATLAS"), m11fusb[1]);
["1A", "2D", "3B", "4J", "5B", "6J", "8N", "8N", "11A", "11A"]

(Using the information that the M10 type subgroups of M are also contained in T h type subgroups
would not have helped us, since these subgroups do not contain elements of order 6, and two possibil-
ities would have remained.)

9.7.4 L2(11) : 2→ B (April 2009)

The sporadic simple group B contains a maximal subgroup L of the type L2(11) : 2 whose class fusion
is ambiguous.

Example
gap> b:= CharacterTable("B");;
gap> l:= CharacterTable("L2(11).2");;
gap> lfusb:= PossibleClassFusions(l, b);;
gap> Length(lfusb);
16
gap> CompositionMaps(ClassNames(b, "ATLAS"), Parametrized(lfusb));
["1A", ["2B", "2D"], ["3A", "3B"], ["5A", "5B"],

["5A", "5B"], ["6C", "6H", "6I", "6J"], "11A", ["2C", "2D"],
["4D", "4E", "4F", "4G", "4H", "4J"], ["10C", "10E", "10F"],
["10C", "10E", "10F"],
["12E", "12F", "12H", "12I", "12J", "12L", "12N", "12P", "12Q",

"12R", "12S"],
["12E", "12F", "12H", "12I", "12J", "12L", "12N", "12P", "12Q",

"12R", "12S"]]

According to [Wil93a, Thm. 12.1], L contains no 5A elements of B. By the proof of [Wil99, Prop.
4.1], B contains exactly one class of L2(11) type subgroups with this property. Hence the subgroup
U of index two in L is contained in a maximal subgroup M of type M11 in B, whose class fusion was
determined in Section 9.7.3.

In the same way as we proceeded in Section 9.7.3, we use the embedding of U into B via L and M
for determining the class fusion of L into B.

Example
gap> m:= CharacterTable("M11");;
gap> u:= CharacterTable("L2(11)");;
gap> ufusm:= PossibleClassFusions(u, m);;
gap> mfusb:= GetFusionMap(m, b);;
gap> ufusb:= Set(ufusm, x -> CompositionMaps(mfusb, x));
[[1, 5, 7, 19, 19, 29, 54, 54]]
gap> ufusl:= PossibleClassFusions(u, l);
[[1, 2, 3, 4, 5, 6, 7, 7], [1, 2, 3, 5, 4, 6, 7, 7]]
gap> lfusb:= Filtered(lfusb,
> map2 -> ForAny(ufusl,
> map1 -> CompositionMaps(map2, map1) in ufusb));
[[1, 5, 7, 19, 19, 29, 54, 5, 15, 53, 53, 73, 73]]

Computations with the GAP Character Table Library 334

9.7.5 L3(3)→ B (April 2009)

The sporadic simple group B contains a maximal subgroup T of the type L3(3) whose class fusion is
ambiguous.

Example
gap> b:= CharacterTable("B");;
gap> t:= CharacterTable("L3(3)");;
gap> tfusb:= PossibleClassFusions(t, b);;
gap> Length(tfusb);
36

According to [Wil99, Section 9], T contains a subgroup U of the type 32 : 2S4 that is contained
also in a maximal subgroup M of the type 32.33.36.(S4×2S4). So we throw away the possible fusions
from T to B that are not compatible with the compositions of the embeddings of U into B via T and
M.

Example
gap> m:= CharacterTable("3^2.3^3.3^6.(S4x2S4)");;
gap> g:= PSL(3,3);;
gap> mx:= MaximalSubgroupClassReps(g);;
gap> u:= First(mx, x -> Size(x) = 432);;
gap> u:= CharacterTable(u);;
gap> ufusm:= PossibleClassFusions(u, m);;
gap> ufust:= PossibleClassFusions(u, t);;
gap> mfusb:= GetFusionMap(m, b);;
gap> ufusb:= Set(ufusm, map -> CompositionMaps(mfusb, map));;
gap> tfusb:= Filtered(tfusb, map -> ForAny(ufust,
> map2 -> CompositionMaps(map, map2) in ufusb));;
gap> tfusb;
[[1, 5, 6, 7, 12, 27, 41, 41, 75, 75, 75, 75],

[1, 5, 7, 6, 12, 28, 41, 41, 75, 75, 75, 75],
[1, 5, 7, 7, 12, 28, 41, 41, 75, 75, 75, 75],
[1, 5, 7, 7, 12, 29, 41, 41, 75, 75, 75, 75],
[1, 5, 7, 7, 17, 29, 45, 45, 75, 75, 75, 75]]

Now we use that T does not contain 4E elements of B (again see [Wil99, Section 9]). Thus the last
of the five candidates is the correct class fusion.

Example
gap> ClassNames(b, "ATLAS"){ [12, 17] };
["4E", "4J"]

We check that this map is stored on the library table.
Example

gap> GetFusionMap(t, b) = tfusb[5];
true

9.7.6 L2(17).2→ B (March 2004)

The sporadic simple group B contains a maximal subgroup U of the type L2(17).2 whose class fusion
is ambiguous.

Computations with the GAP Character Table Library 335

Example
gap> b:= CharacterTable("B");;
gap> u:= CharacterTable("L2(17).2");;
gap> ufusb:= PossibleClassFusions(u, b);
[[1, 5, 7, 15, 42, 42, 47, 47, 47, 91, 4, 30, 89, 89, 89, 89, 97,

97, 97],
[1, 5, 7, 15, 44, 44, 46, 46, 46, 91, 5, 29, 90, 90, 90, 90, 96,

96, 96],
[1, 5, 7, 15, 44, 44, 47, 47, 47, 91, 5, 29, 90, 90, 90, 90, 95,

95, 95]]

According to [Wil99, Prop. 11.1], U contains elements in the classes 8M and 9A of B. This
determines the fusion map.

Example
gap> names:= ClassNames(b, "ATLAS");;
gap> pos:= List(["8M", "9A"], x -> Position(names, x));
[44, 46]
gap> ufusb:= Filtered(ufusb, map -> IsSubset(map, pos));
[[1, 5, 7, 15, 44, 44, 46, 46, 46, 91, 5, 29, 90, 90, 90, 90, 96,

96, 96]]

We check that this map is stored on the library table.
Example

gap> GetFusionMap(u, b) = ufusb[1];
true

9.7.7 L2(49).23→ B (June 2006)

The sporadic simple group B contains a class of maximal subgroups of the type L2(49).23 (a non-split
extension of L2(49), see [Wil93b, Theorem 2]). Let U be such a subgroup. The class fusion of U in B
is not determined by the character tables of U and B.

Example
gap> u:= CharacterTable("L2(49).2_3");;
gap> b:= CharacterTable("B");;
gap> ufusb:= PossibleClassFusions(u, b);;
gap> Length(RepresentativesFusions(u, ufusb, b));
2
gap> ufusb;
[[1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128,

128, 128, 15, 71, 71, 89, 89, 89, 89],
[1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128,

128, 128, 17, 72, 72, 89, 89, 89, 89]]

We show that the fusion is determined by the embeddings of the Sylow 7 normalizer N, say, of U
into U and into the Sylow 7 normalizer of B. (Note that the fusion of the latter group into B has been
determined in Section 9.3.1.)

For that, we compute the character table of N from a representation of U . Note that U is a non-
split extension of the simple group L2(49) by the product of a diagonal automorphism and a field
automorphism. In [Wil93b], the structure of N is described as 72 : (3×Q16).

Computations with the GAP Character Table Library 336

Example
gap> g:= SL(2, 49);;
gap> gens:= GeneratorsOfGroup(g);;
gap> f:= GF(49);;
gap> mats:= List(gens, x -> IdentityMat(4, f));;
gap> for i in [1 .. Length(gens)] do
> mats[i]{ [1, 2] }{ [1, 2] }:= gens[i];
> mats[i]{ [3, 4] }{ [3, 4] }:= List(gens[i],
> x -> List(x, y -> y^7));
> od;
gap> fieldaut:= PermutationMat((1,3)(2,4), 4, f);;
gap> diagaut:= IdentityMat(4, f);;
gap> diagaut[1][1]:= Z(49);;
gap> diagaut[3][3]:= Z(49)^7;;
gap> g:= Group(Concatenation(mats, [fieldaut * diagaut]));;
gap> v:= [1, 0, 0, 0] * Z(7)^0;;
gap> orb:= Orbit(g, v, OnLines);;
gap> act:= Action(g, orb, OnLines);;
gap> n:= Normalizer(act, SylowSubgroup(act, 7));;
gap> ntbl:= CharacterTable(n);;

Now we compute the possible class fusions of N into B, via the Sylow 7 normalizer in B.
Example

gap> bn7:= CharacterTable("BN7");;
gap> nfusbn7:= PossibleClassFusions(ntbl, bn7);;
gap> Length(RepresentativesFusions(ntbl, nfusbn7, bn7));
3
gap> nfusb:= SetOfComposedClassFusions(PossibleClassFusions(bn7, b),
> nfusbn7);;
gap> Length(RepresentativesFusions(ntbl, nfusb, b));
5

Although there are several possibilities, this information is enough to exclude one of the possible
fusions of U into B.

Example
gap> nfusu:= PossibleClassFusions(ntbl, u);;
gap> Length(nfusu);
4
gap> filt:= Filtered(ufusb,
> x -> ForAny(nfusu, y -> CompositionMaps(x, y) in nfusb));
[[1, 5, 7, 15, 19, 28, 31, 42, 42, 71, 125, 125, 128, 128, 128,

128, 128, 17, 72, 72, 89, 89, 89, 89]]
gap> ClassNames(b, "ATLAS"){ filt[1] };
["1A", "2D", "3B", "4H", "5B", "6I", "7A", "8K", "8K", "12Q", "24L",

"24L", "25A", "25A", "25A", "25A", "25A", "4J", "12R", "12R",
"16G", "16G", "16G", "16G"]

So the class fusion of U into B can be described by the property that the elements of order four
inside and outside the simple subgroup L2(49) are not conjugate in B.

We check that the correct map is stored on the library table.

Computations with the GAP Character Table Library 337

Example
gap> GetFusionMap(u, b) in filt;
true

Let us confirm that the two groups of the types L2(49).21 and L2(49).22 cannot occur as subgroups
of B. First we show that L2(49).21 is isomorphic with PGL(2,49), an extension of L2(49) by a diagonal
automorphism, and L2(49).22 is an extension by a field automorphism.

Example
gap> NrConjugacyClasses(u); NrConjugacyClasses(act);
24
24
gap> u:= CharacterTable("L2(49).2_1");;
gap> g:= Group(Concatenation(mats, [diagaut]));;
gap> orb:= Orbit(g, v, OnLines);;
gap> act:= Action(g, orb, OnLines);;
gap> Size(act);
117600
gap> NrConjugacyClasses(u); NrConjugacyClasses(act);
51
51
gap> u:= CharacterTable("L2(49).2_2");;
gap> g:= Group(Concatenation(mats, [fieldaut]));;
gap> orb:= Orbit(g, v, OnLines);;
gap> act:= Action(g, orb, OnLines);;
gap> NrConjugacyClasses(u); NrConjugacyClasses(act);
27
27

The group L2(49).21 can be excluded because no class fusion into B is possible.
Example

gap> PossibleClassFusions(CharacterTable("L2(49).2_1"), b);
[]

For L2(49).22, it is not that easy. We would get several possible class fusions into B. However, the
Sylow 7 normalizer of L2(49).22 does not admit a class fusion into the Sylow 7 normalizer of B.

Example
gap> n:= Normalizer(act, SylowSubgroup(act, 7));;
gap> Length(PossibleClassFusions(CharacterTable(n), bn7));
0

9.7.8 23.L3(2)→ G2(5) (January 2004)

The Chevalley group G = G2(5) contains a maximal subgroup U of the type 23.L3(2) whose class
fusion is ambiguous.

Example
gap> t:= CharacterTable("G2(5)");;
gap> s:= CharacterTable("2^3.L3(2)");;
gap> sfust:= PossibleClassFusions(s, t);;
gap> RepresentativesFusions(s, sfust, t);

Computations with the GAP Character Table Library 338

[[1, 2, 2, 5, 6, 4, 13, 16, 17, 15, 15],
[1, 2, 2, 5, 6, 4, 14, 16, 17, 15, 15]]

gap> OrdersClassRepresentatives(s);
[1, 2, 2, 4, 4, 3, 6, 8, 8, 7, 7]

So the question is whether U contains elements in the class 6B or 6C of G (position 13 or 14 in the
Atlas table). We use a permutation representation of G, restrict it to U , and compute the centralizer in
G of a suitable element of order 6 in U .

Example
gap> g:= AtlasGroup("G2(5)");;
gap> u:= AtlasSubgroup("G2(5)", 7);;
gap> Size(u);
1344
gap> repeat
> x:= Random(u);
> until Order(x) = 6;
gap> siz:= Size(Centralizer(g, x));
36
gap> Filtered([1 .. NrConjugacyClasses(t)],
> i -> SizesCentralizers(t)[i] = siz);
[14]

So U contains 6C elements in G2(5).
Example

gap> GetFusionMap(s, t) in Filtered(sfust, map -> 14 in map);
true

9.7.9 51+4.21+4.A5.4→ B (April 2009)

The sporadic simple group B contains a maximal subgroup M of the type 51+4.21+4.A5.4 whose class
fusion is ambiguous.

Example
gap> b:= CharacterTable("B");;
gap> m:= CharacterTable("5^(1+4).2^(1+4).A5.4");;
gap> mfusb:= PossibleClassFusions(m, b);;
gap> Length(mfusb);
4
gap> repres:= RepresentativesFusions(m, mfusb, b);;
gap> Length(repres);
2

The restriction of the unique irreducible character of degree 4371 distinguishes the two possibili-
ties,

Example
gap> char:= Filtered(Irr(b), x -> x[1] = 4371);;
gap> Length(char);
1
gap> rest:= List(repres, map -> char[1]{ map });;
gap> scprs:= MatScalarProducts(m, Irr(m), rest);;

Computations with the GAP Character Table Library 339

gap> constit:= List(scprs,
> x -> Filtered([1 .. Length(x)], i -> x[i] <> 0));
[[2, 27, 60, 63, 73, 74, 75, 79, 82],

[2, 27, 60, 63, 70, 72, 75, 79, 84]]
gap> List(constit, x -> List(Irr(m){ x }, Degree));
[[1, 6, 384, 480, 400, 400, 500, 1000, 1200],

[1, 6, 384, 480, 100, 300, 500, 1000, 1600]]

The database [WWT+] contains the 3-modular reduction of the irreducible representation of de-
gree 4371 and also a straight line program for restricting this representation to M. We access these
data via the GAP package AtlasRep (see [WPN+22]), and compute the composition factors of the
natural module of this restriction.

Example
gap> g:= AtlasSubgroup("B", Dimension, 4371, Ring, GF(3), 21);;
gap> module:= GModuleByMats(GeneratorsOfGroup(g), GF(3));;
gap> dec:= MTX.CompositionFactors(module);;
gap> SortedList(List(dec, x -> x.dimension));
[1, 6, 100, 384, 400, 400, 400, 480, 1000, 1200]

We see that exactly one ordinary constituent does not stay irreducible upon restriction to charac-
teristic 3. Thus the first of the two possible class fusions is the correct one.

9.7.10 The fusion from the character table of 72 : 2L2(7).2 into the table of marks
(January 2004)

It can happen that the class fusion from the ordinary character table of a group G into the table of
marks of G is not unique up to table automorphisms of the character table of G.

As an example, consider G = 72 : 2L2(7).2, a maximal subgroup in the sporadic simple group He.
G contains four classes of cyclic subgroups of order 7. One contains the elements in the normal

subgroup of type 72, and the other three are preimages of the order 7 elements in the factor group
L2(7). The conjugacy classes of nonidentity elements in the latter three classes split into two Galois
conjugates each, which are permuted cyclicly by the table automorphisms of the character table of G,
but on which the stabilizer of one class acts trivially. This means that determining one of the three
classes determines also the other two.

Example
gap> tbl:= CharacterTable("7^2:2psl(2,7)");
CharacterTable("7^2:2psl(2,7)")
gap> tom:= TableOfMarks(tbl);
TableOfMarks("7^2:2L2(7)")
gap> fus:= PossibleFusionsCharTableTom(tbl, tom);
[[1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 10, 9, 16, 7, 10, 9, 8, 16],

[1, 6, 2, 4, 3, 5, 13, 13, 7, 9, 8, 10, 16, 7, 8, 10, 9, 16],
[1, 6, 2, 4, 3, 5, 13, 13, 7, 10, 9, 8, 16, 7, 9, 8, 10, 16],
[1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16],
[1, 6, 2, 4, 3, 5, 13, 13, 7, 10, 8, 9, 16, 7, 8, 9, 10, 16],
[1, 6, 2, 4, 3, 5, 13, 13, 7, 9, 10, 8, 16, 7, 10, 8, 9, 16]]

gap> reps:= RepresentativesFusions(tbl, fus, Group(()));
[[1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16],

[1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 10, 9, 16, 7, 10, 9, 8, 16]]
gap> AutomorphismsOfTable(tbl);

Computations with the GAP Character Table Library 340

Group([(9,14)(10,17)(11,15)(12,16)(13,18), (7,8), (10,11,12)
(15,16,17)])

gap> OrdersClassRepresentatives(tbl);
[1, 7, 2, 4, 3, 6, 8, 8, 7, 7, 7, 7, 14, 7, 7, 7, 7, 14]
gap> perms1:= PermCharsTom(reps[1], tom);;
gap> perms2:= PermCharsTom(reps[2], tom);;
gap> perms1 = perms2;
false
gap> Set(perms1) = Set(perms2);
true

The table of marks of G does not distinguish the three classes of cyclic subgroups, there are
permutations of rows and columns that act as an S3 on them.

Note that an S3 acts on the classes in question in the rational character table. So it is due to the
irrationalities in the character table that it contains more information.

Example
gap> Display(tbl);
7^2:2psl(2,7)

2 4 . 4 3 1 1 3 3 1 . . . 1 1 . . .
3 1 . 1 . 1 1
7 3 3 1 2 2 2 2 1 2 2 2 2

1a 7a 2a 4a 3a 6a 8a 8b 7b 7c 7d 7e 14a 7f 7g 7h 7i
2P 1a 7a 1a 2a 3a 3a 4a 4a 7b 7c 7d 7e 7b 7f 7g 7h 7i
3P 1a 7a 2a 4a 1a 2a 8b 8a 7f 7i 7g 7h 14b 7b 7d 7e 7c
5P 1a 7a 2a 4a 3a 6a 8b 8a 7f 7i 7g 7h 14b 7b 7d 7e 7c
7P 1a 1a 2a 4a 3a 6a 8a 8b 1a 1a 1a 1a 2a 1a 1a 1a 1a

11P 1a 7a 2a 4a 3a 6a 8b 8a 7b 7c 7d 7e 14a 7f 7g 7h 7i
13P 1a 7a 2a 4a 3a 6a 8b 8a 7f 7i 7g 7h 14b 7b 7d 7e 7c

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 3 3 3 -1 . . 1 1 B B B B B /B /B /B /B
X.3 3 3 3 -1 . . 1 1 /B /B /B /B /B B B B B
X.4 6 6 6 2 -1 -1 -1 -1 -1 -1 -1 -1 -1
X.5 7 7 7 -1 1 1 -1 -1
X.6 8 8 8 . -1 -1 . . 1 1 1 1 1 1 1 1 1
X.7 4 4 -4 . 1 -1 . . -B -B -B -B B -/B -/B -/B -/B
X.8 4 4 -4 . 1 -1 . . -/B -/B -/B -/B /B -B -B -B -B
X.9 6 6 -6 . . . A -A -1 -1 -1 -1 1 -1 -1 -1 -1
X.10 6 6 -6 . . . -A A -1 -1 -1 -1 1 -1 -1 -1 -1
X.11 8 8 -8 . -1 1 . . 1 1 1 1 -1 1 1 1 1
X.12 48 -1 6 -1 -1 -1 . 6 -1 -1 -1
X.13 48 -1 C -1 /C /D . /C C D -1
X.14 48 -1 C /C /D -1 . /C D -1 C
X.15 48 -1 /C D -1 C . C -1 /C /D
X.16 48 -1 C /D -1 /C . /C -1 C D
X.17 48 -1 /C C D -1 . C /D -1 /C
X.18 48 -1 /C -1 C D . C /C /D -1

2 1
3 .

Computations with the GAP Character Table Library 341

7 1

14b
2P 7f
3P 14a
5P 14a
7P 2a

11P 14b
13P 14a

X.1 1
X.2 /B
X.3 B
X.4 -1
X.5 .
X.6 1
X.7 /B
X.8 B
X.9 1
X.10 1
X.11 -1
X.12 .
X.13 .
X.14 .
X.15 .
X.16 .
X.17 .
X.18 .

A = E(8)-E(8)^3
= Sqrt(2) = r2

B = E(7)+E(7)^2+E(7)^4
= (-1+Sqrt(-7))/2 = b7

C = 2*E(7)+2*E(7)^2+2*E(7)^4
= -1+Sqrt(-7) = 2b7

D = -3*E(7)-3*E(7)^2-2*E(7)^3-3*E(7)^4-2*E(7)^5-2*E(7)^6
= (5-Sqrt(-7))/2 = 2-b7

gap> mat:= MatTom(tom);;
gap> mataut:= MatrixAutomorphisms(mat);;
gap> Print(mataut, "\n");
Group([(11,12)(23,24)(27,28)(46,47)(53,54)(56,57),

(9,10)(20,21)(31,32)(38,39), (8, 9)(20,22)(31,33)(38,40)])
gap> RepresentativesFusions(Group(()), reps, mataut);
[[1, 6, 2, 4, 3, 5, 13, 13, 7, 8, 9, 10, 16, 7, 9, 10, 8, 16]]

We could say that thus the fusion is unique up to table automorphisms and automorphisms of the
table of marks. But since a group is associated with the table of marks, we compute the character table
from the group, and decide which class fusion is correct.

Example
gap> g:= UnderlyingGroup(tom);;
gap> tg:= CharacterTable(g);;
gap> tgfustom:= FusionCharTableTom(tg, tom);;

Computations with the GAP Character Table Library 342

gap> trans:= TransformingPermutationsCharacterTables(tg, tbl);;
gap> tblfustom:= Permuted(tgfustom, trans.columns);;
gap> orbits:= List(reps, map -> OrbitFusions(AutomorphismsOfTable(tbl),
> map, Group(())));;
gap> PositionProperty(orbits, orb -> tblfustom in orb);
2
gap> PositionProperty(orbits, orb -> FusionToTom(tbl).map in orb);
2

So we see that the second one of the possibilities above is the right one.

9.7.11 3×U4(2)→ 31.U4(3) (March 2010)

According to the Atlas (see [CCN+85, p. 52]), the simple group U4(3) contains two classes of maxi-
mal subgroups of the type U4(2). The class fusion of U4(2) into U4(3) is unique up to table automor-
phisms.

Example
gap> u42:= CharacterTable("U4(2)");;
gap> u43:= CharacterTable("U4(3)");;
gap> u42fusu43:= PossibleClassFusions(u42, u43);;
gap> Length(u42fusu43);
4
gap> Length(RepresentativesFusions(u42, u42fusu43, u43));
1

More precisely, take the outer automorphism group of U4(3), which is a dihedral group of order
eight, and consider the subgroup generated by its central involution (this automorphism is denoted by
21 in the Atlas) and another involution called 23 in the Atlas. This subgroup is a Klein four group that
induces a permutation group on the classes of U4(3) and thus acts on the four possible class fusions of
U4(2) into U4(3). In fact, this action is transitive.

The automorphism 21 swaps each pair of mutually inverse classes of order nine, that is, 9A is
swapped with 9B and 9C is swapped with 9D. All U4(2) type subgroups of U4(3) are invariant under
this automorphism, they extend to subgroups of the type U4(2).2 in U4(3).21.

Example
gap> u43_21:= CharacterTable("U4(3).2_1");;
gap> fus1:= GetFusionMap(u43, u43_21);
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 17,

18]
gap> act1:= Filtered(InverseMap(fus1), IsList);
[[16, 17], [18, 19]]
gap> CompositionMaps(ClassNames(u43, "Atlas"), act1);
[["9A", "9B"], ["9C", "9D"]]

The automorphism 23 swaps 6B with 6C, 9A with 9C, and 9B with 9D. The two classes of U4(2)
type subgroups of U4(3) are swapped by this automorphism.

Example
gap> u43_23:= CharacterTable("U4(3).2_3");;
gap> fus3:= GetFusionMap(u43, u43_23);
[1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 13, 14,

Computations with the GAP Character Table Library 343

15]
gap> act3:= Filtered(InverseMap(fus3), IsList);
[[4, 5], [11, 12], [13, 14], [16, 18], [17, 19]]
gap> CompositionMaps(ClassNames(u43, "Atlas"), act3);
[["3B", "3C"], ["6B", "6C"], ["7A", "7B"], ["9A", "9C"],

["9B", "9D"]]

The Atlas states that the permutation character induced by the first class of U4(2) type subgroups
is 1a+35a+90a, which means that the subgroups in this class contain 9A and 9B elements. Then the
permutation character induced by the second class of U4(2) type subgroups is 1a+35b+90a, and the
subgroups in this class contain 9C and 9D elements.

So we choose appropriate fusions for the two classes of maximal U4(2) type subgroups.
Example

gap> firstfus:= First(u42fusu43, x -> IsSubset(x, [16, 17]));
[1, 2, 2, 3, 3, 5, 4, 7, 8, 9, 10, 10, 12, 12, 11, 12, 16, 17, 20,

20]
gap> secondfus:= First(u42fusu43, x -> IsSubset(x, [18, 19]));
[1, 2, 2, 3, 3, 4, 5, 7, 8, 9, 10, 10, 11, 11, 12, 11, 18, 19, 20,

20]

Let us now consider the central extension 31.U4(3). Since the Schur multiplier of U4(2) has order
two, the U4(2) type subgroups of U4(3) lift to groups of the structure 3×U4(2) in 31.U4(3). There are
eight possible class fusions from 3×U4(2) to 31.U4(3), in two orbits of length four under the action
of table automorphisms.

Example
gap> 3u42:= CharacterTable("Cyclic", 3) * u42;
CharacterTable("C3xU4(2)")
gap> 3u43:= CharacterTable("3_1.U4(3)");
CharacterTable("3_1.U4(3)")
gap> 3u42fus3u43:= PossibleClassFusions(3u42, 3u43);;
gap> Length(3u42fus3u43);
8
gap> Length(RepresentativesFusions(3u42, 3u42fus3u43, 3u43));
2

More precisely, each of the four fusions from U4(2) to U4(3) has exactly two lifts. The four lifts
of those fusions from U4(2) to U4(3) with 9A and 9B in their image form one orbit under the action
of table automorphisms. The other orbit consists of the lifts of those fusions with 9C and 9D in their
image.

Example
gap> inducedmaps:= List(3u42fus3u43, map -> CompositionMaps(
> GetFusionMap(3u43, u43), CompositionMaps(map,
> InverseMap(GetFusionMap(3u42, u42)))));;
gap> List(inducedmaps, map -> Position(u42fusu43, map));
[1, 1, 2, 2, 4, 4, 3, 3]

This solves the ambiguity: Fusions from each of the two orbits occur, and we can assign them to
the two classes of subgroups by the choice of the fusions from U4(2) to U4(3).

Computations with the GAP Character Table Library 344

The reason for the asymmetry is that the automorphism 23 of U4(3) does not lift to 31.U4(3). Note
that each of the classes 9A, 9B of U4(3) has three preimages in 31.U4(3), whereas each of the classes
9C, 9D has only one preimage.

In fact the two classes of 3×U4(2) type subgroups of 31.U4(3) behave differently. For example,
inducing the irreducible characters of a 3×U4(2) type subgroup in the first class of maximal subgroups
of 31.U4(3) yields no irreducible character, whereas the two irreducible characters of degree 630 are
obtained by inducing the irreducible characters of a subgroup in the second class.

Example
gap> rep:= RepresentativesFusions(3u42, 3u42fus3u43, 3u43);
[[1, 4, 4, 7, 7, 10, 13, 15, 18, 21, 24, 24, 27, 27, 30, 27, 48,

49, 50, 50, 2, 5, 5, 8, 8, 11, 13, 16, 19, 22, 25, 25, 28, 28,
31, 28, 48, 49, 51, 51, 3, 6, 6, 9, 9, 12, 13, 17, 20, 23, 26,
26, 29, 29, 32, 29, 48, 49, 52, 52],

[1, 4, 4, 8, 9, 13, 10, 15, 18, 21, 25, 26, 31, 32, 27, 30, 46,
44, 51, 52, 2, 5, 5, 9, 7, 13, 11, 16, 19, 22, 26, 24, 32, 30,
28, 31, 47, 42, 52, 50, 3, 6, 6, 7, 8, 13, 12, 17, 20, 23, 24,
25, 30, 31, 29, 32, 45, 43, 50, 51]]

gap> irr:= Irr(3u42);;
gap> ind:= InducedClassFunctionsByFusionMap(3u42, 3u43, irr, rep[1]);;
gap> Intersection(ind, Irr(3u43));
[Character(CharacterTable("3_1.U4(3)"),

[630, 630*E(3)^2, 630*E(3), 6, 6*E(3)^2, 6*E(3), 9, 9*E(3)^2,
9*E(3), -9, -9*E(3)^2, -9*E(3), 0, 0, 2, 2*E(3)^2, 2*E(3), -2,
-2*E(3)^2, -2*E(3), 0, 0, 0, -3, -3*E(3)^2, -3*E(3), 3,
3*E(3)^2, 3*E(3), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, -E(3)^2, -E(3)]),

Character(CharacterTable("3_1.U4(3)"),
[630, 630*E(3), 630*E(3)^2, 6, 6*E(3), 6*E(3)^2, 9, 9*E(3),

9*E(3)^2, -9, -9*E(3), -9*E(3)^2, 0, 0, 2, 2*E(3), 2*E(3)^2,
-2, -2*E(3), -2*E(3)^2, 0, 0, 0, -3, -3*E(3), -3*E(3)^2, 3,
3*E(3), 3*E(3)^2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, -1, -E(3), -E(3)^2])]

gap> ind:= InducedClassFunctionsByFusionMap(3u42, 3u43, irr, rep[2]);;
gap> Intersection(ind, Irr(3u43));
[]

For 61.U4(3) and 121.U4(3), one gets the same phenomenon: We have two orbits of class fusions,
one corresponding to each of the two classes of subgroups of the type 3× 4Y 2.U4(2). We get 10
irreducible induced characters from a subgroup in the second class (four faithful ones, four with kernel
of order two, and the two abovementioned degree 630 characters with kernel of order four) and no
irreducible character from a subgroup in the first class.

9.7.12 2.34.23.S4→ 2.A12 (September 2011)

The double cover G of the alternating group A12 contains a maximal subgroup M of the type 2.34.23.S4
whose class fusion is ambiguous.

Example
gap> 2a12:= CharacterTable("2.A12");;
gap> mtbl:= CharacterTable("2.3^4.2^3.S4");;
gap> mtblfus2a12:= PossibleClassFusions(mtbl, 2a12);;

Computations with the GAP Character Table Library 345

gap> Length(mtblfus2a12);
32
gap> repres:= RepresentativesFusions(mtbl, mtblfus2a12, 2a12);;
gap> Length(repres);
2

We decide the question which of the essentially different two possible class fusion is the right one,
by explicitly constructing M as a subgroup of G.

For that, let π denote the natural epimorphism from G to A12, and note that π(M) can be described
as the intersection of a S3℘S4 type subgroup of S12 with A12. Further note that the generators for
G and A12 provided by [WWT+] are compatible in the sense that π can be defined by mapping the
generators of G to those of A12.

We need π only for computing one preimage of each given element. Therefore, we represent π

implicitly by two epimorphisms from a free group to G and A12, respectively, in order to avoid that
GAPprecomputes a lot of unnecessary information for G. This way, computing a preimage of an
element of A12 under π is cheap. However, computing the preimage of a subgroup of A12 would be
very expensive. So we construct the subgroup of G that is generated by preimages of a set of generators
of π(M); later we see that this subgroup is in fact equal to M.

Example
gap> g:= AtlasGroup("A12");
Group([(1,2,3), (2,3,4,5,6,7,8,9,10,11,12)])
gap> 2g:= AtlasGroup("2.A12");
<matrix group of size 479001600 with 2 generators>
gap> f:= FreeGroup(2);;
gap> pi1:= GroupHomomorphismByImagesNC(f, 2g, GeneratorsOfGroup(f),
> GeneratorsOfGroup(2g));;
gap> pi2:= GroupHomomorphismByImagesNC(f, g, GeneratorsOfGroup(f),
> GeneratorsOfGroup(g));;
gap> w:= WreathProduct(SymmetricGroup(3), SymmetricGroup(4));
<permutation group of size 31104 with 10 generators>
gap> NrMovedPoints(w);
12
gap> s:= Intersection(w, g); Size(s);
<permutation group with 8 generators>
15552
gap> m:= SubgroupNC(2g, List(SmallGeneratingSet(s),
> x -> ImagesRepresentative(pi1,
> PreImagesRepresentative(pi2, x))));;

Now we compute the character table of M, using a faithful permutation representation of M.
Example

gap> iso:= IsomorphismPermGroup(m);;
gap> t:= CharacterTable(Image(iso));;
gap> Size(t);
31104
gap> trans:= TransformingPermutationsCharacterTables(mtbl, t);;
gap> IsRecord(trans);
true

Now let us see where the two fusion candidates differ.

Computations with the GAP Character Table Library 346

Example
gap> para:= Parametrized(repres);
[1, 2, 6, 10, 8, 12, 7, 11, 9, 13, 5, 5, 17, 17, 17, 17, 3, 4, 24,

22, 27, 25, 12, 10, 13, 11, 28, 29, 35, 37, 39, 36, 38, 40, 5, 23,
28, 29, 26, 14, 14, 16, 16, 33, 34, [33, 34], [33, 34], 49, 49,
48, 48]

gap> PositionsProperty(para, IsList);
[46, 47]
gap> List(repres, map -> map{ [44 .. 47] });
[[33, 34, 33, 34], [33, 34, 34, 33]]

So the question is whether the elements in class 44 are conjugate in G to the elements in class
46 or in class 47. In order to answer this question, we compute preimages of the relevant class
representatives in the matrix group M.

Example
gap> positions:= OnTuples([44 .. 47], trans.columns);;
gap> classreps:= List(ConjugacyClasses(t){ positions },
> c -> PreImagesRepresentative(iso, Representative(c)));;
gap> traces:= List(classreps, TraceMat);;
gap> List(traces, x -> Position(traces, x));
[1, 2, 2, 1]

We are lucky, already the traces of the elements allow us to decide which pairs of elements are
G-conjugate; there is no need for an explicit (and expensive) conjugacy test in the matrix group G.

Finally, we check whether the stored fusion is correct.
Example

gap> good:= First(repres,
> map -> map{ [44 .. 47] } = [33, 34, 34, 33]);;
gap> GetFusionMap(mtbl, 2a12) = good;
true

9.7.13 127 : 7→ L7(2) (January 2012)

The simple group G = L7(2) contains a maximal subgroup M of the type 127 : 7 (the normalizer of an
extension field type subgroup GL(1,27)) whose class fusion is ambiguous.

Example
gap> t:= CharacterTable("L7(2)");;
gap> s:= CharacterTable("127:7");;
gap> fus:= PossibleClassFusions(s, t);;
gap> repr:= RepresentativesFusions(s, fus, t);
[[1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 117, 116, 76, 76, 77, 76, 77, 77],
[1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,

112, 113, 114, 115, 117, 116, 83, 83, 83, 83, 83, 83]]

The two fusion candidates differ only for elements of order 7.
Example

gap> diff:= Filtered([1 .. Length(repr[1])],
> i -> repr[1][i] <> repr[2][i]);

Computations with the GAP Character Table Library 347

[20, 21, 22, 23, 24, 25]
gap> OrdersClassRepresentatives(s){ diff };
[7, 7, 7, 7, 7, 7]
gap> List(repr, l -> l{ diff });
[[76, 76, 77, 76, 77, 77], [83, 83, 83, 83, 83, 83]]
gap> SizesCentralizers(t){ [76, 77, 83] };
[3528, 3528, 49]

We can decide which candidate is the correct one if we know the centralizer order in G of the
elements of order 7 in M. So we compute this centralizer order.

Example
gap> g:= Image(IsomorphismPermGroup(GL(7,2)));;
gap> repeat x:= Random(g); until Order(x) = 127;
gap> n:= Normalizer(g, SubgroupNC(g, [x]));;
gap> Size(n) / 127;
7
gap> repeat x:= Random(n); until Order(x) = 7;
gap> c:= Centralizer(g, x);;
gap> Size(c);
49

We see that the second candidate is the fusion from M into G.
Example

gap> GetFusionMap(s, t) = repr[2];
true

9.7.14 L2(59)→M (May 2009)

The sporadic simple Monster group M contains a maximal subgroup G of the type L2(59),
see [HW04]. The class fusion of G into M is ambiguous.

Example
gap> t:= CharacterTable("M");;
gap> s:= CharacterTable("L2(59)");;
gap> fus:= PossibleClassFusions(s, t);;
gap> repr:= RepresentativesFusions(s, fus, t);
[[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,

97, 98, 52, 32, 52, 14, 12, 98, 52, 32, 5, 98, 12, 98, 52, 3],
[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,

97, 100, 50, 30, 50, 15, 11, 100, 50, 30, 4, 100, 11, 100, 50,
3],

[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 101, 51, 30, 51, 14, 11, 101, 51, 30, 5, 101, 11, 101, 51,
3],

[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 102, 53, 32, 53, 18, 12, 102, 53, 32, 6, 102, 12, 102, 53,
3],

[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3]]

Computations with the GAP Character Table Library 348

The candidates differ on the classes of element order 30.
Example

gap> ord:= OrdersClassRepresentatives(s);;
gap> ord30:= Filtered([1 .. Length(ord)], i -> ord[i] = 30);
[18, 24, 28, 30]
gap> List(repr, x -> x{ ord30 });
[[98, 98, 98, 98], [100, 100, 100, 100], [101, 101, 101, 101],

[102, 102, 102, 102], [104, 104, 104, 104]]

According to [HW04], G contains elements in the class 30G of M. This determines the class fusion
up to Galois automorphisms.

Example
gap> pos:= Position(ClassNames(t, "Atlas"), "30G");;
gap> good:= Filtered(fus, map -> pos in map);
[[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,

97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3],

[1, 153, 152, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,
97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3]]

gap> repr:= RepresentativesFusions(s, good, t);
[[1, 152, 153, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97,

97, 104, 52, 33, 52, 17, 12, 104, 52, 33, 5, 104, 12, 104, 52,
3]]

gap> GetFusionMap(s, t) = repr[1];
true

9.7.15 L2(71)→M (May 2009)

The sporadic simple Monster group M contains a maximal subgroup G of the type L2(71),
see [HW08]. The class fusion of G into M is ambiguous.

Example
gap> t:= CharacterTable("M");;
gap> s:= CharacterTable("L2(71)");;
gap> fus:= PossibleClassFusions(s, t);;
gap> repr:= RepresentativesFusions(s, fus, t);
[[1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112,

112, 112, 11, 19, 112, 112, 114, 60, 36, 27, 114, 17, 114, 27,
7, 60, 114, 5, 114, 60, 36, 27, 114, 3],

[1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112,
112, 112, 11, 19, 112, 112, 115, 61, 36, 28, 115, 17, 115, 28,
7, 61, 115, 5, 115, 61, 36, 28, 115, 3],

[1, 169, 170, 112, 112, 112, 112, 19, 112, 11, 112, 112, 19, 112,
112, 112, 11, 19, 112, 112, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3],

[1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 114, 60, 36, 27, 114, 17, 114, 27,
7, 60, 114, 5, 114, 60, 36, 27, 114, 3],

[1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 115, 61, 36, 28, 115, 17, 115, 28,
7, 61, 115, 5, 115, 61, 36, 28, 115, 3],

Computations with the GAP Character Table Library 349

[1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3]]

The candidates differ on the classes of the element orders 7 and 36.
Example

gap> ord:= OrdersClassRepresentatives(s);;
gap> ord36:= Filtered([1 .. Length(ord)], i -> ord[i] = 36);
[21, 25, 27, 31, 33, 37]
gap> List(repr, x -> x{ ord36 });
[[114, 114, 114, 114, 114, 114], [115, 115, 115, 115, 115, 115],

[117, 117, 117, 117, 117, 117], [114, 114, 114, 114, 114, 114],
[115, 115, 115, 115, 115, 115], [117, 117, 117, 117, 117, 117]]

According to [NW02, Table 3], G contains elements in the classes 7B and 36D of M. This deter-
mines the class fusion up to Galois automorphisms.

Example
gap> pos1:= Position(ClassNames(t, "Atlas"), "7B");;
gap> pos2:= Position(ClassNames(t, "Atlas"), "36D");;
gap> pos:= [pos1, pos2];;
gap> good:= Filtered(fus, map -> IsSubset(map, pos));
[[1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,

113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3],

[1, 170, 169, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,
113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3]]

gap> repr:= RepresentativesFusions(s, good, t);
[[1, 169, 170, 113, 113, 113, 113, 20, 113, 12, 113, 113, 20, 113,

113, 113, 12, 20, 113, 113, 117, 61, 43, 28, 117, 17, 117, 28,
9, 61, 117, 5, 117, 61, 43, 28, 117, 3]]

gap> GetFusionMap(s, t) = repr[1];
true

9.7.16 L2(41)→M (April 2012)

The sporadic simple Monster group M contains a maximal subgroup G of the type L2(41),
see [NW13]. The class fusion of G into M is ambiguous.

Example
gap> t:= CharacterTable("M");;
gap> s:= CharacterTable("L2(41)");;
gap> fus:= PossibleClassFusions(s, t);;
gap> repr:= RepresentativesFusions(s, fus, t);
[[1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 70, 70, 19,

70, 70, 19, 4, 70, 19, 70],
[1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 72, 72, 19,

72, 72, 19, 6, 72, 19, 72],
[1, 127, 127, 64, 30, 64, 11, 7, 30, 64, 11, 64, 3, 73, 73, 20,

73, 73, 20, 5, 73, 20, 73],
[1, 127, 127, 66, 33, 66, 12, 7, 33, 66, 12, 66, 3, 72, 72, 19,

Computations with the GAP Character Table Library 350

72, 72, 19, 6, 72, 19, 72],
[1, 127, 127, 66, 33, 66, 12, 7, 33, 66, 12, 66, 3, 73, 73, 20,

73, 73, 20, 5, 73, 20, 73],
[1, 127, 127, 67, 30, 67, 11, 10, 30, 67, 11, 67, 3, 72, 72, 19,

72, 72, 19, 6, 72, 19, 72],
[1, 127, 127, 67, 30, 67, 11, 10, 30, 67, 11, 67, 3, 73, 73, 20,

73, 73, 20, 5, 73, 20, 73],
[1, 127, 127, 68, 32, 68, 12, 10, 32, 68, 12, 68, 3, 72, 72, 19,

72, 72, 19, 6, 72, 19, 72],
[1, 127, 127, 68, 32, 68, 12, 10, 32, 68, 12, 68, 3, 73, 73, 20,

73, 73, 20, 5, 73, 20, 73],
[1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 72, 72, 19,

72, 72, 19, 6, 72, 19, 72],
[1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 73, 73, 20,

73, 73, 20, 5, 73, 20, 73]]

The candidates differ on the classes of the element orders 3–8.
Example

gap> ambig:= Parametrized(repr);;
gap> ambigpos:= PositionsProperty(ambig, IsList);
[4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23]
gap> Set(OrdersClassRepresentatives(t){ ambigpos });
[3, 4, 5, 6, 7, 8]

According to [NW13, Theorem 3], G contains elements in the classes 3B and 4C of M. This
determines the class fusion uniquely.

Example
gap> pos1:= Position(ClassNames(t, "Atlas"), "3B");;
gap> pos2:= Position(ClassNames(t, "Atlas"), "4C");;
gap> pos:= [pos1, pos2];;
gap> good:= Filtered(fus, map -> IsSubset(map, pos));
[[1, 127, 127, 69, 33, 69, 12, 9, 33, 69, 12, 69, 3, 73, 73, 20,

73, 73, 20, 5, 73, 20, 73]]
gap> GetFusionMap(s, t) = good[1];
true

Chapter 10

GAP computations needed in the proof of
[DNT13, Theorem 6.1 (ii)]

Date: September 19th, 2011
(This is joint work with Klaus Lux.)
This is a collection of example computations that are cited in the Appendix of [DNT13]. In each

case, the aim is to show that the extension of a given finite simple group by an elementary abelian
group of given rank has the property that not all complex irreducible characters of the same degree are
Galois conjugate.

The purpose of this writeup is twofold. On the one hand, the details of the computations are
documented this way. On the other hand, the GAP code shown for the examples can be used as
test input for automatic checking of the data and the functions used.} For the computations, we need
some Brauer character tables from [JLPW95], some generating matrices from [WWT+], and some
functions from the GAP system [GAP21] and its packages AtlasRep [WPN+22], cohomolo [Hol08],
CTblLib [Bre24], and TomLib [MNP19].

First we load the necessary GAP packages.
Example

gap> LoadPackage("AtlasRep", "1.5", false);
true
gap> LoadPackage("cohomolo", "1.6", false);
true
gap> LoadPackage("CTblLib", "1.2", false);
true
gap> LoadPackage("TomLib", "1.2.1", false);
true

10.1 G/N ∼= Sz(8) and |N|= 212

The group S = Sz(8) has exactly one irreducible 12-dimensional module over the field with two ele-
ments, up to isomorphism. This module can be obtained from any of the three absolutely irreducible
4-dimensional S-modules in characteristic two, by regarding it as a module over the prime field GF(2).

Example
gap> p:= 2;; d:= 12;;
gap> t:= CharacterTable("Sz(8)") mod p;
BrauerTable("Sz(8)", 2)

351

Computations with the GAP Character Table Library 352

gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));
Sz(8)mod2

1a 5a 7a 7b 7c 13a 13b 13c

Y.1 1 1 1 1 1 1 1 1
Y.2 4 -1 A C B D F E
Y.3 4 -1 B A C E D F
Y.4 4 -1 C B A F E D

A = E(7)^2+E(7)^3+E(7)^4+E(7)^5
B = E(7)+E(7)^2+E(7)^5+E(7)^6
C = E(7)+E(7)^3+E(7)^4+E(7)^6
D = E(13)+E(13)^5+E(13)^8+E(13)^12
E = E(13)^4+E(13)^6+E(13)^7+E(13)^9
F = E(13)^2+E(13)^3+E(13)^10+E(13)^11
gap> List(irr, x -> SizeOfFieldOfDefinition(x, p));
[2, 8, 8, 8]

First we construct the 12-dimensional irreducible representation of S over GF(2), using that the
Atlas of Group Representations provides matrix generators for S in the 4-dimensional representation
over GF(8).

Example
gap> info:= OneAtlasGeneratingSetInfo("Sz(8)", Dimension, 4,
> Characteristic, p);
rec(charactername := "4a", constituents := [2], contents := "core",

dim := 4, groupname := "Sz(8)", id := "a",
identifier := ["Sz(8)", ["Sz8G1-f8r4aB0.m1", "Sz8G1-f8r4aB0.m2"],

1, 8], repname := "Sz8G1-f8r4aB0", repnr := 17,
ring := GF(2^3), size := 29120, standardization := 1,
type := "matff")

gap> gens_dim4:= AtlasGenerators(info).generators;;
gap> b:= Basis(GF(8));;
gap> gens_dim12:= List(gens_dim4, x -> BlownUpMatrix(b, x));;

We claim that any extension of S with the given module splits.
Example

gap> s:= AtlasGroup("Sz(8)", IsPermGroup, true);;
gap> chr:= CHR(s, p, 0, gens_dim12);;
gap> SizeScreen([100]);;
gap> SecondCohomologyDimension(chr);
0
gap> SizeScreen([72]);;

(The function CHR takes as its arguments a permutation group, the characteristic of the module,
a finitely presented group (or zero), and a list of matrices that define the module in the sense that
they correspond to the generators of the given permutation group. Note that this condition is satisfied
because the generators provided by the Atlas of Group Representations are compatible.) So it is

Computations with the GAP Character Table Library 353

enough to consider the semidirect product G = 212 : Sz(8). If we would like then we could represent
this group as a group of 13×13 matrices over GF(2), as follows. For each element of G, the submatrix
consisting of the first 12 rows and columns describes the part from the complement Sz(8), in its action
on the module in question, and the last row describes the part from the elementary abelian normal
group N; the last column is zero, except for an identity entry in the last row. In order to write down
generators of this group, it suffices to take the two generators of the complement plus one nonidentity
element from N. (Note that N is irreducible.)

Example
gap> mats:= List([1 .. 3], x -> IdentityMat(d+1, GF(p)));;
gap> v:= mats[1][d+1];;
gap> mats[1]{ [1 .. d] }{ [1 .. d] }:= gens_dim12[1];;
gap> mats[2]{ [1 .. d] }{ [1 .. d] }:= gens_dim12[2];;
gap> mats[3][d+1][1]:= Z(p)^0;;
gap> grp:= Group(mats);;
gap> g:= Image(IsomorphismPermGroup(grp));;
gap> Size(g);
119275520
gap> NrConjugacyClasses(g);
41

The GAP Character Table Library contains the ordinary character table of G. We check this as
follows. By the above cohomology result, the group G is uniquely determined, up to isomorphism, by
the group order and the property that G has a minimal normal subgroup N such that G/N is a simple
group isomorphic with S.

(Since |G|/|S| is a power of two, N is a 2-group. By the minimality condition, N is elementary
abelian and the action of S on N affords the desired S-module. Note that the isomorphism type of a
finite simple group is determined by its character table.)

Example
gap> iso:= IsomorphismTypeInfoFiniteSimpleGroup(s);
rec(name := "2B(2,8) = 2C(2,8) = Sz(8)", parameter := 8,

series := "2B", shortname := "Sz(8)")
gap> names:= AllCharacterTableNames(Size, 2^12 * Size(s));;
gap> cand:= List(names, CharacterTable);;
gap> cand:= Filtered(cand,
> t -> ForAny(ClassPositionsOfMinimalNormalSubgroups(t),
> n -> IsomorphismTypeInfoFiniteSimpleGroup(t / n) = iso));
[CharacterTable("2^12:Sz(8)")]

So we can easily check that G has eight rational valued irreducibles of the degree 455 (or of the
degree 3640).

Example
gap> t:= cand[1];;
gap> rationals:= Filtered(Irr(t), x -> IsSubset(Integers, x));;
gap> Collected(List(rationals, x -> x[1]));
[[1, 1], [64, 1], [91, 1], [455, 8], [3640, 8]]

10.2 G/N ∼= M22 and |N|= 210

The group S = M22 has exactly two irreducible 10-dimensional modules over the field with two ele-
ments, up to isomorphism. These modules are in fact absolutely irreducible.

Computations with the GAP Character Table Library 354

Example
gap> p:= 2;; d:= 10;;
gap> t:= CharacterTable("M22") mod p;
BrauerTable("M22", 2)
gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));
M22mod2

1a 3a 5a 7a 7b 11a 11b

Y.1 1 1 1 1 1 1 1
Y.2 10 1 . A /A -1 -1
Y.3 10 1 . /A A -1 -1

A = E(7)+E(7)^2+E(7)^4
= (-1+Sqrt(-7))/2 = b7

gap> List(irr, x -> SizeOfFieldOfDefinition(x, p));
[2, 2, 2]

First we construct the two irreducible 10-dimensional representations of S over GF(2), again using
that the Atlas of Group Representations provides the matrix generators in question.

Example
gap> info:= AllAtlasGeneratingSetInfos("M22", Dimension, d,
> Characteristic, p);
[rec(charactername := "10a", constituents := [2],

contents := "core", dim := 10, groupname := "M22", id := "a",
identifier :=

["M22", ["M22G1-f2r10aB0.m1", "M22G1-f2r10aB0.m2"], 1, 2],
repname := "M22G1-f2r10aB0", repnr := 13, ring := GF(2),
size := 443520, standardization := 1, type := "matff"),

rec(charactername := "10b", constituents := [3],
contents := "core", dim := 10, groupname := "M22", id := "b",
identifier :=

["M22", ["M22G1-f2r10bB0.m1", "M22G1-f2r10bB0.m2"], 1, 2],
repname := "M22G1-f2r10bB0", repnr := 14, ring := GF(2),
size := 443520, standardization := 1, type := "matff")]

gap> gens:= List(info, r -> AtlasGenerators(r).generators);;

We claim that any extension of S with any of the two given modules splits.
Example

gap> s:= AtlasGroup("M22", IsPermGroup, true);;
gap> chr:= CHR(s, p, 0, gens[1]);;
gap> SizeScreen([100]);;
gap> SecondCohomologyDimension(chr);
0
gap> chr:= CHR(s, p, 0, gens[2]);;
gap> SecondCohomologyDimension(chr);
0
gap> SizeScreen([72]);;

Computations with the GAP Character Table Library 355

Again we see that it is enough to consider semidirect products G = 210 :M22, but this time for the
two nonisomorphic modules.

We could use the same method as in the first case for constructing the two groups.
Example

gap> gens_1:= gens[1];;
gap> mats:= List([1 .. 3], x -> IdentityMat(d+1, GF(p)));;
gap> v:= mats[1][d+1];;
gap> mats[1]{ [1 .. d] }{ [1 .. d] }:= gens_1[1];;
gap> mats[2]{ [1 .. d] }{ [1 .. d] }:= gens_1[2];;
gap> mats[3][d+1][1]:= Z(p)^0;;
gap> grp_1:= Group(mats);;
gap> Size(grp_1);
454164480
gap> gens_2:= gens[1];;
gap> mats:= List([1 .. 3], x -> IdentityMat(d+1, GF(p)));;
gap> v:= mats[1][d+1];;
gap> mats[1]{ [1 .. d] }{ [1 .. d] }:= gens_2[1];;
gap> mats[2]{ [1 .. d] }{ [1 .. d] }:= gens_2[2];;
gap> mats[3][d+1][1]:= Z(p)^0;;
gap> grp_2:= Group(mats);;
gap> Size(grp_2);
454164480

The GAP Character Table Library contains the ordinary character tables of the two groups in
question. We check this with the same approach as in the previous examples.

Example
gap> iso:= IsomorphismTypeInfoFiniteSimpleGroup(s);
rec(name := "M(22)", series := "Spor", shortname := "M22")
gap> names:= AllCharacterTableNames(Size, 2^10 * Size(s));;
gap> cand:= List(names, CharacterTable);;
gap> cand:= Filtered(cand,
> t -> ForAny(ClassPositionsOfMinimalNormalSubgroups(t),
> n -> IsomorphismTypeInfoFiniteSimpleGroup(t / n) = iso));
[CharacterTable("2^10:M22’"), CharacterTable("2^10:m22")]
gap> List(cand, NrConjugacyClasses);
[47, 43]

So we can easily check that in both cases, G has two rational valued irreducibles of the degree
1155.

Example
gap> t:= cand[1];;
gap> rationals:= Filtered(Irr(t), x -> IsSubset(Integers, x));;
gap> Collected(List(rationals, x -> x[1]));
[[1, 1], [21, 1], [22, 1], [55, 1], [99, 1], [154, 1],

[210, 1], [231, 3], [385, 1], [440, 1], [770, 5],
[924, 2], [1155, 2], [1386, 1], [1408, 1], [3080, 2],
[3465, 4], [4620, 2], [6930, 3], [9240, 1]]

gap> t:= cand[2];;
gap> rationals:= Filtered(Irr(t), x -> IsSubset(Integers, x));;
gap> Collected(List(rationals, x -> x[1]));
[[1, 1], [21, 1], [55, 1], [77, 1], [99, 1], [154, 1],

Computations with the GAP Character Table Library 356

[210, 1], [231, 1], [330, 1], [385, 3], [616, 2],
[693, 1], [770, 1], [1155, 2], [1980, 1], [2310, 4],
[2640, 1], [3465, 2], [4620, 1], [5544, 2], [6160, 1],
[6930, 2], [9856, 1]]

10.3 G/N ∼= J2 and |N|= 212

The group S = J2 has exactly one irreducible 12-dimensional module over the field with two ele-
ments, up to isomorphism. This module can be obtained from any of the two absolutely irreducible
6-dimensional S-modules in characteristic two, by regarding it as a module over the prime field GF(2).

Example
gap> p:= 2;; d:= 12;;
gap> t:= CharacterTable("J2") mod p;
BrauerTable("J2", 2)
gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));
J2mod2

1a 3a 3b 5a 5b 5c 5d 7a 15a 15b

Y.1 1 1 1 1 1 1 1 1 1 1
Y.2 6 -3 . A *A B *B -1 C *C
Y.3 6 -3 . *A A *B B -1 *C C

A = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5

B = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
= (-3-Sqrt(5))/2 = -2-b5

C = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5

gap> List(irr, x -> SizeOfFieldOfDefinition(x, p));
[2, 4, 4]

First we construct the irreducible 12-dimensional representation of S over GF(2), using that the
Atlas of Group Representations provides matrix generators for S in the 6-dimensional representation
over GF(4).

Example
gap> info:= OneAtlasGeneratingSetInfo("J2", Dimension, 6,
> Characteristic, p);
rec(charactername := "6a", constituents := [2], contents := "core",

dim := 6, groupname := "J2", id := "a",
identifier := ["J2", ["J2G1-f4r6aB0.m1", "J2G1-f4r6aB0.m2"], 1,

4], repname := "J2G1-f4r6aB0", repnr := 16, ring := GF(2^2),
size := 604800, standardization := 1, type := "matff")

gap> gens_dim6:= AtlasGenerators(info).generators;;
gap> b:= Basis(GF(4));;
gap> gens_dim12:= List(gens_dim6, x -> BlownUpMatrix(b, x));;

We claim that any extension of S with the given module splits.

Computations with the GAP Character Table Library 357

Example
gap> s:= AtlasGroup("J2", IsPermGroup, true);;
gap> chr:= CHR(s, p, 0, gens_dim12);;
gap> SizeScreen([100]);;
gap> SecondCohomologyDimension(chr);
0
gap> SizeScreen([72]);;

Again we see that it is enough to consider a semidirect product G = 212 :J2.
Here is a description how we could construct the group.

Example
gap> mats:= List([1 .. 3], x -> IdentityMat(d+1, GF(p)));;
gap> v:= mats[1][d+1];;
gap> mats[1]{ [1 .. d] }{ [1 .. d] }:= gens_dim12[1];;
gap> mats[2]{ [1 .. d] }{ [1 .. d] }:= gens_dim12[2];;
gap> mats[3][d+1][1]:= Z(p)^0;;
gap> grp:= Group(mats);;
gap> g:= Image(IsomorphismPermGroup(grp));;
gap> Size(g);
2477260800

The GAP Character Table Library contains the ordinary character table of G. We check this with
the same approach as in the previous examples.

Example
gap> iso:= IsomorphismTypeInfoFiniteSimpleGroup(s);
rec(name := "HJ = J(2) = F(5-)", series := "Spor", shortname := "J2"
)

gap> names:= AllCharacterTableNames(Size, 2^12 * Size(s));;
gap> cand:= List(names, CharacterTable);;
gap> cand:= Filtered(cand,
> t -> ForAny(ClassPositionsOfMinimalNormalSubgroups(t),
> n -> IsomorphismTypeInfoFiniteSimpleGroup(t / n) = iso));
[CharacterTable("2^12:J2")]

So we can easily check that G has two rational valued irreducibles of the degree 1575.
Example

gap> t:= cand[1];;
gap> rationals:= Filtered(Irr(t), x -> IsSubset(Integers, x));;
gap> Collected(List(rationals, x -> x[1]));
[[1, 1], [36, 1], [63, 1], [90, 1], [126, 1], [160, 1],

[175, 1], [225, 1], [288, 1], [300, 1], [336, 1],
[1575, 2], [2520, 4], [3150, 1], [4725, 6], [9450, 1],
[10080, 4], [12600, 4], [18900, 2]]

10.4 G/N ∼= J2 and |N|= 514

The group S = J2 has exactly one irreducible 14-dimensional module over the field with 5 elements,
up to isomorphism. This module is in fact absolutely irreducible.

Computations with the GAP Character Table Library 358

Example
gap> p:= 5;; d:= 14;;
gap> t:= CharacterTable("J2") mod p;
BrauerTable("J2", 5)
gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));
J2mod5

1a 2a 2b 3a 3b 4a 6a 6b 7a 8a 12a

Y.1 1 1 1 1 1 1 1 1 1 1 1
Y.2 14 -2 2 5 -1 2 1 -1 . . -1

In this case, we do not attempt to compute the complete character table of G. Instead, we show
that G/N has at least five regular orbits on the dual space of N, and apply \cite[Lemma 5.1 (i)]{DNT}.
(Note that N is in fact self-dual.)

For that, we use GAP’s table of marks of S. The information stored for this table of marks allows
us to compute, for each class of subgroups U of S, the numbers of orbits in the dual space of N for
which contain the point stabilizers in S are exactly the conjugates of U . The following GAP function
takes the table of marks tom of S, a list matgens of matrices that describe the action of the generators
of S on the vector space in question, and the size q of its field of scalars. The return value is a
record with the components fixed (the vector of numbers of fixed points of the subgroups of S on
the dual of N), decomp (the numbers of orbits with the corresponding point stabilizers), nonzeropos
(the positions of subgroups that occur as point stabilizers), and staborders (the list of orders of the
subgroups that occur as point stabilizers).

Example
gap> orbits_from_tom:= function(tom, matgens, q)
> local slp, fixed, idmat, i, rest, decomp, nonzeropos;
>
> slp:= StraightLineProgramsTom(tom);
> fixed:= [];
> idmat:= matgens[1]^0;
> for i in [1 .. Length(slp)] do
> if IsList(slp[i]) then
> # Each subgroup generator has a program of its own.
> rest:= List(slp[i],
> prg -> ResultOfStraightLineProgram(prg, gens));
> else
> # The subgroup generators are computed with one common program.
> rest:= ResultOfStraightLineProgram(slp[i], gens);
> fi;
> if IsEmpty(rest) then
> # The subgroup is trivial.
> fixed[i]:= q^Length(idmat);
> else
> # Compute the intersection of fixed spaces of the transposed
> # matrices, since we act on Irr(N) not on N.
> fixed[i]:= q^Length(NullspaceMat(TransposedMat(Concatenation(
> List(rest, x -> x - idmat)))));
> fi;

Computations with the GAP Character Table Library 359

> od;
>
> decomp:= DecomposedFixedPointVector(tom, fixed);
> nonzeropos:= Filtered([1 .. Length(decomp)],
> i -> decomp[i] <> 0);
>
> return rec(fixed:= fixed,
> decomp:= decomp,
> nonzeropos:= nonzeropos,
> staborders:= OrdersTom(tom){ nonzeropos },
>);
> end;;

Note that this function assumes that the generators of S obtained from the Atlas of Group Rep-
resentations are compatible with the generators from GAP’s table of marks of S. This fact can be
read off from the true value of the ATLAS component in the StandardGeneratorsInfo (TomLib:
StandardGeneratorsInfo for groups) value of the table of marks.

Example
gap> tom:= TableOfMarks("J2");
TableOfMarks("J2")
gap> StandardGeneratorsInfo(tom);
[rec(ATLAS := true,

description := "|z|=10, z^5=a, |b|=3, |C(b)|=36, |ab|=7",
generators := "a, b",
script :=

[[1, 10, 5], [2, 3], [[2, 1], ["|C(",, ")|"], 36],
[1, 1, 2, 1, 7]], standardization := 1)]

Alternatively, we can compute whether the generators are compatible, as follows.
Example

gap> info:= OneAtlasGeneratingSetInfo("J2", Dimension, d, Ring, GF(p));
rec(charactername := "14a", constituents := [2],

contents := "core", dim := 14, givenRing := GF(5),
groupname := "J2", id := "",
identifier := ["J2", ["J2G1-f5r14B0.m1", "J2G1-f5r14B0.m2"], 1,

5], repname := "J2G1-f5r14B0", repnr := 19, ring := GF(5),
size := 604800, standardization := 1, type := "matff")

gap> gens:= AtlasGenerators(info).generators;;
gap> map:= GroupGeneralMappingByImages(UnderlyingGroup(tom),
> Group(gens), GeneratorsOfGroup(UnderlyingGroup(tom)), gens);;
gap> IsGroupHomomorphism(map);
true

Now we are sure that we may apply the function orbits_from_tom.
Example

gap> orbits_from_tom(tom, gens, p);
rec(

decomp := [8600, 0, 2512, 359, 10, 0, 0, 212, 5, 0, 0, 4, 0, 240,
16, 10, 0, 0, 0, 0, 10, 0, 0, 0, 0, 2, 0, 0, 36, 0, 0, 0, 26,
0, 0, 0, 0, 0, 0, 0, 20, 0, 10, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Computations with the GAP Character Table Library 360

0, 0, 0, 0, 10, 0, 0, 5, 0, 0, 0, 26, 0, 10, 0, 0, 0, 0, 10, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 2, 0,
0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 4, 0, 0, 0, 4, 0, 0, 1],

fixed := [6103515625, 15625, 390625, 390625, 625, 25, 3125, 3125,
625, 625, 625, 625, 5, 3125, 125, 625, 25, 25, 125, 5, 125, 25,
125, 25, 25, 25, 5, 125, 125, 125, 25, 25, 3125, 1, 1, 5, 5,
25, 5, 25, 125, 5, 25, 25, 25, 25, 25, 25, 5, 25, 25, 5, 25, 5,
5, 5, 5, 25, 25, 1, 125, 1, 5, 5, 125, 1, 25, 5, 25, 1, 5, 25,
5, 5, 25, 25, 5, 5, 5, 1, 5, 5, 1, 1, 1, 5, 1, 25, 25, 25, 1,
5, 25, 5, 5, 1, 1, 125, 5, 5, 5, 25, 5, 5, 5, 1, 1, 5, 5, 1, 5,
1, 5, 1, 1, 25, 5, 5, 1, 1, 1, 1, 5, 1, 1, 25, 1, 1, 5, 1, 1,
5, 1, 5, 1, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1],

nonzeropos := [1, 3, 4, 5, 8, 9, 12, 14, 15, 16, 21, 26, 29, 33,
41, 43, 44, 58, 61, 65, 67, 72, 89, 93, 98, 99, 105, 116, 126,
139, 143, 146],

staborders := [1, 2, 3, 3, 4, 4, 5, 6, 6, 6, 8, 9, 10, 12, 12, 12,
14, 20, 24, 24, 24, 30, 48, 50, 60, 60, 72, 120, 192, 600,
1920, 604800])

We see that S has 8600 regular orbits on (the dual space of) N.

10.5 G/N ∼= J2 and |N|= 228

The group S = J2 has exactly one irreducible 28-dimensional module over the field with two elements,
up to isomorphism. This module can be obtained from any of the two absolutely irreducible 14-
dimensional S-modules in characteristic two, by regarding it as a module over the prime field GF(2).

Example
gap> p:= 2;; d:= 28;;
gap> t:= CharacterTable("J2") mod p;
BrauerTable("J2", 2)
gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));
J2mod2

1a 3a 3b 5a 5b 5c 5d 7a 15a 15b

Y.1 1 1 1 1 1 1 1 1 1 1
Y.2 6 -3 . A *A C *C -1 D *D
Y.3 6 -3 . *A A *C C -1 *D D
Y.4 14 5 -1 B *B -C -*C . . .
Y.5 14 5 -1 *B B -*C -C . . .

A = -2*E(5)-2*E(5)^4
= 1-Sqrt(5) = 1-r5

B = -3*E(5)-3*E(5)^4
= (3-3*Sqrt(5))/2 = -3b5

C = E(5)+2*E(5)^2+2*E(5)^3+E(5)^4
= (-3-Sqrt(5))/2 = -2-b5

Computations with the GAP Character Table Library 361

D = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5

gap> List(irr, x -> SizeOfFieldOfDefinition(x, p));
[2, 4, 4, 4, 4]

We use the same approach as in the previous example.
Example

gap> tom:= TableOfMarks("J2");;
gap> info:= OneAtlasGeneratingSetInfo("J2", Dimension, 14, Ring, GF(4));;
gap> gens:= List(AtlasGenerators(info).generators,
> x -> BlownUpMat(Basis(GF(4)), x));;
gap> orbits_from_tom(tom, gens, p);
rec(

decomp := [235, 33, 282, 38, 0, 0, 6, 31, 36, 0, 0, 0, 3, 66, 9,
0, 0, 0, 0, 0, 0, 2, 18, 0, 0, 1, 0, 0, 15, 0, 0, 0, 6, 0, 0,
0, 0, 0, 0, 0, 12, 0, 0, 5, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 3, 1, 3, 0, 9, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0,
0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0,
0, 0, 3, 0, 0, 1],

fixed := [268435456, 65536, 65536, 65536, 256, 1024, 4096, 1024,
1024, 256, 256, 256, 64, 1024, 64, 256, 16, 16, 64, 64, 64,
256, 256, 64, 16, 16, 64, 64, 64, 64, 16, 16, 1024, 4, 4, 4, 4,
16, 16, 16, 64, 16, 16, 16, 16, 64, 16, 16, 16, 64, 16, 16, 16,
16, 4, 16, 16, 16, 16, 1, 64, 4, 16, 4, 64, 4, 16, 4, 16, 1, 4,
16, 4, 4, 16, 16, 4, 4, 16, 1, 4, 16, 1, 1, 1, 16, 4, 16, 16,
16, 1, 4, 16, 4, 4, 1, 4, 64, 4, 4, 4, 16, 4, 4, 4, 1, 1, 4,
16, 1, 4, 1, 4, 1, 4, 16, 4, 4, 1, 1, 1, 1, 4, 1, 1, 16, 1, 1,
4, 1, 4, 4, 1, 4, 1, 1, 4, 1, 4, 1, 1, 1, 4, 1, 1, 1],

nonzeropos := [1, 2, 3, 4, 7, 8, 9, 13, 14, 15, 22, 23, 26, 29,
33, 41, 44, 46, 50, 61, 62, 63, 65, 72, 82, 93, 99, 105, 109,
116, 126, 131, 139, 143, 146],

staborders := [1, 2, 2, 3, 4, 4, 4, 6, 6, 6, 8, 8, 9, 10, 12, 12,
14, 16, 16, 24, 24, 24, 24, 30, 40, 50, 60, 72, 96, 120, 192,
240, 600, 1920, 604800])

We see that S has 235 regular orbits on (the dual space of) N.

10.6 G/N ∼= 3D4(2) and |N|= 226

The group S = 3D4(2) has exactly one irreducible 26-dimensional module over the field with two
elements, up to isomorphism. This module is in fact absolutely irreducible.

Example
gap> p:= 2;; d:= 26;;
gap> t:= CharacterTable("3D4(2)") mod p;
BrauerTable("3D4(2)", 2)
gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));

Computations with the GAP Character Table Library 362

3D4(2)mod2

1a 3a 3b 7a 7b 7c 7d 9a 9b 9c 13a 13b 13c 21a 21b 21c

Y.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y.2 8 2 -1 A C B 1 D F E G I H J L K
Y.3 8 2 -1 B A C 1 E D F H G I K J L
Y.4 8 2 -1 C B A 1 F E D I H G L K J
Y.5 26 -1 -1 5 5 5 -2 2 2 2 . . . -1 -1 -1

A = 3*E(7)^2+E(7)^3+E(7)^4+3*E(7)^5
B = 3*E(7)+E(7)^2+E(7)^5+3*E(7)^6
C = E(7)+3*E(7)^3+3*E(7)^4+E(7)^6
D = -E(9)^2+E(9)^3-2*E(9)^4-2*E(9)^5+E(9)^6-E(9)^7
E = -E(9)^2+E(9)^3+E(9)^4+E(9)^5+E(9)^6-E(9)^7
F = 2*E(9)^2+E(9)^3+E(9)^4+E(9)^5+E(9)^6+2*E(9)^7
G = E(13)+E(13)^2+E(13)^3+E(13)^5+E(13)^8+E(13)^10+E(13)^11+E(13)^12
H = E(13)+E(13)^4+E(13)^5+E(13)^6+E(13)^7+E(13)^8+E(13)^9+E(13)^12
I = E(13)^2+E(13)^3+E(13)^4+E(13)^6+E(13)^7+E(13)^9+E(13)^10+E(13)^11
J = E(7)^3+E(7)^4
K = E(7)^2+E(7)^5
L = E(7)+E(7)^6

We try the same approach as in the examples about the group J2.
Example

gap> tom:= TableOfMarks("3D4(2)");
TableOfMarks("3D4(2)")
gap> StandardGeneratorsInfo(tom);
[rec(ATLAS := true,

description := "|z|=8, z^4=a, |b|=9, |ab|=13, |abb|=8",
generators := "a, b",
script := [[1, 8, 4], [2, 9], [1, 1, 2, 1, 13],

[1, 1, 2, 1, 2, 1, 8]], standardization := 1)]
gap> info:= OneAtlasGeneratingSetInfo("3D4(2)", Dimension, 26, Ring, GF(2));;
gap> gens:= AtlasGenerators(info).generators;;
gap> map:= GroupGeneralMappingByImages(UnderlyingGroup(tom),
> Group(gens), GeneratorsOfGroup(UnderlyingGroup(tom)), gens);;
gap> IsGroupHomomorphism(map);
true

Now we apply the function orbits_from_tom.
Example

gap> orbsinfo:= orbits_from_tom(tom, gens, p);;
gap> orbsinfo.fixed[1];
67108864
gap> orbsinfo.decomp[1];
0

Unfortunately, S has no regular orbit on (the dual of) N. However, there is one orbit whose point
stabilizer in S is a dihedral group D18 of order 18.

Computations with the GAP Character Table Library 363

Example
gap> orbsinfo.staborders;
[16, 16, 18, 42, 48, 52, 64, 72, 392, 1008, 1536, 3024, 3072, 3584,

258048, 211341312]
gap> orbsinfo.nonzeropos[3];
446
gap> orbsinfo.decomp[446];
1
gap> u:= RepresentativeTom(tom, 446);
<permutation group of size 18 with 2 generators>
gap> IsDihedralGroup(u);
true

Thus there ia a linear character λ of N whose inertia subgroup T = IG(λ) has the structure
N.D18. Now Irr(T |λ) can be identified with those irreducibles of T/ker(λ) that restrict nontrivially
to N/ker(λ), and there are only two groups, up to isomorphism, that can occur as T/ker(λ).

Example
gap> cand:= Filtered(AllSmallGroups(36),
> x -> Size(Centre(x)) = 2 and
> IsDihedralGroup(x / Centre(x)));
[<pc group of size 36 with 4 generators>,

<pc group of size 36 with 4 generators>]
gap> List(cand, StructureDescription);
["C9 : C4", "D36"]

These two groups are a split and a nonsplit extension of the cyclic group of order 18 with a group
of order two that acts by inverting. In other words, these two groups are the direct product of D18 with
a cyclic group of order two and the subdirect product of D18 with a cyclic group of order four.

Both groups possess irreducible characters of degree two, one rational valued and the other not,
which restrict nontrivially to the centre.

Example
gap> Display(CharacterTable("Dihedral", 18));
Dihedral(18)

2 1 1
3 2 2 2 2 2 .

1a 9a 9b 3a 9c 2a
2P 1a 9b 9c 3a 9a 1a
3P 1a 3a 3a 1a 3a 2a

X.1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1
X.3 2 A B -1 C .
X.4 2 B C -1 A .
X.5 2 -1 -1 2 -1 .
X.6 2 C A -1 B .

A = -E(9)^2-E(9)^4-E(9)^5-E(9)^7
B = E(9)^2+E(9)^7
C = E(9)^4+E(9)^5

Computations with the GAP Character Table Library 364

By \cite[Lemma 5.1 (ii)]{DNT}, we are done.

10.7 G/N ∼= 3D4(2) and |N|= 325

The group S = 3D4(2) has exactly one irreducible 25-dimensional module over the field with three
elements, up to isomorphism. This module is in fact absolutely irreducible.

Example
gap> p:= 3;; d:= 25;;
gap> t:= CharacterTable("3D4(2)") mod p;
BrauerTable("3D4(2)", 3)
gap> irr:= Filtered(Irr(t), x -> x[1] <= d);;
gap> Display(t, rec(chars:= irr, powermap:= false,
> centralizers:= false));
3D4(2)mod3

1a 2a 2b 4a 4b 4c 7a 7b 7c 7d 8a 8b 13a 13b 13c 14a 14b 14c 28a

Y.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y.2 25 -7 1 5 -3 1 4 4 4 -3 -1 -1 -1 -1 -1 . . . -2

28b 28c

Y.1 1 1
Y.2 -2 -2

We use the same approach as in the examples about the group J2.
Example

gap> tom:= TableOfMarks("3D4(2)");;
gap> info:= OneAtlasGeneratingSetInfo("3D4(2)", Dimension, d, Ring, GF(p));;
gap> gens:= AtlasGenerators(info).generators;;
gap> orbsinfo:= orbits_from_tom(tom, gens, p);;
gap> orbsinfo.fixed[1];
847288609443
gap> orbsinfo.decomp[1];
3551

We see that S has 3551 regular orbits on (the dual space of) N.

Chapter 11

GAP Computations Concerning
Probabilistic Generation of Finite Simple
Groups

Date: March 28th, 2012
This is a collection of examples showing how the GAP system [GAP21] can be used to compute

information about the probabilistic generation of finite almost simple groups. It includes all examples
that were needed for the computational results in [BGK08].

The purpose of this writeup is twofold. On the one hand, the computations are documented this
way. On the other hand, the GAP code shown for the examples can be used as test input for automatic
checking of the data and the functions used.

A first version of this document, which was based on GAP 4.4.10, had been accessible in the web
since April 2006 and is available in the arXiv (no. 0710.3267) since October 2007. The differences
between that document and the current version are as follows.

• The format of the GAP output was adjusted to the changed behaviour of GAP until version 4.10.
This affects mainly the way how GAP records are printed.

• Several computations are now easier because more character tables of almost simple groups
and maximal subgroups of such groups are available in the GAP Character Table Library. (The
more involved computations from the original version have been kept in the file.)

• The computation of all conjugacy classes of a subgroup of PΩ
+(12,3) has been replaced by the

computation of the conjugacy classes of elements of prime order in this subgroup.

• The irreducible element chosen in the simple group PΩ
−(10,3) has order 61 not 122.

11.1 Overview

The main purpose of this note is to document the GAP computations that were carried out in order to
obtain the computational results in [BGK08]. Table I lists the simple groups among these examples.
The first column gives the group names, the second and third columns contain a plus sign + or a minus
sign −, depending on whether the quantities σ(G,s) and P(G,s), respectively, are less than 1/3. The
fourth column lists the orders of elements s which either prove the + signs or cover most of the cases

365

Computations with the GAP Character Table Library 366

for proving these signs. The fifth column lists the sections in this note where the example is treated.
The rows of the table are ordered alphabetically w.r.t. the group names.

In order to keep this note self-contained, we first describe the theory needed, in Section 11.2.
The translation of the relevant formulae into GAP functions can be found in Section 11.3. Then
Section 11.4 describes the computations that only require (ordinary) character tables in the GAP
Character Table Library [Bre24]. Computations using also the groups are shown in Section 11.5. In
each of the last two sections, the examples are ordered alphabetically w.r.t. the names of the simple
groups.

Computations with the GAP Character Table Library 367

G σ < 1
3 P < 1

3 |s| see
A5 − − 5 11.5.2
A6 − − 4 11.5.3
A7 − − 7 11.5.4
A8 + 15 11.4.3, 11.5.5
A9 + 9 11.4.3, 11.5.1
A11 + 11 11.4.3, 11.5.1
A13 + 13 11.4.3, 11.5.1
A15 + 15 11.5.1
A17 + 17 11.5.1
A19 + 19 11.5.1
A21 + 21 11.5.1
A23 + 23 11.5.1
L3(2) + 7 11.4.3, 11.4.4,

11.5.5, 11.5.8
L3(3) + 13 11.4.3, 11.4.4,

11.5.5
L3(4) + 7 11.4.3, 11.4.4
L4(3) + 20 11.4.3, 11.5.5
L4(4) + 85 11.5.5
L6(2) + 63 11.5.5
L6(3) + 182 11.5.5
L6(4) + 455 11.5.5
L6(5) + 1953 11.5.5
L8(2) + 255 11.5.5
L10(2) + 1023 11.5.5
M11 − − 11 11.5.9
M12 − + 10 11.4.2, 11.5.10
O+

8 (2) − − 15 11.5.12
O+

8 (3) − − 20 11.5.13
O+

8 (4) + 65 11.5.14
O+

10(2) + 45 11.4.6
O+

12(2) + 85 11.4.8
O+

12(3) + 205 11.5.18
O−8 (2) + 17 11.4.3
O−8 (3) + 41 11.4.5
O−10(2) + 33 11.4.7
O−10(3) + 122 11.5.16
O−12(2) + 65 11.4.9
O−14(2) + 129 11.5.17
O7(3) − − 14 11.5.11
S4(4) + 17 11.4.3, 11.4.4
S6(2) − − 9 11.5.20
S6(3) + 14 11.4.3, 11.4.4
S6(4) + 65 11.4.10
S8(2) − − 17 11.5.21
S8(3) + 41 11.4.12
U3(3) + 6 11.4.3, 11.4.4
U3(5) + 10 11.4.3, 11.4.4
U4(2) − − 9 11.5.23
U4(3) − + 7 11.5.24
U4(4) + 65 11.4.13
U5(2) + 11 11.4.3
U6(2) + 11 11.4.14
U6(3) + 122 11.5.25
U8(2) + 129 11.5.26

Computations with the GAP Character Table Library 368

Table: Table I: Computations needed in [BGK08]

Contrary to [BGK08], Atlas notation is used throughout this note, because the identifiers used for
character tables in the GAP Character Table Library follow mainly the Atlas [CCN+85]. For example,
we write Ld(q) for PSL(d,q), Sd(q) for PSp(d,q), Ud(q) for PSU(d,q), and O+

2d(q), O−2d(q), O2d+1(q)
for PΩ

+(2d,q), PΩ
−(2d,q), PΩ(2d +1,q), respectively.

Furthermore, in the case of classical groups, the character tables of the (almost) simple groups are
considered not the tables of the matrix groups (which are in fact often not available in the GAP Char-
acter Table Library). Consequently, also element orders and the description of maximal subgroups
refer to the (almost) simple groups not to the matrix groups.

This note contains also several examples that are not needed for the proofs in [BGK08]. Besides
several small simple groups G whose character table is contained in the GAP Character Table Library
and for which enough information is available for computing σ(G), in Section 11.4.3, a few such
examples appear in individual sections. In the table of contents, the section headers of the latter kind
of examples are marked with an asterisk (∗).

The examples use the GAP Character Table Library, the GAP Library of Tables of Marks, and
the GAP interface [WPN+22] to the Atlas of Group Representations [WWT+], so we first load these
three packages in the required versions. The GAP output was adjusted to the versions shown below;
in older versions, features necessary for the computations may be missing, and it may happen that
with newer versions, the behaviour is different.

Example
gap> CompareVersionNumbers(GAPInfo.Version, "4.5.0");
true
gap> LoadPackage("ctbllib", "1.2", false);
true
gap> LoadPackage("tomlib", "1.2", false);
true
gap> LoadPackage("atlasrep", "1.5", false);
true

Some of the computations in Section 11.5 require about 800 MB of space (on 32 bit machines).
Therefore we check whether GAP was started with sufficient maximal memory; the command line
option for this is -o 800m.

Example
gap> max:= GAPInfo.CommandLineOptions.o;;
gap> if not ((IsSubset(max, "m") and
> Int(Filtered(max, IsDigitChar)) >= 800) or
> (IsSubset(max, "g") and
> Int(Filtered(max, IsDigitChar)) >= 1)) then
> Print("the maximal allowed memory might be too small\n");
> fi;

Several computations involve calls to the GAP function Random (Reference: Random). In order
to make the results of individual examples reproducible, independent of the rest of the computations,
we reset the relevant random number generators whenever this is appropriate. For that, we store the
initial states in the variable staterandom, and provide a function for resetting the random number gen-
erators. (The Random (Reference: Random) calls in the GAP library use the two random number gen-
erators GlobalRandomSource (Reference: GlobalRandomSource) and GlobalMersenneTwister
(Reference: GlobalMersenneTwister).)

Computations with the GAP Character Table Library 369

Example
gap> staterandom:= [State(GlobalRandomSource),
> State(GlobalMersenneTwister)];;
gap> ResetGlobalRandomNumberGenerators:= function()
> Reset(GlobalRandomSource, staterandom[1]);
> Reset(GlobalMersenneTwister, staterandom[2]);
> end;;

11.2 Prerequisites

11.2.1 Theoretical Background

Let G be a finite group, S the socle of G, and denote by G× the set of nonidentity elements in G. For
s,g ∈ G×, let P(g,s) := |{h ∈ G;S * 〈sh,g〉}|/|G|, the proportion of elements in the class sG which
fail to generate at least S with g; we set P(G,s) := max{P(g,s);g ∈ G×}. We are interested in finding
a class sG of elements in S such that P(G,s)< 1/3 holds.

First consider g ∈ S, and let M(S,s) denote the set of those maximal subgroups of S that contain
s. We have

|{h ∈ S;S * 〈sh,g〉}|= |{h ∈ S;〈s,hgh−1〉6=S}| ≤ ∑
M∈M(S,s)

|{h ∈ S;hgh−1 ∈M}|

Since hgh−1 ∈M holds if and only if the coset Mh is fixed by g under the permutation action of S on
the right cosets of M in S, we get that |{h ∈ S;hgh−1 ∈M}|= |CS(g)| · |gS∩M|= |M| ·1S

M(g), where
1S

M is the permutation character of this action, of degree |S|/|M|. Thus

|{h ∈ S;〈s,hgh−1〉6=S}|/|S| ≤ ∑
M∈M(S,s)

1S
M(g)/1S

M(1).

We abbreviate the right hand side of this inequality by σ(g,s), set σ(S,s) := max{σ(g,s);g ∈ S×},
and choose a transversal T of S in G. Then P(g,s) ≤ |T |−1 ·∑t∈T σ(gt ,s) and thus P(G,s) ≤ σ(S,s)
holds.

If S = G and if M(G,s) consists of a single maximal subgroup M of G then equality holds, i.e.,
P(g,s) = σ(g,s) = 1S

M(g)/1S
M(1).

The quantity 1S
M(g)/1S

M(1) = |gS∩M|/|gS| is the proportion of fixed points of g in the permutation
action of S on the right cosets of its subgroup M. This is called the fixed point ratio of g w. r. t. S/M,
and is denoted as µ(g,S/M).

For a subgroup M of S, the number n of S-conjugates of M containing s is equal to |MS| · |sS ∩
M|/|sS|. To see this, consider the set {(sh,Mk);h,k ∈ S,sh ∈ Mk}, the cardinality of which can be
counted either as |MS| · |sS∩M| or as |sS| ·n. So we get n = |M| ·1S

M(s)/|NS(M)|.
If S is a finite nonabelian simple group then each maximal subgroup in S is self-normalizing, and

we have n = 1S
M(s) if M is maximal. So we can replace the summation over M(S,s) by one over a set

M̃(S,s) of representatives of conjugacy classes of maximal subgroups of S, and get that

σ(g,s) = ∑
M∈M̃(S,s)

1S
M(s) ·1S

M(g)
1S

M(1)
.

Furthermore, we have |M(S,s)|= ∑M∈M̃(S,s) 1S
M(s).

Computations with the GAP Character Table Library 370

In the following, we will often deal with the quantities σ(S) := min{σ(S,s);s∈ S×} and S (S) :=
d1/σ(S)−1e. These values can be computed easily from the primitive permutation characters of S.

Analogously, we set P(S) := min{P(S,s);s ∈ S×} and P(S) := d1/P(S)− 1e. Clearly we have
P(S)≤ σ(S) and P(S)≥S (S).

One interpretation of P(S) is that if this value is at least k then it follows that for any
g1,g2, . . . ,gk ∈ S×, there is some s ∈ S such that S = 〈gi,s〉, for 1 ≤ i ≤ k. In this case, S is said
to have spread at least k. (Note that the lower bound S (S) for P(S) can be computed from the list of
primitive permutation characters of S.)

Moreover, P(S) ≥ k implies that the element s can be chosen uniformly from a fixed conjugacy
class of S. This is called uniform spread at least k in [BGK08].

It is proved in [GK00] that all finite simple groups have uniform spread at least 1, that is, for any
element x ∈ S×, there is an element y in a prescribed class of S such that G = 〈x,y〉 holds. In [BGK08,
Corollary 1.3], it is shown that all finite simple groups have uniform spread at least 2, and the finite
simple groups with (uniform) spread exactly 2 are listed.

Concerning the spread, it should be mentioned that the methods used here and in [BGK08] are
nonconstructive in the sense that they cannot be used for finding an element s that generates G together
with each of the k prescribed elements g1,g2, . . . ,gk.

Now consider g ∈ G\S. Since P(gk,s)≥ P(g,s) for any positive integer k, we can assume that g
has prime order p, say. We set H = 〈S,g〉 ≤ G, with [H : S] = p, choose a transversal T of H in G, let
M′(H,s) :=M(H,s)\{S}, and let M̃′(H,s) denote a set of representatives of H-conjugacy classes of
these groups. As above,

|{h ∈ H;S * 〈sh,g〉}|/|H| = |{h ∈ H;〈sh,g〉6=H}|/|H|
≤ ∑M∈M′(H,s) |{h ∈ H;hgh−1 ∈M}|/|H|
= ∑M∈M′(H,s) 1H

M(g)/1H
M(1)

= ∑M∈M̃′(H,s) 1H
M(g) ·1H

M(s)/1H
M(1)

(Note that no summand for M = S occurs, so each group in M̃′(H,s) is self-normalizing.) We
abbreviate the right hand side by σ(H,g,s), and set σ ′(H,s)=max{σ(H,g,s);g∈H \S, |g|= [H : S]}.
Then we get P(g,s)≤ |T |−1 ·∑t∈T σ(Ht ,gt ,s) and thus

P(G,s)≤max{P(S,s),max{σ ′(H,s);S≤ H ≤ G, [H : S] prime}}.

For convenience, we set P′(G,s) = max{P(g,s);g ∈ G\S}.

11.2.2 Computational Criteria

The following criteria will be used when we have to show the existence or nonexistence of
x1,x2, . . . ,xk, and s ∈ G with the property 〈xi,s〉 = G for 1 ≤ i ≤ k. Note that manipulating lists of
integers (representing fixed or moved points) is much more efficient than testing whether certain per-
mutations generate a given group.

Lemma:
Let G be a finite group, s ∈ G×, and X =

⋃
M∈M(G,s) G/M. For x1,x2, . . . ,xk ∈ G, the conjugate s′

of s satisfies 〈xi,s′〉= G for 1≤ i≤ k if and only if FixX(s′)∩
⋃k

i=1 FixX(xi) = /0 holds.
Proof. If sg ∈ U ≤ G for some g ∈ G then FixX(U) = /0 if and only if U = G holds; note that

FixX(G) = /0, and FixX(U) = /0 implies that U * h−1Mh holds for all h ∈ G and M ∈M(G,s), thus
U = G. Applied to U = 〈xi,s′〉, we get 〈xi,s′〉= G if and only if FixX(s′)∩FixX(xi) = FixX(U) = /0.

Corollary 1:

Computations with the GAP Character Table Library 371

If M(G,s) = {M} in the situation of the above Lemma then there is a conjugate s′ of s that satisfies
〈xi,s′〉= G for 1≤ i≤ k if and only if

⋃k
i=1 FixX(xi)6=X .

Corollary 2:
Let G be a finite simple group and let X be a G-set such that each g ∈ G fixes at least one point in

X but that FixX(G) = /0 holds. If x1,x2, . . .xk are elements in G such that
⋃k

i=1 FixX(xi) = X holds then
for each s ∈ G there is at least one i with 〈xi,s〉6=G.

11.3 GAP Functions for the Computations

After the introduction of general utilities in Section 11.3.1, we distinguish two different tasks. Sec-
tion 11.3.2 introduces functions that will be used in the following to compute σ(g,s) with character-
theoretic methods. Functions for computing P(g,s) or an upper bound for this value will be introduced
in Section 11.3.3.

The GAP functions shown in this section are collected in the file
tst/probgen.g that is distributed with the GAP Character Table Library,
see http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib.

The functions have been designed for the examples in the later sections, they could be generalized
and optimized for other examples. It is not our aim to provide a package for this functionality.

11.3.1 General Utilities

Let list be a dense list and prop be a unary function that returns true or false when applied to the
entries of list. PositionsProperty returns the set of positions in list for which true is returned.

Example
gap> if not IsBound(PositionsProperty) then
> PositionsProperty:= function(list, prop)
> return Filtered([1 .. Length(list)], i -> prop(list[i]));
> end;
> fi;

The following two functions implement loops over ordered triples (and quadruples, respectively)
in a Cartesian product. A prescribed function prop is subsequently applied to the triples (quadruples),
and if the result of this call is true then this triple (quadruple) is returned immediately; if none of the
calls to prop yields true then fail is returned.

Example
gap> BindGlobal("TripleWithProperty", function(threelists, prop)
> local i, j, k, test;
>
> for i in threelists[1] do
> for j in threelists[2] do
> for k in threelists[3] do
> test:= [i, j, k];
> if prop(test) then
> return test;
> fi;
> od;
> od;
> od;

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib

Computations with the GAP Character Table Library 372

>
> return fail;
> end);
gap> BindGlobal("QuadrupleWithProperty", function(fourlists, prop)
> local i, j, k, l, test;
>
> for i in fourlists[1] do
> for j in fourlists[2] do
> for k in fourlists[3] do
> for l in fourlists[4] do
> test:= [i, j, k, l];
> if prop(test) then
> return test;
> fi;
> od;
> od;
> od;
> od;
>
> return fail;
> end);

Of course one could do better by considering unordered n-tuples when several of the argument
lists are equal, and in practice, backtrack searches would often allow one to prune parts of the search
tree in early stages. However, the above loops are not time critical in the examples presented here, so
the possible improvements are not worth the effort for our purposes.

The function PrintFormattedArray prints the matrix array in a columnwise formatted way.
(The only diference to the GAP library function PrintArray (Reference: PrintArray) is that
PrintFormattedArray chooses each column width according to the entries only in this column not
w.r.t. the whole matrix.)

Example
gap> BindGlobal("PrintFormattedArray", function(array)
> local colwidths, n, row;
> array:= List(array, row -> List(row, String));
> colwidths:= List(TransposedMat(array),
> col -> Maximum(List(col, Length)));
> n:= Length(array[1]);
> for row in List(array, row -> List([1 .. n],
> i -> String(row[i], colwidths[i]))) do
> Print(" ", JoinStringsWithSeparator(row, " "), "\n");
> od;
> end);

Finally, CleanWorkspace is a utility for reducing the space needed. This is achieved by unbinding
those user variables that are not write protected and are not mentioned in the list NeededVariables
of variable names that are bound now, and by flushing the caches of tables of marks and character
tables.

Example
gap> BindGlobal("NeededVariables", NamesUserGVars());
gap> BindGlobal("CleanWorkspace", function()

Computations with the GAP Character Table Library 373

> local name, record;
>
> for name in Difference(NamesUserGVars(), NeededVariables) do
> if not IsReadOnlyGlobal(name) then
> UnbindGlobal(name);
> fi;
> od;
> for record in [LIBTOMKNOWN, LIBTABLE] do
> for name in RecNames(record.LOADSTATUS) do
> Unbind(record.LOADSTATUS.(name));
> Unbind(record.(name));
> od;
> od;
> end);

The function PossiblePermutationCharacters takes two ordinary character tables sub and
tbl, computes the possible class fusions from sub to tbl, then induces the trivial character of sub
to tbl, w.r.t. these fusions, and returns the set of these class functions. (So if sub and tbl are the
character tables of groups H and G, respectively, where H is a subgroup of G, then the result contains
the permutation character 1G

H .)
Note that the columns of the character tables in the GAP Character Table Library are not explicitly

associated with particular conjugacy classes of the corresponding groups, so from the character tables,
we can compute only possible class fusions, i.e., maps between the columns of two tables that satisfy
certain necessary conditions, see the section about the function PossibleClassFusions in the GAP
Reference Manual for details. There is no problem if the permutation character is uniquely determined
by the character tables, in all other cases we give ad hoc arguments for resolving the ambiguities.

Example
gap> if not IsBound(PossiblePermutationCharacters) then
> BindGlobal("PossiblePermutationCharacters", function(sub, tbl)
> local fus, triv;
>
> fus:= PossibleClassFusions(sub, tbl);
> if fus = fail then
> return fail;
> fi;
> triv:= [TrivialCharacter(sub)];
>
> return Set(
> List(fus, map -> Induced(sub, tbl, triv, map)[1]));
> end);
> fi;

11.3.2 Character-Theoretic Computations

We want to use the GAP libraries of character tables and of tables of marks, and proceed in three
steps.

First we extract the primitive permutation characters from the library information if this is avail-
able; for that, we write the function PrimitivePermutationCharacters. Then the result can be
used as the input for the function ApproxP, which computes the values σ(g,s). Finally, the functions
ProbGenInfoSimple and ProbGenInfoAlmostSimple compute S (G).

Computations with the GAP Character Table Library 374

For a group G whose character table T is contained in the GAP character table library, the complete
set of primitive permutation characters can be easily computed if the character tables of all maximal
subgroups and their class fusions into T are known (in this case, we check whether the attribute Maxes
(CTblLib: Maxes) of T is bound) or if the table of marks of G and the class fusion from T into
this table of marks are known (in this case, we check whether the attribute FusionToTom (CTblLib:
FusionToTom) of T is bound). If the attribute UnderlyingGroup (Reference: UnderlyingGroup
for tables of marks) of T is bound then this group can be used to compute the primitive permutation
characters. The latter happens if T was computed from the group object in GAP; for tables in the
GAP character table library, this is not the case by default.

The GAP function PrimitivePermutationCharacters tries to compute the primitive permu-
tation characters of a group using this information; it returns the required list of characters if this can
be computed this way, otherwise fail is returned. (For convenience, we use the GAP mechanism of
attributes in order to store the permutation characters in the character table object once they have been
computed.)

Example
gap> DeclareAttribute("PrimitivePermutationCharacters", IsCharacterTable);
gap> InstallOtherMethod(PrimitivePermutationCharacters,
> [IsCharacterTable],
> function(tbl)
> local maxes, tom, G;
>
> if HasMaxes(tbl) then
> maxes:= List(Maxes(tbl), CharacterTable);
> if ForAll(maxes, s -> GetFusionMap(s, tbl) <> fail) then
> return List(maxes, subtbl -> TrivialCharacter(subtbl)^tbl);
> fi;
> elif HasFusionToTom(tbl) then
> tom:= TableOfMarks(tbl);
> maxes:= MaximalSubgroupsTom(tom);
> return PermCharsTom(tbl, tom){ maxes[1] };
> elif HasUnderlyingGroup(tbl) then
> G:= UnderlyingGroup(tbl);
> return List(MaximalSubgroupClassReps(G),
> M -> TrivialCharacter(M)^tbl);
> fi;
>
> return fail;
> end);

The function ApproxP takes a list primitives of primitive permutation characters of a group G,
say, and the position spos of the class sG in the character table of G.

Assume that the elements in primitives have the form 1G
M, for suitable maximal subgroups M of

G, and let M̃ be the set of these groups M. ApproxP returns the class function ψ of G that is defined
by ψ(1) = 0 and

ψ(g) = ∑
M∈M̃

1G
M(s) ·1G

M(g)
1G

M(1)

otherwise.
If primitives contains all those primitive permutation characters 1G

M of G (with multiplicity
according to the number of conjugacy classes of these maximal subgroups) that do not vanish at s,

Computations with the GAP Character Table Library 375

and if all these M are self-normalizing in G –this holds for example if G is a finite simple group– then
ψ(g) = σ(g,s) holds.

Example
gap> BindGlobal("ApproxP", function(primitives, spos)
> local sum;
>
> sum:= ShallowCopy(Sum(List(primitives,
> pi -> pi[spos] * pi / pi[1])));
> sum[1]:= 0;
>
> return sum;
> end);

Note that for computations with permutation characters, it would make the functions more com-
plicated (and not more efficient) if we would consider only elements g of prime order, and only one
representative of Galois conjugate classes.

The next functions needed in this context compute σ(S) and S (S), for a simple group S, and
σ ′(G,s) for an almost simple group G with socle S, respectively.

ProbGenInfoSimple takes the character table tbl of S as its argument. If the full list of primi-
tive permutation characters of S cannot be computed with PrimitivePermutationCharacters then
the function returns fail. Otherwise ProbGenInfoSimple returns a list containing the identifier of
the table, the value σ(S), the integer S (S), a list of Atlas names of representatives of Galois fami-
lies of those classes of elements s for which σ(S) = σ(S,s) holds, and the list of the corresponding
cardinalities |M(S,s)|.

Example
gap> BindGlobal("ProbGenInfoSimple", function(tbl)
> local prim, max, min, bound, s;
> prim:= PrimitivePermutationCharacters(tbl);
> if prim = fail then
> return fail;
> fi;
> max:= List([1 .. NrConjugacyClasses(tbl)],
> i -> Maximum(ApproxP(prim, i)));
> min:= Minimum(max);
> bound:= Inverse(min);
> if IsInt(bound) then
> bound:= bound - 1;
> else
> bound:= Int(bound);
> fi;
> s:= PositionsProperty(max, x -> x = min);
> s:= List(Set(s, i -> ClassOrbit(tbl, i)), i -> i[1]);
> return [Identifier(tbl),
> min,
> bound,
> AtlasClassNames(tbl){ s },
> Sum(List(prim, pi -> pi{ s }))];
> end);

ProbGenInfoAlmostSimple takes the character tables tblS and tblG of S and G, and a list
sposS of class positions (w.r.t. tblS) as its arguments. It is assumed that S is simple and has prime

Computations with the GAP Character Table Library 376

index in G. If PrimitivePermutationCharacters can compute the full list of primitive permutation
characters of G then the function returns a list containing the identifier of tblG, the maximum m of
σ ′(G,s), for s in the classes described by sposS, a list of Atlas names (in G) of the classes of elements
s for which this maximum is attained, and the list of the corresponding cardinalities |M′(G,s)|. When
PrimitivePermutationCharacters returns fail, also ProbGenInfoAlmostSimple returns fail.

Example
gap> BindGlobal("ProbGenInfoAlmostSimple", function(tblS, tblG, sposS)
> local p, fus, inv, prim, sposG, outer, approx, l, max, min,
> s, cards, i, names;
>
> p:= Size(tblG) / Size(tblS);
> if not IsPrimeInt(p)
> or Length(ClassPositionsOfNormalSubgroups(tblG)) <> 3 then
> return fail;
> fi;
> fus:= GetFusionMap(tblS, tblG);
> if fus = fail then
> return fail;
> fi;
> inv:= InverseMap(fus);
> prim:= PrimitivePermutationCharacters(tblG);
> if prim = fail then
> return fail;
> fi;
> sposG:= Set(fus{ sposS });
> outer:= Difference(PositionsProperty(
> OrdersClassRepresentatives(tblG), IsPrimeInt), fus);
> approx:= List(sposG, i -> ApproxP(prim, i){ outer });
> if IsEmpty(outer) then
> max:= List(approx, x -> 0);
> else
> max:= List(approx, Maximum);
> fi;
> min:= Minimum(max);
> s:= sposG{ PositionsProperty(max, x -> x = min) };
> cards:= List(prim, pi -> pi{ s });
> for i in [1 .. Length(prim)] do
> # Omit the character that is induced from the simple group.
> if ForAll(prim[i], x -> x = 0 or x = prim[i][1]) then
> cards[i]:= 0;
> fi;
> od;
> names:= AtlasClassNames(tblG){ s };
> Perform(names, ConvertToStringRep);
>
> return [Identifier(tblG),
> min,
> names,
> Sum(cards)];
> end);

The next function computes σ(G,s) from the character table tbl of a simple or almost simple

Computations with the GAP Character Table Library 377

group G, the name sname of the class of s in this table, the list maxes of the character tables of all
subgroups M with M ∈M(G,s), and the list numpermchars of the numbers of possible permutation
characters induced from maxes. If the string "outer" is given as an optional argument then G is
assumed to be an automorphic extension of a simple group S, with [G : S] a prime, and σ ′(G,s) is
returned. In both situations, the result is fail if the numbers of possible permutation characters
induced from maxes do not coincide with the numbers prescribed in numpermchars.

Example
gap> BindGlobal("SigmaFromMaxes", function(arg)
> local t, sname, maxes, numpermchars, prim, spos, outer;
>
> t:= arg[1];
> sname:= arg[2];
> maxes:= arg[3];
> numpermchars:= arg[4];
> prim:= List(maxes, s -> PossiblePermutationCharacters(s, t));
> spos:= Position(AtlasClassNames(t), sname);
> if ForAny([1 .. Length(maxes)],
> i -> Length(prim[i]) <> numpermchars[i]) then
> return fail;
> elif Length(arg) = 5 and arg[5] = "outer" then
> outer:= Difference(
> PositionsProperty(OrdersClassRepresentatives(t), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t));
> return Maximum(ApproxP(Concatenation(prim), spos){ outer });
> else
> return Maximum(ApproxP(Concatenation(prim), spos));
> fi;
> end);

The following function allows us to extract information about M(G,s) from the character table
tbl of G and a list snames of class positions of s. If Maxes(tbl) is stored then the names of the
character tables of the subgroups in M(G,s) and the number of conjugates are printed, otherwise fail
is printed.

Example
gap> BindGlobal("DisplayProbGenMaxesInfo", function(tbl, snames)
> local mx, prim, i, spos, nonz, indent, j;
>
> if not HasMaxes(tbl) then
> Print(Identifier(tbl), ": fail\n");
> return;
> fi;
>
> mx:= List(Maxes(tbl), CharacterTable);
> prim:= List(mx, s -> TrivialCharacter(s)^tbl);
> Assert(1, SortedList(prim) =
> SortedList(PrimitivePermutationCharacters(tbl)));
> for i in [1 .. Length(prim)] do
> # Deal with the case that the subgroup is normal.
> if ForAll(prim[i], x -> x = 0 or x = prim[i][1]) then
> prim[i]:= prim[i] / prim[i][1];
> fi;

Computations with the GAP Character Table Library 378

> od;
>
> spos:= List(snames,
> nam -> Position(AtlasClassNames(tbl), nam));
> nonz:= List(spos, x -> PositionsProperty(prim, pi -> pi[x] <> 0));
> for i in [1 .. Length(spos)] do
> Print(Identifier(tbl), ", ", snames[i], ": ");
> indent:= ListWithIdenticalEntries(
> Length(Identifier(tbl)) + Length(snames[i]) + 4, ’ ’);
> if not IsEmpty(nonz[i]) then
> Print(Identifier(mx[nonz[i][1]]), " (",
> prim[nonz[i][1]][spos[i]], ")\n");
> for j in [2 .. Length(nonz[i])] do
> Print(indent, Identifier(mx[nonz[i][j]]), " (",
> prim[nonz[i][j]][spos[i]], ")\n");
> od;
> else
> Print("\n");
> fi;
> od;
> end);

11.3.3 Computations with Groups

Here, the task is to compute P(g,s) or P(G,s) using explicit computations with G, where the character-
theoretic bounds are not sufficient.

We start with small utilities that make the examples shorter.
For a finite solvable group G, the function PcConjugacyClassReps returns a list of representatives

of the conjugacy classes of G, which are computed using a polycyclic presentation for G.
Example

gap> BindGlobal("PcConjugacyClassReps", function(G)
> local iso;
>
> iso:= IsomorphismPcGroup(G);
> return List(ConjugacyClasses(Image(iso)),
> c -> PreImagesRepresentative(iso, Representative(c)));
> end);

For a finite group G, a list primes of prime integers, and a normal subgroup N of G, the function
ClassesOfPrimeOrder returns a list of those conjugacy classes of G that are not contained in N and
whose elements’ orders occur in primes.

For each prime p in primes, first class representatives of order p in a Sylow p subgroup of G are
computed, then the representatives in N are discarded, and then representatives w. r. t. conjugacy in G
are computed.

(Note that this approach may be inappropriate for example if a large elementary abelian Sylow p
subgroup occurs, and if the conjugacy tests in G are expensive, see Section 11.5.14.)

Example
gap> BindGlobal("ClassesOfPrimeOrder", function(G, primes, N)
> local ccl, p, syl, Greps, reps, r, cr;
>

Computations with the GAP Character Table Library 379

> ccl:= [];
> for p in primes do
> syl:= SylowSubgroup(G, p);
> Greps:= [];
> reps:= Filtered(PcConjugacyClassReps(syl),
> r -> Order(r) = p and not r in N);
> for r in reps do
> cr:= ConjugacyClass(G, r);
> if ForAll(Greps, c -> c <> cr) then
> Add(Greps, cr);
> fi;
> od;
> Append(ccl, Greps);
> od;
>
> return ccl;
> end);

The function IsGeneratorsOfTransPermGroup takes a transitive permutation group G and a list
list of elements in G, and returns true if the elements in list generate G, and false otherwise. The
main point is that the return value true requires the group generated by list to be transitive, and the
check for transitivity is much cheaper than the test whether this group is equal to G.

Example
gap> if not IsBound(IsGeneratorsOfTransPermGroup) then
> BindGlobal("IsGeneratorsOfTransPermGroup", function(G, list)
> local S;
>
> if not IsTransitive(G) then
> Error("<G> must be transitive on its moved points");
> fi;
> S:= SubgroupNC(G, list);
>
> return IsTransitive(S, MovedPoints(G)) and
> Size(S) = Size(G);
> end);
> fi;

RatioOfNongenerationTransPermGroup takes a transitive permutation group G and two ele-
ments g and s of G, and returns the proportion P(g,s). (The function tests the (non)generation only for
representatives of CG(g)-CG(s)-double cosets. Note that for c1 ∈CG(g), c2 ∈CG(s), and a representa-
tive r ∈ G, we have 〈gc1rc2 ,s〉= 〈gr,s〉c2 .)

Example
gap> BindGlobal("RatioOfNongenerationTransPermGroup", function(G, g, s)
> local nongen, pair;
>
> if not IsTransitive(G) then
> Error("<G> must be transitive on its moved points");
> fi;
> nongen:= 0;
> for pair in DoubleCosetRepsAndSizes(G, Centralizer(G, g),

Computations with the GAP Character Table Library 380

> Centralizer(G, s)) do
> if not IsGeneratorsOfTransPermGroup(G, [s, g^pair[1]]) then
> nongen:= nongen + pair[2];
> fi;
> od;
>
> return nongen / Size(G);
> end);

Let G be a group, and let groups be a list [G1,G2, . . . ,Gn] of permutation groups such
that Gi describes the action of G on a set Ωi, say. Moreover, we require that for 1 ≤
i, j ≤ n, mapping the GeneratorsOfGroup list of Gi to that of G j defines an isomorphism.
DiagonalProductOfPermGroups takes groups as its argument, and returns the action of G on the
disjoint union of Ω1,Ω2, . . . ,Ωn.

Example
gap> BindGlobal("DiagonalProductOfPermGroups", function(groups)
> local prodgens, deg, i, gens, D, pi;
>
> prodgens:= GeneratorsOfGroup(groups[1]);
> deg:= NrMovedPoints(prodgens);
> for i in [2 .. Length(groups)] do
> gens:= GeneratorsOfGroup(groups[i]);
> D:= MovedPoints(gens);
> pi:= MappingPermListList(D, [deg+1 .. deg+Length(D)]);
> deg:= deg + Length(D);
> prodgens:= List([1 .. Length(prodgens)],
> i -> prodgens[i] * gens[i]^pi);
> od;
>
> return Group(prodgens);
> end);

The following two functions are used to reduce checks of generation to class representatives of
maximal order. Note that if 〈s,g〉 is a proper subgroup of G then also 〈sk,g〉 is a proper subgroup of
G, so we need not check powers sk different from s in this situation.

For an ordinary character table tbl, the function RepresentativesMaximallyCyclicSubgroups
returns a list of class positions, containing one class of generators for each class of maximally cyclic
subgroups.

Example
gap> BindGlobal("RepresentativesMaximallyCyclicSubgroups", function(tbl)
> local n, result, orders, p, pmap, i, j;
>
> # Initialize.
> n:= NrConjugacyClasses(tbl);
> result:= BlistList([1 .. n], [1 .. n]);
>
> # Omit powers of smaller order.
> orders:= OrdersClassRepresentatives(tbl);
> for p in PrimeDivisors(Size(tbl)) do
> pmap:= PowerMap(tbl, p);

Computations with the GAP Character Table Library 381

> for i in [1 .. n] do
> if orders[pmap[i]] < orders[i] then
> result[pmap[i]]:= false;
> fi;
> od;
> od;
>
> # Omit Galois conjugates.
> for i in [1 .. n] do
> if result[i] then
> for j in ClassOrbit(tbl, i) do
> if i <> j then
> result[j]:= false;
> fi;
> od;
> fi;
> od;
>
> # Return the result.
> return ListBlist([1 .. n], result);
> end);

Let G be a finite group, tbl be the ordinary character table of G, and cols be a list of class posi-
tions in tbl, for example the list returned by RepresentativesMaximallyCyclicSubgroups. The
function ClassesPerhapsCorrespondingToTableColumns returns the sublist of those conjugacy
classes of G for which the corresponding column in tbl can be contained in cols, according to ele-
ment order and class size.

Example
gap> BindGlobal("ClassesPerhapsCorrespondingToTableColumns",
> function(G, tbl, cols)
> local orders, classes, invariants;
>
> orders:= OrdersClassRepresentatives(tbl);
> classes:= SizesConjugacyClasses(tbl);
> invariants:= List(cols, i -> [orders[i], classes[i]]);
>
> return Filtered(ConjugacyClasses(G),
> c -> [Order(Representative(c)), Size(c)] in invariants);
> end);

The next function computes, for a finite group G and subgroups M1,M2, . . . ,Mn of G, an upper
bound for max{∑n

i=1 µ(g,G/Mi);g ∈ G \ Z(G)}. So if the Mi are the groups in M(G,s), for some
s ∈ G×, then we get an upper bound for σ(G,s).

The idea is that for M ≤ G and g ∈ G of order p, we have

µ(g,G/M) = |gG∩M|/|gG| ≤ ∑
h∈C
|hM|/|gG|= ∑

h∈C
|hM| · |CG(g)|/|G|,

where C is a set of class representatives h ∈M of all those classes that satisfy |h| = p and |CG(h)| =
|CG(g)|, and in the case that G is a permutation group additionally that h and g move the same number
of points. (Note that it is enough to consider elements of prime order.)

Computations with the GAP Character Table Library 382

For computing the maximum of the rightmost term in this inequality, for g ∈ G \Z(G), we need
not determine the G-conjugacy of class representatives in M. Of course we pay the price that the result
may be larger than the leftmost term. However, if the maximal sum is in fact taken only over a single
class representative, we are sure that equality holds. Thus we return a list of length two, containing
the maximum of the right hand side of the above inequality and a Boolean value indicating whether
this is equal to max{µ(g,G/M);g ∈ G\Z(G)} or just an upper bound.

The arguments for UpperBoundFixedPointRatios are the group G, a list maxesclasses such
that the i-th entry is a list of conjugacy classes of Mi, which covers all classes of prime element order
in Mi, and either true or false, where true means that the exact value of σ(G,s) is computed, not
just an upper bound; this can be much more expensive because of the conjugacy tests in G that may
be necessary. (We try to reduce the number of conjugacy tests in this case, the second half of the code
is not completely straightforward. The special treatment of conjugacy checks for elements with the
same sets of fixed points is essential in the computation of σ ′(G,s) for G = PGL(6,4); the critical
input line is ApproxPForOuterClassesInGL(6, 4), see Section 11.5.7. Currently the standard
GAP conjugacy test for an element of order three and its inverse in G\G′ requires hours of CPU time,
whereas the check for existence of a conjugating element in the stabilizer of the common set of fixed
points of the two elements is almost free of charge.)

UpperBoundFixedPointRatios can be used to compute σ ′(G,s) in the case that G is an auto-
morphic extension of a simple group S, with [G : S] = p a prime; if M′(G,s) = {M1,M2, . . . ,Mn} then
the i-th entry of maxesclasses must contain only the classes of element order p in Mi \ (Mi∩S).

Example
gap> BindGlobal("UpperBoundFixedPointRatios",
> function(G, maxesclasses, truetest)
> local myIsConjugate, invs, info, c, r, o, inv, pos, sums, max, maxpos,
> maxlen, reps, split, i, found, j;
>
> myIsConjugate:= function(G, x, y)
> local movx, movy;
>
> movx:= MovedPoints(x);
> movy:= MovedPoints(y);
> if movx = movy then
> G:= Stabilizer(G, movx, OnSets);
> fi;
> return IsConjugate(G, x, y);
> end;
>
> invs:= [];
> info:= [];
>
> # First distribute the classes according to invariants.
> for c in Concatenation(maxesclasses) do
> r:= Representative(c);
> o:= Order(r);
> # Take only prime order representatives.
> if IsPrimeInt(o) then
> inv:= [o, Size(Centralizer(G, r))];
> # Omit classes that are central in ‘G’.
> if inv[2] <> Size(G) then
> if IsPerm(r) then

Computations with the GAP Character Table Library 383

> Add(inv, NrMovedPoints(r));
> fi;
> pos:= First([1 .. Length(invs)], i -> inv = invs[i]);
> if pos = fail then
> # This class is not ‘G’-conjugate to any of the previous ones.
> Add(invs, inv);
> Add(info, [[r, Size(c) * inv[2]]]);
> else
> # This class may be conjugate to an earlier one.
> Add(info[pos], [r, Size(c) * inv[2]]);
> fi;
> fi;
> fi;
> od;
>
> if info = [] then
> return [0, true];
> fi;
>
> repeat
> # Compute the contributions of the classes with the same invariants.
> sums:= List(info, x -> Sum(List(x, y -> y[2])));
> max:= Maximum(sums);
> maxpos:= Filtered([1 .. Length(info)], i -> sums[i] = max);
> maxlen:= List(maxpos, i -> Length(info[i]));
>
> # Split the sets with the same invariants if necessary
> # and if we want to compute the exact value.
> if truetest and not 1 in maxlen then
> # Make one conjugacy test.
> pos:= Position(maxlen, Minimum(maxlen));
> reps:= info[maxpos[pos]];
> if myIsConjugate(G, reps[1][1], reps[2][1]) then
> # Fuse the two classes.
> reps[1][2]:= reps[1][2] + reps[2][2];
> reps[2]:= reps[Length(reps)];
> Unbind(reps[Length(reps)]);
> else
> # Split the list. This may require additional conjugacy tests.
> Unbind(info[maxpos[pos]]);
> split:= [reps[1], reps[2]];
> for i in [3 .. Length(reps)] do
> found:= false;
> for j in split do
> if myIsConjugate(G, reps[i][1], j[1]) then
> j[2]:= reps[i][2] + j[2];
> found:= true;
> break;
> fi;
> od;
> if not found then
> Add(split, reps[i]);

Computations with the GAP Character Table Library 384

> fi;
> od;
>
> info:= Compacted(Concatenation(info,
> List(split, x -> [x])));
> fi;
> fi;
> until 1 in maxlen or not truetest;
>
> return [max / Size(G), 1 in maxlen];
> end);

Suppose that C1,C2,C3 are conjugacy classes in G, and that we have to prove, for each (x1,x2,x3)∈
C1×C2×C3, the existence of an element s in a prescribed class C of G such that 〈x1,s〉 = 〈x2,s〉 =
〈x2,s〉= G holds.

We have to check only representatives under the conjugation action of G on C1×C2×C3. For
each representative, we try a prescribed number of random elements in C. If this is successful then we
are done. The following two functions implement this idea.

For a group G and a list [g1,g2, . . . ,gn] of elements in G,
OrbitRepresentativesProductOfClasses returns a list R(G,g1,g2, . . . ,gn) of representatives of
G-orbits on the Cartesian product gG

1 ×gG
2 ×·· ·×gG

n .
The idea behind this function is to choose R(G,g1) = {(g1)} in the case n = 1, and, for n > 1,

R(G,g1,g2, . . . ,gn) = {(h1,h2, . . . ,hn) | (h1,h2, . . . ,hn−1)∈ R(G,g1,g2, . . . ,gn−1),hn = gd
n , for d ∈D},

where D is a set of representatives of double cosets CG(gn)\G/∩n−1
i=1 CG(hi).

Example
gap> BindGlobal("OrbitRepresentativesProductOfClasses",
> function(G, classreps)
> local cents, n, orbreps;
>
> cents:= List(classreps, x -> Centralizer(G, x));
> n:= Length(classreps);
>
> orbreps:= function(reps, intersect, pos)
> if pos > n then
> return [reps];
> fi;
> return Concatenation(List(
> DoubleCosetRepsAndSizes(G, cents[pos], intersect),
> r -> orbreps(Concatenation(reps, [classreps[pos]^r[1]]),
> Intersection(intersect, cents[pos]^r[1]), pos+1)));
> end;
>
> return orbreps([classreps[1]], cents[1], 2);
> end);

The function RandomCheckUniformSpread takes a transitive permutation group G, a list of class
representatives gi ∈G, an element s ∈G, and a positive integer N. The return value is true if for each
representative of G-orbits on the product of the classes gG

i , a good conjugate of s is found in at most
N random tests.

Computations with the GAP Character Table Library 385

Example
gap> BindGlobal("RandomCheckUniformSpread", function(G, classreps, s, try)
> local elms, found, i, conj;
>
> if not IsTransitive(G, MovedPoints(G)) then
> Error("<G> must be transitive on its moved points");
> fi;
>
> # Compute orbit representatives of G on the direct product,
> # and try to find a good conjugate of s for each representative.
> for elms in OrbitRepresentativesProductOfClasses(G, classreps) do
> found:= false;
> for i in [1 .. try] do
> conj:= s^Random(G);
> if ForAll(elms,
> x -> IsGeneratorsOfTransPermGroup(G, [x, conj])) then
> found:= true;
> break;
> fi;
> od;
> if not found then
> return elms;
> fi;
> od;
>
> return true;
> end);

Of course this approach is not suitable for disproving the existence of s, but it is much cheaper
than an exhaustive search in the class C. (Typically, |C| is large whereas the |Ci| are small.)

The following function can be used to verify that a given n-tuple (x1,x2, . . . ,xn) of elements in a
group G has the property that for all elements g ∈ G, at least one xi satisfies 〈xi,g〉. The arguments
are a transitive permutation group G, a list of class representatives in G, and the n-tuple in question.
The return value is a conjugate g of the given representatives that has the property if such an element
exists, and fail otherwise.

Example
gap> BindGlobal("CommonGeneratorWithGivenElements",
> function(G, classreps, tuple)
> local inter, rep, repcen, pair;
>
> if not IsTransitive(G, MovedPoints(G)) then
> Error("<G> must be transitive on its moved points");
> fi;
>
> inter:= Intersection(List(tuple, x -> Centralizer(G, x)));
> for rep in classreps do
> repcen:= Centralizer(G, rep);
> for pair in DoubleCosetRepsAndSizes(G, repcen, inter) do
> if ForAll(tuple,
> x -> IsGeneratorsOfTransPermGroup(G, [x, rep^pair[1]])) then
> return rep;

Computations with the GAP Character Table Library 386

> fi;
> od;
> od;
>
> return fail;
> end);

11.4 Character-Theoretic Computations

In this section, we apply the functions introduced in Section 11.3.2 to the character tables of simple
groups that are available in the GAP Character Table Library.

Our first examples are the sporadic simple groups, in Section 11.4.1, then their automorphism
groups are considered in Section 11.4.2.

Then we consider those other simple groups for which GAP provides enough information for
automatically computing an upper bound on σ(G,s) –see Section 11.4.3– and their automorphic ex-
tensions –see Section 11.4.4.

After that, individual groups are considered.

11.4.1 Sporadic Simple Groups

The GAP Character Table Library contains the tables of maximal subgroups of all sporadic simple
groups except B and M, so all primitive permutation characters can be computed via the function
PrimitivePermutationCharacters for 24 of the 26 sporadic simple groups.

Example
gap> sporinfo:= [];;
gap> spornames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);;
gap> for tbl in List(spornames, CharacterTable) do
> info:= ProbGenInfoSimple(tbl);
> if info <> fail then
> Add(sporinfo, info);
> fi;
> od;

We show the result as a formatted table.
Example

gap> PrintFormattedArray(sporinfo);
Co1 421/1545600 3671 ["35A"] [4]
Co2 1/270 269 ["23A"] [1]
Co3 64/6325 98 ["21A"] [4]
F3+ 1/269631216855 269631216854 ["29A"] [1]

Fi22 43/585 13 ["16A"] [7]
Fi23 2651/2416635 911 ["23A"] [2]

HN 4/34375 8593 ["19A"] [1]
HS 64/1155 18 ["15A"] [2]
He 3/595 198 ["14C"] [3]
J1 1/77 76 ["19A"] [1]
J2 5/28 5 ["10C"] [3]
J3 2/153 76 ["19A"] [2]

Computations with the GAP Character Table Library 387

J4 1/1647124116 1647124115 ["29A"] [1]
Ly 1/35049375 35049374 ["37A"] [1]

M11 1/3 2 ["11A"] [1]
M12 1/3 2 ["10A"] [3]
M22 1/21 20 ["11A"] [1]
M23 1/8064 8063 ["23A"] [1]
M24 108/1265 11 ["21A"] [2]
McL 317/22275 70 ["15A", "30A"] [3, 3]
ON 10/30723 3072 ["31A"] [2]
Ru 1/2880 2879 ["29A"] [1]

Suz 141/5720 40 ["14A"] [3]
Th 2/267995 133997 ["27A", "27B"] [2, 2]

We see that in all these cases, σ(G)< 1/2 and thus P(G)≥ 2, and all sporadic simple groups G
except G = M11 and G = M12 satisfy σ(G) < 1/3. See 11.5.9 and 11.5.10 for a proof that also these
two groups have uniform spread at least three.

The structures and multiplicities of the maximal subgroups containing s are as follows.
Example

gap> for entry in sporinfo do
> DisplayProbGenMaxesInfo(CharacterTable(entry[1]), entry[4]);
> od;
Co1, 35A: (A5xJ2):2 (1)

(A6xU3(3)):2 (2)
(A7xL2(7)):2 (1)

Co2, 23A: M23 (1)
Co3, 21A: U3(5).3.2 (2)

L3(4).D12 (1)
s3xpsl(2,8).3 (1)

F3+, 29A: 29:14 (1)
Fi22, 16A: 2^10:m22 (1)

(2x2^(1+8)):U4(2):2 (1)
2F4(2)’ (4)
2^(5+8):(S3xA6) (1)

Fi23, 23A: 2..11.m23 (1)
L2(23) (1)

HN, 19A: U3(8).3_1 (1)
HS, 15A: A8.2 (1)

5:4xa5 (1)
He, 14C: 2^1+6.psl(3,2) (1)

7^2:2psl(2,7) (1)
7^(1+2):(S3x3) (1)

J1, 19A: 19:6 (1)
J2, 10C: 2^1+4b:a5 (1)

a5xd10 (1)
5^2:D12 (1)

J3, 19A: L2(19) (1)
J3M3 (1)

J4, 29A: frob (1)
Ly, 37A: 37:18 (1)
M11, 11A: L2(11) (1)
M12, 10A: A6.2^2 (1)

M12M4 (1)

Computations with the GAP Character Table Library 388

2xS5 (1)
M22, 11A: L2(11) (1)
M23, 23A: 23:11 (1)
M24, 21A: L3(4).3.2_2 (1)

2^6:(psl(3,2)xs3) (1)
McL, 15A: 3^(1+4):2S5 (1)

2.A8 (1)
5^(1+2):3:8 (1)

McL, 30A: 3^(1+4):2S5 (1)
2.A8 (1)
5^(1+2):3:8 (1)

ON, 31A: L2(31) (1)
ONM8 (1)

Ru, 29A: L2(29) (1)
Suz, 14A: J2.2 (2)

(a4xpsl(3,4)):2 (1)
Th, 27A: ThN3B (1)

ThM7 (1)
Th, 27B: ThN3B (1)

ThM7 (1)

For the remaining two sporadic simple groups, B and M, we choose suitable elements s. If G = B
and s ∈ G is of order 47 then, by [Wil99], M(G,s) = {47 : 23}.

Example
gap> SigmaFromMaxes(CharacterTable("B"), "47A",
> [CharacterTable("47:23")], [1]);
1/174702778623598780219392000000

If G = M and s ∈ G is of order 59 then, by [HW04], M(G,s) = {L2(59)}. In this case, the
permutation character is not uniquely determined by the character tables, but all possibilities lead to
the same value for σ(G).

Example
gap> t:= CharacterTable("M");;
gap> s:= CharacterTable("L2(59)");;
gap> pi:= PossiblePermutationCharacters(s, t);;
gap> Length(pi);
5
gap> spos:= Position(OrdersClassRepresentatives(t), 59);
152
gap> Set(pi, x -> Maximum(ApproxP([x], spos)));
[1/3385007637938037777290625]

Essentially the same approach is taken in [GM01]. However, there s is restricted to classes of
prime order. Thus the results in the above table are better for J2, HS, M24, McL, He, Suz, Co3, Fi22,
Ly, T h, Co1, and J4. Besides that, the value 10999 claimed in [GM01] for S (HN) is not correct.

11.4.2 Automorphism Groups of Sporadic Simple Groups

Next we consider the automorphism groups of the sporadic simple groups. There are exactly 12
cases where nontrivial outer automorphisms exist, and then the simple group S has index 2 in its
automorphism group G.

Computations with the GAP Character Table Library 389

Example
gap> sporautnames:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false,
> OfThose, AutomorphismGroup);;
gap> sporautnames:= Difference(sporautnames, spornames);
["F3+.2", "Fi22.2", "HN.2", "HS.2", "He.2", "J2.2", "J3.2", "M12.2",

"M22.2", "McL.2", "ON.2", "Suz.2"]

First we compute the values σ ′(G,s), for the same s ∈ S that were chosen for the simple group S
in Section 11.4.1.

For six of the groups G in question, the character tables of all maximal subgroups are avail-
able in the GAP Character Table Library. In these cases, the values σ ′(G,s) can be computed using
ProbGenInfoAlmostSimple.

(The above statement can meanwhile be replaced by the statement that the character tables of all
maximal subgroups are available for all twelve groups. We show the table results for all these groups
but keep the individual computations from the original computations.)

Example
gap> sporautinfo:= [];;
gap> fails:= [];;
gap> for name in sporautnames do
> tbl:= CharacterTable(name{ [1 .. Position(name, ’.’) - 1] });
> tblG:= CharacterTable(name);
> info:= ProbGenInfoSimple(tbl);
> info:= ProbGenInfoAlmostSimple(tbl, tblG,
> List(info[4], x -> Position(AtlasClassNames(tbl), x)));
> if info = fail then
> Add(fails, name);
> else
> Add(sporautinfo, info);
> fi;
> od;
gap> PrintFormattedArray(sporautinfo);

F3+.2 0 ["29AB"] [1]
Fi22.2 251/3861 ["16AB"] [7]

HN.2 1/6875 ["19AB"] [1]
HS.2 36/275 ["15A"] [2]
He.2 37/9520 ["14CD"] [3]
J2.2 1/15 ["10CD"] [3]
J3.2 1/1080 ["19AB"] [1]

M12.2 4/99 ["10A"] [1]
M22.2 1/21 ["11AB"] [1]
McL.2 1/63 ["15AB", "30AB"] [3, 3]
ON.2 1/84672 ["31AB"] [1]

Suz.2 661/46332 ["14A"] [3]

Note that for S = McL, the bound σ ′(G,s) for G = S.2 (in the second column) is worse than the
bound for the simple group S.

The structures and multiplicities of the maximal subgroups containing s are as follows.
Example

gap> for entry in sporautinfo do
> DisplayProbGenMaxesInfo(CharacterTable(entry[1]), entry[3]);

Computations with the GAP Character Table Library 390

> od;
F3+.2, 29AB: F3+ (1)

frob (1)
Fi22.2, 16AB: Fi22 (1)

Fi22.2M4 (1)
(2x2^(1+8)):(U4(2):2x2) (1)
2F4(2)’.2 (4)
2^(5+8):(S3xS6) (1)

HN.2, 19AB: HN (1)
U3(8).6 (1)

HS.2, 15A: HS (1)
S8x2 (1)
5:4xS5 (1)

He.2, 14CD: He (1)
2^(1+6)_+.L3(2).2 (1)
7^2:2.L2(7).2 (1)
7^(1+2):(S3x6) (1)

J2.2, 10CD: J2 (1)
2^(1+4).S5 (1)
(A5xD10).2 (1)
5^2:(4xS3) (1)

J3.2, 19AB: J3 (1)
19:18 (1)

M12.2, 10A: M12 (1)
(2^2xA5):2 (1)

M22.2, 11AB: M22 (1)
L2(11).2 (1)

McL.2, 15AB: McL (1)
3^(1+4):4S5 (1)
Isoclinic(2.A8.2) (1)
5^(1+2):(24:2) (1)

McL.2, 30AB: McL (1)
3^(1+4):4S5 (1)
Isoclinic(2.A8.2) (1)
5^(1+2):(24:2) (1)

ON.2, 31AB: ON (1)
31:30 (1)

Suz.2, 14A: Suz (1)
J2.2x2 (2)
(A4xL3(4):2_3):2 (1)

Note that the maximal subgroups L2(19) of J3 do not extend to J3.2 and that a class of maximal
subgroups of the type 19 : 18 appears in J3.2 whose intersection with J3 is not maximal in J3. Similarly,
the maximal subgroups A6.22 of M12 do not extend to M12.2.

For the other six groups, we use individual computations.
In the case S = Fi′24, the unique maximal subgroup 29 : 14 that contains an element s of order 29

extends to a group of the type 29 : 28 in Fi24, which is a nonsplit extension of 29 : 14.
Example

gap> SigmaFromMaxes(CharacterTable("Fi24’.2"), "29AB",
> [CharacterTable("29:28")], [1], "outer");
0

Computations with the GAP Character Table Library 391

In the case S = Fi22, there are four classes of maximal subgroups that contain s of order 16. They
extend to G = Fi22.2, and none of the novelties in G (i. e., subgroups of G that are maximal in G but
whose intersections with S are not maximal in S) contains s, cf. [CCN+85, p. 163].

Example
gap> 16 in OrdersClassRepresentatives(CharacterTable("U4(2).2"));
false
gap> 16 in OrdersClassRepresentatives(CharacterTable("G2(3).2"));
false

The character tables of three of the four extensions are available in the GAP Character Table Li-
brary. The permutation character on the cosets of the fourth extension can be obtained as the extension
of the permutation character of S on the cosets of its maximal subgroup of the type 25+8 : (S3×A6).

Example
gap> t2:= CharacterTable("Fi22.2");;
gap> prim:= List(["Fi22.2M4", "(2x2^(1+8)):(U4(2):2x2)", "2F4(2)"],
> n -> PossiblePermutationCharacters(CharacterTable(n), t2));;
gap> t:= CharacterTable("Fi22");;
gap> pi:= PossiblePermutationCharacters(
> CharacterTable("2^(5+8):(S3xA6)"), t);
[Character(CharacterTable("Fi22"),

[3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133,
37, 69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13,
5, 1, 0, 0, 0, 8, 4, 0, 0, 9, 3, 15, 3, 1, 1, 1, 1, 3, 3, 1, 0,
0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2])]

gap> torso:= CompositionMaps(pi[1], InverseMap(GetFusionMap(t, t2)));
[3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133, 37,

69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13, 5, 1,
0, 0, 0, 8, 4, 0, 9, 3, 15, 3, 1, 1, 1, 3, 3, 1, 0, 0, 2, 1, 0, 0,
0, 0, 0, 0, 1, 1, 2]

gap> ext:= PermChars(t2, rec(torso:= torso));;
gap> Add(prim, ext);
gap> prim:= Concatenation(prim);; Length(prim);
4
gap> spos:= Position(OrdersClassRepresentatives(t2), 16);;
gap> List(prim, x -> x[spos]);
[1, 1, 4, 1]
gap> sigma:= ApproxP(prim, spos);;
gap> Maximum(sigma{ Difference(PositionsProperty(
> OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
251/3861

In the case S = HN, the unique maximal subgroup U3(8).3 that contains the fixed element s of
order 19 extends to a group of the type U3(8).6 in HN.2.

Example
gap> SigmaFromMaxes(CharacterTable("HN.2"), "19AB",
> [CharacterTable("U3(8).6")], [1], "outer");
1/6875

In the case S = HS, there are two classes of maximal subgroups that contain s of order 15. They
extend to G = HS.2, and none of the novelties in G contains s (cf. [CCN+85, p. 80]).

Computations with the GAP Character Table Library 392

Example
gap> SigmaFromMaxes(CharacterTable("HS.2"), "15A",
> [CharacterTable("S8x2"),
> CharacterTable("5:4") * CharacterTable("A5.2")], [1, 1],
> "outer");
36/275

In the case S = He, there are three classes of maximal subgroups that contain s in the class 14C.
They extend to G = He.2, and none of the novelties in G contains s (cf. [CCN+85, p. 104]). We
compute the extensions of the corresponding primitive permutation characters of S.

Example
gap> t:= CharacterTable("He");;
gap> t2:= CharacterTable("He.2");;
gap> prim:= PrimitivePermutationCharacters(t);;
gap> spos:= Position(AtlasClassNames(t), "14C");;
gap> prim:= Filtered(prim, x -> x[spos] <> 0);;
gap> map:= InverseMap(GetFusionMap(t, t2));;
gap> torso:= List(prim, pi -> CompositionMaps(pi, map));
[[187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0, 0,

1, 0, 1, 0, 0, 0, 0, 0, 0],
[244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0],
[652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0, 0,

0, 1, 0, 0, 1, 1, 2, 0]]
gap> ext:= List(torso, x -> PermChars(t2, rec(torso:= x)));
[[Character(CharacterTable("He.2"),

[187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 315, 15, 0, 0, 3, 7, 7, 3, 0,
0, 0, 1, 1, 0, 1, 1, 0, 0, 0])],

[Character(CharacterTable("He.2"),
[244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0,

0, 0, 1, 0, 0, 0, 0, 0, 0, 360, 0, 0, 0, 6, 0, 0, 0, 0, 0,
3, 2, 2, 0, 0, 0, 0, 0, 0])],

[Character(CharacterTable("He.2"),
[652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0,

0, 0, 1, 0, 0, 1, 1, 2, 0, 480, 0, 120, 0, 12, 0, 0, 0, 0,
0, 4, 0, 0, 0, 0, 0, 0, 1, 1])]]

gap> spos:= Position(AtlasClassNames(t2), "14CD");;
gap> sigma:= ApproxP(Concatenation(ext), spos);;
gap> Maximum(sigma{ Difference(PositionsProperty(
> OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
37/9520

In the case S = O′N, the two classes of maximal subgroups of the type L2(31) do not extend to
G = O′N.2, and a class of novelties of the structure 31 : 30 appears (see [CCN+85, p. 132]).

Example
gap> SigmaFromMaxes(CharacterTable("ON.2"), "31AB",
> [CharacterTable("P:Q", [31, 30])], [1], "outer");
1/84672

Computations with the GAP Character Table Library 393

Now we consider also σ(G, ŝ), for suitable ŝ ∈G\S; this yields lower bounds for the spread of the
nonsimple groups G. (These results are shown in the last two columns of [BGK08, Table 9].)

As above, we use the known character tables of the maximal subgroups in order to compute the
optimal choice for ŝ ∈ G\S. (We may use the function ProbGenInfoSimple although the groups are
not simple; all we need is that the relevant maximal subgroups are self-normalizing.)

Example
gap> sporautinfo2:= [];;
gap> for name in List(sporautinfo, x -> x[1]) do
> Add(sporautinfo2, ProbGenInfoSimple(CharacterTable(name)));
> od;
gap> PrintFormattedArray(sporautinfo2);

F3+.2 19/5684 299 ["42E"] [10]
Fi22.2 1165/20592 17 ["24G"] [3]

HN.2 1/1425 1424 ["24B"] [4]
HS.2 21/550 26 ["20C"] [4]
He.2 33/4165 126 ["24A"] [2]
J2.2 1/15 14 ["14A"] [1]
J3.2 77/10260 133 ["34A"] [1]

M12.2 113/495 4 ["12B"] [3]
M22.2 8/33 4 ["10A"] [4]
McL.2 1/135 134 ["22A"] [1]
ON.2 61/109368 1792 ["22A", "38A"] [1, 1]

Suz.2 1/351 350 ["28A"] [1]
gap> for entry in sporautinfo2 do
> DisplayProbGenMaxesInfo(CharacterTable(entry[1]), entry[4]);
> od;
F3+.2, 42E: 2^12.M24 (2)

2^2.U6(2):S3x2 (1)
2^(3+12).(L3(2)xS6) (2)
(S3xS3xG2(3)):2 (1)
S6xL2(8):3 (1)
7:6xS7 (1)
7^(1+2)_+:(6xS3).2 (2)

Fi22.2, 24G: Fi22.2M4 (1)
2^(5+8):(S3xS6) (1)
3^5:(2xU4(2).2) (1)

HN.2, 24B: 2^(1+8)_+.(A5xA5).2^2 (1)
5^2.5.5^2.4S5 (2)
HN.2M13 (1)

HS.2, 20C: (2xA6.2^2).2 (1)
HS.2N5 (2)
5:4xS5 (1)

He.2, 24A: 2^(1+6)_+.L3(2).2 (1)
S4xL3(2).2 (1)

J2.2, 14A: L3(2).2x2 (1)
J3.2, 34A: L2(17)x2 (1)
M12.2, 12B: L2(11).2 (1)

2^3.(S4x2) (1)
3^(1+2):D8 (1)

M22.2, 10A: M22.2M4 (1)
A6.2^2 (1)
L2(11).2 (2)

Computations with the GAP Character Table Library 394

McL.2, 22A: 2xM11 (1)
ON.2, 22A: J1x2 (1)
ON.2, 38A: J1x2 (1)
Suz.2, 28A: (A4xL3(4):2_3):2 (1)

In the other six cases, we do not have the complete lists of primitive permutation characters, so we
choose a suitable element ŝ for each group. It is sufficient to prescribe |ŝ|, as follows.

Example
gap> sporautchoices:= [
> ["Fi22", "Fi22.2", 42],
> ["Fi24’", "Fi24’.2", 46],
> ["He", "He.2", 42],
> ["HN", "HN.2", 44],
> ["HS", "HS.2", 30],
> ["ON", "ON.2", 38],];;

First we list the maximal subgroups of the corresponding simple groups that contain the square of
ŝ.

Example
gap> for triple in sporautchoices do
> tbl:= CharacterTable(triple[1]);
> tbl2:= CharacterTable(triple[2]);
> spos2:= PowerMap(tbl2, 2,
> Position(OrdersClassRepresentatives(tbl2), triple[3]));
> spos:= Position(GetFusionMap(tbl, tbl2), spos2);
> DisplayProbGenMaxesInfo(tbl, AtlasClassNames(tbl){ [spos] });
> od;
Fi22, 21A: O8+(2).3.2 (1)

S3xU4(3).2_2 (1)
A10.2 (1)
A10.2 (1)

F3+, 23A: Fi23 (1)
F3+M7 (1)

He, 21B: 3.A7.2 (1)
7^(1+2):(S3x3) (1)
7:3xpsl(3,2) (2)

HN, 22A: 2.HS.2 (1)
HS, 15A: A8.2 (1)

5:4xa5 (1)
ON, 19B: L3(7).2 (1)

ONM2 (1)
J1 (1)

According to [CCN+85], exactly the following maximal subgroups of the simple group S in the
above list do not extend to Aut(S): The two S10 type subgroups of Fi22 and the two L3(7).2 type
subgroups of O′N.

Furthermore, the following maximal subgroups of Aut(S) with the property that the intersection
with S is not maximal in S have to be considered whether they contain s′: G2(3).2 and 35 : (2×U4(2).2)
in Fi22.2. (Note that the order of the 71+2

+ : (3×D16) type subgroup in O′N.2 is obviously not divisible
by 19.)

Computations with the GAP Character Table Library 395

Example
gap> 42 in OrdersClassRepresentatives(CharacterTable("G2(3).2"));
false
gap> Size(CharacterTable("U4(2)")) mod 7 = 0;
false

So we take the extensions of the above maximal subgroups, as described in [CCN+85].
Example

gap> SigmaFromMaxes(CharacterTable("Fi22.2"), "42A",
> [CharacterTable("O8+(2).3.2") * CharacterTable("Cyclic", 2),
> CharacterTable("S3") * CharacterTable("U4(3).(2^2)_{122}")],
> [1, 1]);
163/1170
gap> SigmaFromMaxes(CharacterTable("Fi24’.2"), "46A",
> [CharacterTable("Fi23") * CharacterTable("Cyclic", 2),
> CharacterTable("2^12.M24")],
> [1, 1]);
566/5481
gap> SigmaFromMaxes(CharacterTable("He.2"), "42A",
> [CharacterTable("3.A7.2") * CharacterTable("Cyclic", 2),
> CharacterTable("7^(1+2):(S3x6)"),
> CharacterTable("7:6") * CharacterTable("L3(2)")],
> [1, 1, 1]);
1/119
gap> SigmaFromMaxes(CharacterTable("HN.2"), "44A",
> [CharacterTable("4.HS.2")],
> [1]);
997/192375
gap> SigmaFromMaxes(CharacterTable("HS.2"), "30A",
> [CharacterTable("S8") * CharacterTable("C2"),
> CharacterTable("5:4") * CharacterTable("S5")],
> [1, 1]);
36/275
gap> SigmaFromMaxes(CharacterTable("ON.2"), "38A",
> [CharacterTable("J1") * CharacterTable("C2")],
> [1]);
61/109368

11.4.3 Other Simple Groups – Easy Cases

We are interested in simple groups G for which ProbGenInfoSimple does not guarantee S (G) ≥
3. So we examine the remaining tables of simple groups in the GAP Character Table Library, and
distinguish the following three cases: Either ProbGenInfoSimple yields the lower bound at least
three, or a smaller bound, or the computation of a lower bound fails because not enough information
is available to compute the primitive permutation characters.

Example
gap> names:= AllCharacterTableNames(IsSimple, true, IsAbelian, false,
> IsDuplicateTable, false);;
gap> names:= Difference(names, spornames);;
gap> fails:= [];;
gap> lessthan3:= [];;

Computations with the GAP Character Table Library 396

gap> atleast3:= [];;
gap> for name in names do
> tbl:= CharacterTable(name);
> info:= ProbGenInfoSimple(tbl);
> if info = fail then
> Add(fails, name);
> elif info[3] < 3 then
> Add(lessthan3, info);
> else
> Add(atleast3, info);
> fi;
> od;

For the following simple groups, (currently) not enough information is available in the GAP Char-
acter Table Library and in the GAP Library of Tables of Marks, for computing a lower bound for σ(G).
Some of these groups will be dealt with in later sections, and for the other groups, the bounds derived
with theoretical arguments in [BGK08] are sufficient, so we need no GAP computations for them.

Example
gap> fails;
["2E6(2)", "2F4(8)", "3D4(3)", "3D4(4)", "A14", "A15", "A16", "A17",

"A18", "A19", "E6(2)", "L4(4)", "L4(5)", "L4(9)", "L5(3)", "L8(2)",
"O10+(2)", "O10+(3)", "O10-(2)", "O10-(3)", "O12+(2)", "O12+(3)",
"O12-(2)", "O12-(3)", "O7(5)", "O8+(7)", "O8-(3)", "O9(3)",
"R(27)", "S10(2)", "S12(2)", "S4(7)", "S4(8)", "S4(9)", "S6(4)",
"S6(5)", "S8(3)", "U4(4)", "U4(5)", "U5(3)", "U5(4)", "U6(4)",
"U7(2)"]

The following simple groups appear in [BGK08, Table 1–6]. More detailed computations can be
found in the sections 11.5.2, 11.5.3, 11.5.4, 11.5.12, 11.5.13, 11.5.20, 11.5.23, 11.5.24.

Example
gap> PrintFormattedArray(lessthan3);

A5 1/3 2 ["5A"] [1]
A6 2/3 1 ["5A"] [2]
A7 2/5 2 ["7A"] [2]

O7(3) 199/351 1 ["14A"] [3]
O8+(2) 334/315 0 ["15A", "15B", "15C"] [7, 7, 7]
O8+(3) 863/1820 2 ["20A", "20B", "20C"] [8, 8, 8]
S6(2) 4/7 1 ["9A"] [4]
S8(2) 8/15 1 ["17A"] [3]
U4(2) 21/40 1 ["12A"] [2]
U4(3) 53/135 2 ["7A"] [7]

For the following simple groups G, the inequality σ(G)< 1/3 follows from the loop above. The
columns show the name of G, the values σ(G) and S (G), the class names of s for which these values
are attained, and |M(G,s)|.

(We increase the line length for this table. Even with this width, the entry for the group L7(2)
would not fit on one screen line, we show it separately below.)

Example
gap> oldsize:= SizeScreen();;
gap> SizeScreen([80]);;

Computations with the GAP Character Table Library 397

gap> PrintFormattedArray(Filtered(atleast3, l -> l[1] <> "L7(2)"));
2F4(2)’ 118/1755 14 ["16A"] [2]
3D4(2) 1/5292 5291 ["13A"] [1]

A10 3/10 3 ["21A"] [1]
A11 2/105 52 ["11A"] [2]
A12 2/9 4 ["35A"] [1]
A13 4/1155 288 ["13A"] [5]
A8 3/14 4 ["15A"] [1]
A9 9/35 3 ["9A", "9B"] [4, 4]

F4(2) 9/595 66 ["13A"] [5]
G2(3) 1/7 6 ["13A"] [3]
G2(4) 1/21 20 ["13A"] [2]
G2(5) 1/31 30 ["7A", "21A"] [10, 1]

L2(101) 1/101 100 ["51A", "17A"] [1, 1]
L2(103) 53/5253 99 ["52A", "26A", "13A"] [1, 1, 1]
L2(107) 55/5671 103 ["54A", "27A", "18A", "9A", "6A"] [1, 1, 1, 1, 1]
L2(109) 1/109 108 ["55A", "11A"] [1, 1]
L2(11) 7/55 7 ["6A"] [1]

L2(113) 1/113 112 ["57A", "19A"] [1, 1]
L2(121) 1/121 120 ["61A"] [1]
L2(125) 1/125 124 ["63A", "21A", "9A", "7A"] [1, 1, 1, 1]
L2(13) 1/13 12 ["7A"] [1]
L2(16) 1/15 14 ["17A"] [1]
L2(17) 1/17 16 ["9A"] [1]
L2(19) 11/171 15 ["10A"] [1]
L2(23) 13/253 19 ["6A", "12A"] [1, 1]
L2(25) 1/25 24 ["13A"] [1]
L2(27) 5/117 23 ["7A", "14A"] [1, 1]
L2(29) 1/29 28 ["15A"] [1]
L2(31) 17/465 27 ["8A", "16A"] [1, 1]
L2(32) 1/31 30 ["3A", "11A", "33A"] [1, 1, 1]
L2(37) 1/37 36 ["19A"] [1]
L2(41) 1/41 40 ["21A", "7A"] [1, 1]
L2(43) 23/903 39 ["22A", "11A"] [1, 1]
L2(47) 25/1081 43 ["24A", "12A", "8A", "6A"] [1, 1, 1, 1]
L2(49) 1/49 48 ["25A"] [1]
L2(53) 1/53 52 ["27A", "9A"] [1, 1]
L2(59) 31/1711 55 ["30A", "15A", "10A", "6A"] [1, 1, 1, 1]
L2(61) 1/61 60 ["31A"] [1]
L2(64) 1/63 62 ["65A", "13A"] [1, 1]
L2(67) 35/2211 63 ["34A", "17A"] [1, 1]
L2(71) 37/2485 67 ["36A", "18A", "12A", "9A", "6A"] [1, 1, 1, 1, 1]
L2(73) 1/73 72 ["37A"] [1]
L2(79) 41/3081 75 ["40A", "20A", "10A", "8A"] [1, 1, 1, 1]
L2(8) 1/7 6 ["3A", "9A"] [1, 1]

L2(81) 1/81 80 ["41A"] [1]
L2(83) 43/3403 79 ["42A", "21A", "14A", "7A", "6A"] [1, 1, 1, 1, 1]
L2(89) 1/89 88 ["45A", "15A", "9A"] [1, 1, 1]
L2(97) 1/97 96 ["49A", "7A"] [1, 1]
L3(11) 1/6655 6654 ["19A", "133A"] [1, 1]
L3(2) 1/4 3 ["7A"] [1]
L3(3) 1/24 23 ["13A"] [1]

Computations with the GAP Character Table Library 398

L3(4) 1/5 4 ["7A"] [3]
L3(5) 1/250 249 ["31A"] [1]
L3(7) 1/1372 1371 ["19A"] [1]
L3(8) 1/1792 1791 ["73A"] [1]
L3(9) 1/2880 2879 ["91A"] [1]
L4(3) 53/1053 19 ["20A"] [1]
L5(2) 1/5376 5375 ["31A"] [1]
L6(2) 365/55552 152 ["21A", "63A"] [2, 2]

O8-(2) 1/63 62 ["17A"] [1]
S4(4) 4/15 3 ["17A"] [2]
S4(5) 1/5 4 ["13A"] [1]
S6(3) 1/117 116 ["14A"] [2]

Sz(32) 1/1271 1270 ["5A", "25A"] [1, 1]
Sz(8) 1/91 90 ["5A"] [1]

U3(11) 1/6655 6654 ["37A"] [1]
U3(3) 16/63 3 ["6A", "12A"] [2, 2]
U3(4) 1/160 159 ["13A"] [1]
U3(5) 46/525 11 ["10A"] [2]
U3(7) 1/1372 1371 ["43A"] [1]
U3(8) 1/1792 1791 ["19A"] [1]
U3(9) 1/3600 3599 ["73A"] [1]
U5(2) 1/54 53 ["11A"] [1]
U6(2) 5/21 4 ["11A"] [4]

gap> SizeScreen(oldsize);;
gap> First(atleast3, l -> l[1] = "L7(2)");
["L7(2)", 1/4388290560, 4388290559, ["127A"], [1]]

It should be mentioned that [BW75] states the following lower bounds for the uniform spread of
the groups L2(q).

q−2 if 4≤ q is even,
q−1 if 11≤ q≡ 1 (mod 4),
q−4 if 11≤ q≡−1 (mod 4).

These bounds appear in the third column of the above table. Furthermore, [BW75] states that the
(uniform) spread of alternating groups of even degree at least 8 is exactly 4.

For the sake of completeness, Table II gives an overview of the sets M(G,s) for those cases in the
above list that are needed in [BGK08] but that do not require a further discussion here. The structure
of the maximal subgroups and the order of s in the table refer to the matrix groups not to the simple
groups. The number of the subgroups has been shown above, the structure follows from [CCN+85].

G M(G,s) |s| see [CCN+85]
SL(3,4) = 3.L3(4) 3×L3(2),3×L3(2),3×L3(2) 21 p. 23
Ω−(8,2) = O−8 (2) Ω−(4,4).2 = L2(16).2 17 p. 89
Sp(4,4) = S4(4) Ω−(4,4).2 = L2(16).2,Sp(2,16).2 = L2(16).2 17 p. 44
Sp(6,3) = 2.S6(3) (4×U3(3)).2,Sp(2,17).3 = 2.L2(27).3 28 p. 113
SU(3,3) =U3(3) 31+2

+ : 8,GU(2,3) = 4.S4 6 p. 14
SU(3,5) = 3.U3(5) 3×51+2

+ : 8,GU(2,5) = 3×2S5 30 p. 34
SU(5,2) =U5(2) L2(11) 11 p. 73

Table: Table II: Maximal subgroups/>

Computations with the GAP Character Table Library 399

11.4.4 Automorphism Groups of other Simple Groups – Easy Cases

We deal with automorphic extensions of those simple groups that are listed in Table I and that have
been treated successfully in Section 11.4.3.

For the following groups, ProbGenInfoAlmostSimple can be used because GAP can compute
their primitive permutation characters.

Example
gap> list:= [
> ["A5", "A5.2"],
> ["A6", "A6.2_1"],
> ["A6", "A6.2_2"],
> ["A6", "A6.2_3"],
> ["A7", "A7.2"],
> ["A8", "A8.2"],
> ["A9", "A9.2"],
> ["A11", "A11.2"],
> ["L3(2)", "L3(2).2"],
> ["L3(3)", "L3(3).2"],
> ["L3(4)", "L3(4).2_1"],
> ["L3(4)", "L3(4).2_2"],
> ["L3(4)", "L3(4).2_3"],
> ["L3(4)", "L3(4).3"],
> ["S4(4)", "S4(4).2"],
> ["U3(3)", "U3(3).2"],
> ["U3(5)", "U3(5).2"],
> ["U3(5)", "U3(5).3"],
> ["U4(2)", "U4(2).2"],
> ["U4(3)", "U4(3).2_1"],
> ["U4(3)", "U4(3).2_3"],
>];;
gap> autinfo:= [];;
gap> fails:= [];;
gap> for pair in list do
> tbl:= CharacterTable(pair[1]);
> tblG:= CharacterTable(pair[2]);
> info:= ProbGenInfoSimple(tbl);
> spos:= List(info[4], x -> Position(AtlasClassNames(tbl), x));
> Add(autinfo, ProbGenInfoAlmostSimple(tbl, tblG, spos));
> od;
gap> PrintFormattedArray(autinfo);

A5.2 0 ["5AB"] [1]
A6.2_1 2/3 ["5AB"] [2]
A6.2_2 1/6 ["5A"] [1]
A6.2_3 0 ["5AB"] [1]

A7.2 1/15 ["7AB"] [1]
A8.2 13/28 ["15AB"] [1]
A9.2 1/4 ["9AB"] [1]

A11.2 1/945 ["11AB"] [1]
L3(2).2 1/4 ["7AB"] [1]
L3(3).2 1/18 ["13AB"] [1]

L3(4).2_1 3/10 ["7AB"] [3]
L3(4).2_2 11/60 ["7A"] [1]
L3(4).2_3 1/12 ["7AB"] [1]

Computations with the GAP Character Table Library 400

L3(4).3 1/64 ["7A"] [1]
S4(4).2 0 ["17AB"] [2]
U3(3).2 2/7 ["6A", "12AB"] [2, 2]
U3(5).2 2/21 ["10A"] [2]
U3(5).3 46/525 ["10A"] [2]
U4(2).2 16/45 ["12AB"] [2]

U4(3).2_1 76/135 ["7A"] [3]
U4(3).2_3 31/162 ["7AB"] [3]

We see that from this list, the two groups A6.21 = S6 and U4(3).21 require further computations
(see Sections 11.5.3 and 11.5.24, respectively) because the bound in the second column is larger than
1/2.

Also U4(2) is not done by the above, because in [BGK08, Table 4], an element s of order 9 is
chosen for the simple group, see Section 11.5.23.

Finally, we deal with automorphic extensions of the groups L4(3), O−8 (2), S6(3), and U5(2).
For S = L4(3) and s ∈ S of order 20, we have M(S,s) = {(4×A6) : 2}, the subgroup has index

2106, see [CCN+85, p. 69].
Example

gap> t:= CharacterTable("L4(3)");;
gap> prim:= PrimitivePermutationCharacters(t);;
gap> spos:= Position(AtlasClassNames(t), "20A");;
gap> prim:= Filtered(prim, x -> x[spos] <> 0);
[Character(CharacterTable("L4(3)"),

[2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 1, 1])]

For the three automorphic extensions of the structure G = S.2, we compute the extensions of the
permutation character, and the bounds σ ′(G,s).

Example
gap> for name in ["L4(3).2_1", "L4(3).2_2", "L4(3).2_3"] do
> t2:= CharacterTable(name);
> map:= InverseMap(GetFusionMap(t, t2));
> torso:= List(prim, pi -> CompositionMaps(pi, map));
> ext:= Concatenation(List(torso,
> x -> PermChars(t2, rec(torso:= x))));
> sigma:= ApproxP(ext, Position(OrdersClassRepresentatives(t2), 20));
> max:= Maximum(sigma{ Difference(PositionsProperty(
> OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
> Print(name, ":\n", ext, "\n", max, "\n");
> od;
L4(3).2_1:
[Character(CharacterTable("L4(3).2_1"),

[2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 4, 0, 0, 6, 6, 6, 6, 2, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1])]

0
L4(3).2_2:
[Character(CharacterTable("L4(3).2_2"),

[2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0,

Computations with the GAP Character Table Library 401

0, 1, 1, 1, 0, 0, 0, 1, 306, 306, 42, 6, 10, 10, 0, 0, 15, 15,
3, 3, 3, 3, 0, 0, 1, 1, 0, 1, 1, 0, 0])]

17/117
L4(3).2_3:
[Character(CharacterTable("L4(3).2_3"),

[2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0,
0, 0, 1, 36, 0, 0, 6, 6, 2, 2, 2, 1, 1, 0, 0, 0])]

2/117

For S = O−8 (2) and s ∈ S of order 17, we have M(S,s) = {L2(16).2}, the subgroup extends to
L2(16).4 in S.2, see [CCN+85, p. 89]. This is a non-split extension, so σ ′(S.2,s) = 0 holds.

Example
gap> SigmaFromMaxes(CharacterTable("O8-(2).2"), "17AB",
> [CharacterTable("L2(16).4")], [1], "outer");
0

For S = S6(3) and s ∈ S irreducible of order 14, we have M(S,s) = {(2×U3(3)).2,L2(27).3}. In
G = S.2, the subgroups extend to (4×U3(3)).2 and L2(27).6, respectively, see [CCN+85, p. 113]. In
order to show that σ ′(G,s) = 7/3240 holds, we compute the primitive permutation characters of S
(cf. Section 11.4.3) and the unique extensions to G of those which are nonzero on s.

Example
gap> t:= CharacterTable("S6(3)");;
gap> t2:= CharacterTable("S6(3).2");;
gap> prim:= PrimitivePermutationCharacters(t);;
gap> spos:= Position(AtlasClassNames(t), "14A");;
gap> prim:= Filtered(prim, x -> x[spos] <> 0);;
gap> map:= InverseMap(GetFusionMap(t, t2));;
gap> torso:= List(prim, pi -> CompositionMaps(pi, map));;
gap> ext:= List(torso, pi -> PermChars(t2, rec(torso:= pi)));
[[Character(CharacterTable("S6(3).2"),

[155520, 0, 288, 0, 0, 0, 216, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 144, 288, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
0])],

[Character(CharacterTable("S6(3).2"),
[189540, 1620, 568, 0, 486, 0, 0, 27, 540, 84, 24, 0, 0, 0, 0,

0, 54, 0, 0, 10, 0, 7, 1, 6, 6, 0, 0, 0, 0, 0, 0, 18, 0, 0,
0, 6, 12, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 234, 64,
30, 8, 0, 3, 90, 6, 0, 4, 10, 6, 0, 2, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0])]]

gap> spos:= Position(AtlasClassNames(t2), "14A");;
gap> sigma:= ApproxP(Concatenation(ext), spos);;
gap> Maximum(sigma{ Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
7/3240

For S=U5(2) and s∈ S of order 11, we have M(S,s)= {L2(11)}, the subgroup extends to L2(11).2
in S.2, see [CCN+85, p. 73].

Computations with the GAP Character Table Library 402

Example
gap> SigmaFromMaxes(CharacterTable("U5(2).2"), "11AB",
> [CharacterTable("L2(11).2")], [1], "outer");
1/288

Here we clean the workspace for the first time. This may save more than 100 megabytes, due to
the fact that the caches for tables of marks and character tables are flushed.

Example
gap> CleanWorkspace();

11.4.5 O−8 (3)

We show that S = O−8 (3) = Ω−(8,3) satisfies the following.

(a) For s ∈ S of order 41, M(S,s) consists of one group of the type L2(81).21 = Ω−(4,9).2.

(b) σ(S,s) = 1/567.

The only maximal subgroups of S containing elements of order 41 have the type L2(81).21, and
there is one class of these subgroups, see [CCN+85, p. 141].

Example
gap> SigmaFromMaxes(CharacterTable("O8-(3)"), "41A",
> [CharacterTable("L2(81).2_1")], [1]);
1/567

11.4.6 O+
10(2)

We show that S = O+
10(2) = Ω+(10,2) satisfies the following.

(a) Fords ∈ S of order 45, M(S,s) consists of one group of the type (A5×U4(2)).2 = (Ω−(4,2)×
Ω−(6,2)).2.

(b) σ(S,s) = 43/4216.

(c) For s as in (a), the maximal subgroup in (a) extends to S5×U4(2).2 in G = Aut(S) = S.2, and
σ ′(G,s) = 23/248.

The only maximal subgroups of S containing elements of order 45 are one class of groups H =
(A5×U4(2)) : 2, see [CCN+85, p. 146]. (Note that none of the groups S8(2), O+

8 (2), L5(2), O−8 (2),
and A8 contains elements of order 45.) H extends to subgroups of the type H.2 = S5×U4(2) : 2 in G,
so we can compute 1S

H = (1G
H.2)S.

Example
gap> ForAny(["S8(2)", "O8+(2)", "L5(2)", "O8-(2)", "A8"],
> x -> 45 in OrdersClassRepresentatives(CharacterTable(x)));
false
gap> t:= CharacterTable("O10+(2)");;
gap> t2:= CharacterTable("O10+(2).2");;
gap> s2:= CharacterTable("A5.2") * CharacterTable("U4(2).2");
CharacterTable("A5.2xU4(2).2")

Computations with the GAP Character Table Library 403

gap> pi:= PossiblePermutationCharacters(s2, t2);;
gap> spos:= Position(OrdersClassRepresentatives(t2), 45);;
gap> approx:= ApproxP(pi, spos);;
gap> Maximum(approx{ ClassPositionsOfDerivedSubgroup(t2) });
43/4216

Statement (c) follows from considering the outer classes of prime element order.
Example

gap> Maximum(approx{ Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
23/248

Alternatively, we can use SigmaFromMaxes.
Example

gap> SigmaFromMaxes(t2, "45AB", [s2], [1], "outer");
23/248

11.4.7 O−10(2)

We show that S = O−10(2) = Ω−(10,2) satisfies the following.

(a) For s ∈ S of order 33, M(S,s) consists of one group of the type 3×U5(2) = GU(5,2).

(b) σ(S,s) = 1/119.

(c) For s as in (a), the maximal subgroup in (a) extends to (3×U5(2)).2 in G, and σ ′(G,s) = 1/595.

The only maximal subgroups of S containing elements of order 11 have the types A12 and 3×
U5(2), see [CCN+85, p. 147]. So 3×U5(2) is the unique class of subgroups containing elements of
order 33. This shows statement (a), and statement (b) follows using SigmaFromMaxes.

Example
gap> SigmaFromMaxes(CharacterTable("O10-(2)"), "33A",
> [CharacterTable("Cyclic", 3) * CharacterTable("U5(2)")], [1]);
1/119

The structure of the maximal subgroup of G follows from [CCN+85, p. 147]. We create its char-
acter table with a generic construction that is based on the fact that the outer automorphism acts
nontrivially on the two direct factors; this determines the character table uniquely. (See [Brec] for
details.)

Example
gap> tblG:= CharacterTable("U5(2)");;
gap> tblMG:= CharacterTable("Cyclic", 3) * tblG;;
gap> tblGA:= CharacterTable("U5(2).2");;
gap> acts:= PossibleActionsForTypeMGA(tblMG, tblG, tblGA);;
gap> poss:= Concatenation(List(acts, pi ->
> PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, pi,
> "(3xU5(2)).2")));
[rec(

Computations with the GAP Character Table Library 404

MGfusMGA := [1, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12,
13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21,
22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 31, 32, 33, 35, 34, 37, 36, 38, 39, 40, 41,
42, 43, 45, 44, 47, 46, 49, 48, 51, 50, 52, 54, 53, 56, 55,
57, 58, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 69, 71, 70,
73, 72, 75, 74, 77, 76],

table := CharacterTable("(3xU5(2)).2"))]

Now statement (c) follows using SigmaFromMaxes.
Example

gap> SigmaFromMaxes(CharacterTable("O10-(2).2"), "33AB",
> [poss[1].table], [1], "outer");
1/595

11.4.8 O+
12(2)

We show that S = O+
12(2) = Ω+(12,2) satisfies the following.

(a) For s ∈ S of the type 4− ⊥ 8− (i. e., s decomposes the natural 12-dimensional module
for GO+

12(2) = S.2 into an orthogonal sum of two irreducible modules of the dimensions
4 and 8, respectively) and of order 85, M(S,s) consists of one group of the type G8 =
(Ω−(4,2)×Ω−(8,2)).2 and two groups of the type L4(4).22 = Ω+(6,4).22 that are conjugate
in G = Aut(S) = S.2 = SO+(12,2) but not conjugate in S.

(b) σ(S,s) = 7675/1031184.

(c) σ ′(G,s) = 73/1008.

The element s is a ppd(12,2;8)-element in the sense of [GPPS99], so the maximal subgroups of
S that contain s are among the nine cases (2.1)–(2.9) listed in this paper; in the notation of this paper,
we have q = 2, d = 12, e = 8, and r = 17. Case (2.1) does not occur for orthogonal groups and
q = 2, according to [KL90]; case (2.2) contributes a unique maximal subgroup, the stabilizer G8 of the
orthogonal decomposition; the cases (2.3), (2.4) (a), (2.5), and (2.6) (a) do not occur because r 6=e+1
in our situation; case (2.4) (b) describes extension field type subgroups that are contained in ΓL(6,4),
which yields the candidates GU(6,2).2 ∼= 3.U6(2).S3 –but 3.U6(2).3 does not contain elements of
order 85– and Ω+(6,4).22 ∼= L4(4).22 (two classes by [KL90, Prop. 4.3.14]); the cases (2.6) (b)–(c)
and (2.8) do not occur because they require d≤ 8; case (2.7) does not occur because [GPPS99, Table 5]
contains no entry for r = 2e+ 1 = 17; finally, case (2.9) does not occur because it requires e ∈ {d−
1,d} in the case r = 2e+1.

So we need the permutation characters of the actions on the cosets of L4(4).22 (two classes) and
G8. According to [KL90, Prop. 4.1.6], G8 has the structure (Ω−(4,2)×Ω−(8,2)).2.

Newer versions of the GAP Character Table Library contain the character table of S, but it is still
easier to work with the table of G, which was already available at the times when the first version of
these examples was created.

Computations with the GAP Character Table Library 405

The two classes of L4(4).22 type subgroups in S are fused in G. This can be seen from the fact that
inducing the trivial character of a subgroup H1 = L4(4).22 of S to G yields a character ψ whose values
are not all even; note that if H1 would extend in G to a subgroup of twice the size of H1 then ψ would
be induced from a degree two character of this subgroup whose values are all even, and induction
preserves this property.

Example
gap> t:= CharacterTable("O12+(2).2");;
gap> h1:= CharacterTable("L4(4).2^2");;
gap> psi:= PossiblePermutationCharacters(h1, t);;
gap> Length(psi);
1
gap> ForAny(psi[1], IsOddInt);
true

The fixed element s of order 85 is contained in a member of each of the two conjugacy classes of
the type L4(4).22 in S, since S contains only one class of subgroups of the order 85; note that the order
of the Sylow 17 centralizer (in both S and G) is not divisible by 25.

Example
gap> SizesCentralizers(t){ PositionsProperty(
> OrdersClassRepresentatives(t), x -> x = 17) } / 25;
[408/5, 408/5]

This implies that the restriction of ψ to S is the sum ψS = π1 +π2, say, of the first two interesting
permutation characters of S.

The subgroup G8 of S extends to a group of the structure H2 = Ω−(4,2).2×Ω−(8,2).2 in G,
inducing the trivial characters of H2 to G yields a permutation character ϕ of G whose restriction to S
is the third permutation character ϕS = π3, say.

Example
gap> h2:= CharacterTable("S5") * CharacterTable("O8-(2).2");;
gap> phi:= PossiblePermutationCharacters(h2, t);;
gap> Length(phi);
1

We have π1(1) = π2(1) and π1(s) = π2(s), the latter again because S contains only one class of
subgroups of order 85.

Now statement (a) follows from the fact that πi(s) = 1 holds for 1≤ i≤ 3.
Example

gap> prim:= Concatenation(psi, phi);;
gap> spos:= Position(OrdersClassRepresentatives(t), 85);
213
gap> List(prim, x -> x[spos]);
[2, 1]

For statement (b), we compute σ(S,s). Note that we have to consider only classes inside S = G′,
and that

σ(g,s) =
3

∑
i=1

πi(s) ·πi(g)
πi(1)

=
ψ(s) ·ψ(g)

ψ(1)
+

ϕ(s) ·ϕ(g)
ϕ(1)

holds for g ∈ S×, so the characters ψ and ϕ are sufficient.

Computations with the GAP Character Table Library 406

Example
gap> approx:= ApproxP(prim, spos);;
gap> Maximum(approx{ ClassPositionsOfDerivedSubgroup(t) });
7675/1031184

Statement (c) follows from considering the outer involution classes. Note that by [BGK08, Remark
after Proposition 5.14], only the subgroup H2 need to be considered, no novelties appear.

Example
gap> Maximum(approx{ Difference(
> PositionsProperty(OrdersClassRepresentatives(t), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t)) });
73/1008

11.4.9 O−12(2)

We show that S = O−12(2) = Ω−(12,2) satisfies the following.

(a) For s∈ S irreducible of order 26+1 = 65, M(S,s) consists of two groups of the types U4(4).2 =
Ω−(6,4).2 and L2(64).3 = Ω−(4,8).3, respectively.

(b) σ(S,s) = 1/1023.

(c) σ ′(Aut(S),s) = 1/347820.

By [Ber00], M(S,s) consists of extension field subgroups, which have the structures U4(4).2 and
L2(64).3, respectively, and by [KL90, Prop. 4.3.16], there is just one class of each of these types.

Newer versions of the GAP Character Table Library contain the character table of S, but using
this table for the computations is not easier than using the table of G = Aut(S) = O−12(2).2, which was
already available at the times when the first version of these examples was created. So we compute
the permutation characters π1,π2 of the extensions of the groups in M(S,s) to G –these maximal
subgroups have the structures U4(4).4 and L2(64).6, respectively– and compute the fixed point ratios
of the restrictions to S.

Example
gap> t:= CharacterTable("O12-(2).2");;
gap> s1:= CharacterTable("U4(4).4");;
gap> pi1:= PossiblePermutationCharacters(s1, t);;
gap> s2:= CharacterTable("L2(64).6");;
gap> pi2:= PossiblePermutationCharacters(s2, t);;
gap> prim:= Concatenation(pi1, pi2);; Length(prim);
2

Now statement (a) follows from the fact that π1(s) = π2(s) = 1 holds.
Example

gap> spos:= Position(OrdersClassRepresentatives(t), 65);;
gap> List(prim, x -> x[spos]);
[1, 1]

For statement (b), we compute σ(S,s); note that we have to consider only classes inside S = G′.

Computations with the GAP Character Table Library 407

Example
gap> approx:= ApproxP(prim, spos);;
gap> Maximum(approx{ ClassPositionsOfDerivedSubgroup(t) });
1/1023

Statement (c) follows from the values on the outer involution classes.
Example

gap> Maximum(approx{ Difference(
> PositionsProperty(OrdersClassRepresentatives(t), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t)) });
1/347820

11.4.10 S6(4)

We show that S = S6(4) = Sp(6,4) satisfies the following.

(a) For s ∈ S irreducible of order 65, M(S,s) consists of two groups of the types U4(4).2 =
Ω−(6,4).2 and L2(64).3 = Sp(2,64).3, respectively.

(b) σ(S,s) = 16/63.

(c) σ ′(Aut(S),s) = 0.

By [Ber00], the element s is contained in maximal subgroups of the given types, and by [KL90,
Prop. 4.3.10, 4.8.6], there is exactly one class of these subgroups.

The character tables of these two subgroups are currently not contained in the GAP Character
Table Library. We compute the permutation character induced from the first subgroup as the unique
character of the right degree that is combinatorially possible (cf. [BP98]).

Example
gap> t:= CharacterTable("S6(4)");;
gap> degree:= Size(t) / (2 * Size(CharacterTable("U4(4)")));;
gap> pi1:= PermChars(t, rec(torso:= [degree]));;
gap> Length(pi1);
1

The index of the second subgroup is too large for this simpleminded approach; therefore, we first
restrict the set of possible irreducible constituents of the permutation character to those of 1G

H , where
H is the derived subgroup of L2(64).3, for which the character table is available.

Example
gap> CharacterTable("L2(64).3"); CharacterTable("U4(4).2");
fail
fail
gap> s:= CharacterTable("L2(64)");;
gap> subpi:= PossiblePermutationCharacters(s, t);;
gap> Length(subpi);
1
gap> scp:= MatScalarProducts(t, Irr(t), subpi);;
gap> nonzero:= PositionsProperty(scp[1], x -> x <> 0);
[1, 11, 13, 14, 17, 18, 32, 33, 56, 58, 59, 73, 74, 77, 78, 79, 80,

Computations with the GAP Character Table Library 408

93, 95, 96, 103, 116, 117, 119, 120]
gap> const:= RationalizedMat(Irr(t){ nonzero });;
gap> degree:= Size(t) / (3 * Size(s));
5222400
gap> pi2:= PermChars(t, rec(torso:= [degree], chars:= const));;
gap> Length(pi2);
1
gap> prim:= Concatenation(pi1, pi2);;

Now statement (a) follows from the fact that π1(s) = π2(s) = 1 holds.
Example

gap> spos:= Position(OrdersClassRepresentatives(t), 65);;
gap> List(prim, x -> x[spos]);
[1, 1]

For statement (b), we compute σ(G,s).
Example

gap> Maximum(ApproxP(prim, spos));
16/63

In order to prove statement (c), we have to consider only the extensions of the above permutation
characters of S to Aut(S)∼= S.2 (cf. [BGK08, Section 2.2]).

Example
gap> t2:= CharacterTable("S6(4).2");;
gap> tfust2:= GetFusionMap(t, t2);;
gap> cand:= List(prim, x -> CompositionMaps(x, InverseMap(tfust2)));;
gap> ext:= List(cand, pi -> PermChars(t2, rec(torso:= pi)));
[[Character(CharacterTable("S6(4).2"),

[2016, 512, 96, 128, 32, 120, 0, 6, 16, 40, 24, 0, 8, 136, 1,
6, 6, 1, 32, 0, 8, 6, 2, 0, 2, 0, 0, 4, 0, 16, 32, 1, 8, 2,
6, 2, 1, 2, 4, 0, 0, 1, 6, 0, 1, 10, 0, 1, 1, 0, 10, 10, 4,
0, 1, 0, 2, 0, 2, 1, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 0, 32, 0, 0, 8, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 8, 0,
0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 0])],

[Character(CharacterTable("S6(4).2"),
[5222400, 0, 0, 0, 1280, 0, 960, 120, 0, 0, 0, 0, 0, 0, 1600,

0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 15, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 960, 0, 0, 0, 16, 0, 24, 12, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 0, 0])]]

gap> spos2:= Position(OrdersClassRepresentatives(t2), 65);;
gap> sigma:= ApproxP(Concatenation(ext), spos2);;
gap> Maximum(approx{ Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
0

For the simple group, we can alternatively consider a reducible element s : 2⊥ 4 of order 85, which
is a multiple of the primitive prime divisor r = 17 of 44−1. So we have e = 4, d = 6, and q = 4, in the

Computations with the GAP Character Table Library 409

terminology of [GPPS99]. Then M(S,s) consists of two groups, of the types Ω+(6,4).2 ∼= L4(4).22
and Sp(2,4)×Sp(4,4). This can be shown by checking [GPPS99, Ex. 2.1–2.9]. Ex. 2.1 yields the
candidates Ω±(6,4).2, but only Ω+(6,4).2 contains elements of order 85. Ex. 2.2 yields the stabilizer
of a two-dimensional subspace, which has the structure Sp(2,4)× Sp(4,4), by [KL90]. All other
cases except Ex. 2.4 (b) are excluded by the fact that r = 4e+ 1, and Ex. 2.4 (b) does not apply
because d/gcd(d,e) is odd.

Example
gap> SigmaFromMaxes(CharacterTable("S6(4)"), "85A",
> [CharacterTable("L4(4).2_2"),
> CharacterTable("A5") * CharacterTable("S4(4)")], [1, 1]);
142/455

This bound is not as good as the one obtained from the irreducible element of order 65 used above.
Example

gap> 16/63 < 142/455;
true

11.4.11 ∗ S6(5)

We show that S = S6(5) = PSp(6,5) satisfies the following.

(a) For s ∈ S of the type 2 ⊥ 4 (i. e., the preimage of s in Sp(6,5) = 2.G decomposes the natural
6-dimensional module for Sp(6,5) into an orthogonal sum of two irreducible modules of the
dimensions 2 and 4, respectively) and of order 78, M(S,s) consists of one group of the type
G2 = 2.(PSp(2,5)×PSp(4,5)).

(b) σ(S,s) = 9/217.

The order of s is a multiple of the primitive prime divisor r = 13 of 54−1, so we have e = 4, d = 6,
and q = 5, in the terminology of [GPPS99]. We check [GPPS99, Ex. 2.1–2.9]. Ex. 2.1 does not apply
because the classes C5 and C8 are empty by [KL90, Table 3.5.C], Ex. 2.2 yields exactly the stabilizer
G2 of a 2-dimensional subspace, Ex. 2.4 (b) does not apply because d/gcd(d,e) is odd, and all other
cases are excluded by the fact that r = 3e+1.

The group G2 has the structure 2.(PSp(2,5)×PSp(4,5)), which is a central product of Sp(2,5)∼=
2.A5 and Sp(4,5) = 2.S4(5) (see [KL90, Prop. 4.1.3]). The character table of G2 can be derived from
that of the direct product of 2.A5 and 2.S4(5), by factoring out the diagonal central subgroup of order
two.

Example
gap> t:= CharacterTable("S6(5)");;
gap> s1:= CharacterTable("2.A5");;
gap> s2:= CharacterTable("2.S4(5)");;
gap> dp:= s1 * s2;
CharacterTable("2.A5x2.S4(5)")
gap> c:= Difference(ClassPositionsOfCentre(dp), Union(
> GetFusionMap(s1, dp), GetFusionMap(s2, dp)));
[62]
gap> s:= dp / c;
CharacterTable("2.A5x2.S4(5)/[1, 62]")

Computations with the GAP Character Table Library 410

Now we compute σ(S,s).
Example

gap> SigmaFromMaxes(t, "78A", [s], [1]);
9/217

11.4.12 S8(3)

We show that S = S8(3) = PSp(8,3) satisfies the following.

(a) For s ∈ S irreducible of order 41, M(S,s) consists of one group M of the type S4(9).2 =
PSp(4,9).2.

(b) σ(S,s) = 1/546.

(c) The preimage of s in the matrix group 2.S8(3) = Sp(8,3) can be chosen of order 82, and the
preimage of M is 2.S4(9).2 = Sp(4,9).2.

By [Ber00], the only maximal subgroups of S that contain irreducible elements of order (34 +
1)/2 = 41 are of extension field type, and by [KL90, Prop. 4.3.10], these groups have the structure
S4(9).2 and there is exactly one class of these groups.

The group U = S4(9) has three nontrivial outer automorphisms, the character table of the subgroup
U.2 in question has the identifier "S4(9).2_1", which follows from the fact that the extensions of U
by the other two outer automorphisms do not admit a class fusion into S.

Example
gap> t:= CharacterTable("S8(3)");;
gap> pi:= List(["S4(9).2_1", "S4(9).2_2", "S4(9).2_3"],
> name -> PossiblePermutationCharacters(
> CharacterTable(name), t));;
gap> List(pi, Length);
[1, 0, 0]

Now statement (a) follows from the fact that (1U.2)
S(s) = 1 holds.

Example
gap> spos:= Position(OrdersClassRepresentatives(t), 41);;
gap> pi[1][1][spos];
1

Now we compute σ(S,s) in order to show statement (b).
Example

gap> Maximum(ApproxP(pi[1], spos));
1/546

Statement (c) is clear from the description of extension field type subgroups in [KL90].

Computations with the GAP Character Table Library 411

11.4.13 U4(4)

We show that S =U4(4) = SU(4,4) satisfies the following.

(a) For s ∈ S of the type 1 ⊥ 3 (i. e., s decomposes the natural 4-dimensional module for SU(4,4)
into an orthogonal sum of two irreducible modules of the dimensions 1 and 3, respectively) and
of order 43 +1 = 65, M(S,s) consists of one group of the type G1 = 5×U3(4) = GU(3,4).

(b) σ(S,s) = 209/3264.

By [MSW94], the only maximal subgroups of S that contain s are one class of stabilizers H ∼=
5×U3(4) of this decomposition, and clearly there is only one such group containing s.

Note that H has index 3264 in S, since S has two orbits on the 1-dimensional subspaces, of lengths
1105 and 3264, respectively, and elements of order 13 = 65/5 lie in the stabilizers of points in the
latter orbit.

Example
gap> g:= SU(4,4);;
gap> orbs:= OrbitsDomain(g, NormedRowVectors(GF(16)^4), OnLines);;
gap> orblen:= List(orbs, Length);
[1105, 3264]
gap> List(orblen, x -> x mod 13);
[0, 1]

We compute the permutation character 1S
G1

; there is exactly one combinatorially possible permu-
tation character of degree 3264 (cf. [BP98]).

Example
gap> t:= CharacterTable("U4(4)");;
gap> pi:= PermChars(t, rec(torso:= [orblen[2]]));;
gap> Length(pi);
1

Now we compute σ(S,s).
Example

gap> spos:= Position(OrdersClassRepresentatives(t), 65);;
gap> Maximum(ApproxP(pi, spos));
209/3264

11.4.14 U6(2)

We show that S =U6(2) = PSU(6,2) satisfies the following.

(a) For s ∈ S of order 11, M(S,s) consists of one group of the type U5(2) = SU(5,2) and three
groups of the type M22.

(b) σ(S,s) = 5/21.

(c) The preimage of s in the matrix group SU(6,2) = 3.U6(2) can be chosen of order 33, and
the preimages of the groups in M(S,s) have the structures 3×U5(2) ∼= GU(5,2) and 3.M22,
respectively.

Computations with the GAP Character Table Library 412

(d) With s as in (a), the automorphic extensions S.2, S.3 of S satisfy σ ′(S.2,s) = 5/96 and
σ ′(S.3,s) = 59/224.

According to the list of maximal subgroups of S in [CCN+85, p. 115], s is contained exactly in
maximal subgroups of the types U5(2) (one class) and M22 (three classes).

The permutation character of the action on the cosets of U5(2) type subgroups is uniquely deter-
mined by the character tables. We get three possibilities for the permutation character on the cosets
of M22 type subgroups; they correspond to the three classes of such subgroups, because each of these
classes contains elements in exactly one of the conjugacy classes 4C, 4D, and 4E of elements in S, and
these classes are fused under the outer automorphism of S of order three.

Example
gap> t:= CharacterTable("U6(2)");;
gap> s1:= CharacterTable("U5(2)");;
gap> pi1:= PossiblePermutationCharacters(s1, t);;
gap> Length(pi1);
1
gap> s2:= CharacterTable("M22");;
gap> pi2:= PossiblePermutationCharacters(s2, t);
[Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0]), Character(CharacterTable("U6(2)"),

[20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0])]

gap> imgs:= Set(pi2, x -> Position(x, 48));
[10, 11, 12]
gap> AtlasClassNames(t){ imgs };
["4C", "4D", "4E"]
gap> GetFusionMap(t, CharacterTable("U6(2).3")){ imgs };
[10, 10, 10]
gap> prim:= Concatenation(pi1, pi2);;

Now statement (a) follows from the fact that the permutation characters have the value 1 on s.
Example

gap> spos:= Position(OrdersClassRepresentatives(t), 11);;
gap> List(prim, x -> x[spos]);
[1, 1, 1, 1]

For statement (b), we compute σ(S,s).
Example

gap> Maximum(ApproxP(prim, spos));
5/21

Statement (c) follows from [CCN+85], plus the information that 3.U6(2) does not contain groups
of the structure 3×M22.

Computations with the GAP Character Table Library 413

Example
gap> PossibleClassFusions(
> CharacterTable("Cyclic", 3) * CharacterTable("M22"),
> CharacterTable("3.U6(2)"));
[]

For statement (d), we need that the relevant maximal subgroups of S.2 are U5(2).2 and one sub-
group M22.2, and that the relevant maximal subgroup of S.3 is U5(2)×3, see [CCN+85, p. 115].

Example
gap> SigmaFromMaxes(CharacterTable("U6(2).2"), "11AB",
> [CharacterTable("U5(2).2"), CharacterTable("M22.2")],
> [1, 1], "outer");
5/96
gap> SigmaFromMaxes(CharacterTable("U6(2).3"), "11A",
> [CharacterTable("U5(2)") * CharacterTable("Cyclic", 3)],
> [1], "outer");
59/224

11.5 Computations using Groups

Before we start the computations using groups, we clean the workspace.
Example

gap> CleanWorkspace();

11.5.1 A2m+1, 2≤ m≤ 11

For alternating groups of odd degree n = 2m+1, we choose s to be an n-cycle. The interesting cases
in [BGK08, Proposition 6.7] are 5≤ n≤ 23.

In each case, we compute representatives of the maximal subgroups of An, consider only those
that contain an n-cycle, and then compute the permutation characters. Additionally, we show also the
names that are used for the subgroups in the GAP Library of Transitive Groups, see [Hul05] and the
documentation of this library in the GAP Reference Manual.

Example
gap> PrimitivesInfoForOddDegreeAlternatingGroup:= function(n)
> local G, max, cycle, spos, prim, nonz;
>
> G:= AlternatingGroup(n);
>
> # Compute representatives of the classes of maximal subgroups.
> max:= MaximalSubgroupClassReps(G);
>
> # Omit subgroups that cannot contain an ‘n’-cycle.
> max:= Filtered(max, m -> IsTransitive(m, [1 .. n]));
>
> # Compute the permutation characters.
> cycle:= [];
> cycle[n-1]:= 1;
> spos:= PositionProperty(ConjugacyClasses(CharacterTable(G)),

Computations with the GAP Character Table Library 414

> c -> CycleStructurePerm(Representative(c)) = cycle);
> prim:= List(max, m -> TrivialCharacter(m)^G);
> nonz:= PositionsProperty(prim, x -> x[spos] <> 0);
>
> # Compute the subgroup names and the multiplicities.
> return rec(spos := spos,
> prim := prim{ nonz },
> grps := List(max{ nonz },
> m -> TransitiveGroup(n,
> TransitiveIdentification(m))),
> mult := List(prim{ nonz }, x -> x[spos]));
> end;;

The sets M̃(s) and the values σ(An,s) are as follows. For each degree in question, the first list
shows names for representatives of the conjugacy classes of maximal subgroups containing a fixed
n-cycle, and the second list shows the number of conjugates in each class.

Example
gap> for n in [5, 7 .. 23] do
> prim:= PrimitivesInfoForOddDegreeAlternatingGroup(n);
> bound:= Maximum(ApproxP(prim.prim, prim.spos));
> Print(n, ": ", prim.grps, ", ", prim.mult, ", ", bound, "\n");
> od;
5: [D(5) = 5:2], [1], 1/3
7: [L(7) = L(3,2), L(7) = L(3,2)], [1, 1], 2/5
9: [1/2[S(3)^3]S(3), L(9):3=P|L(2,8)], [1, 3], 9/35
11: [M(11), M(11)], [1, 1], 2/105
13: [F_78(13)=13:6, L(13)=PSL(3,3), L(13)=PSL(3,3)], [1, 2, 2], 4/
1155
15: [1/2[S(3)^5]S(5), 1/2[S(5)^3]S(3), L(15)=A_8(15)=PSL(4,2),

L(15)=A_8(15)=PSL(4,2)], [1, 1, 1, 1], 29/273
17: [L(17):4=PYL(2,16), L(17):4=PYL(2,16)], [1, 1], 2/135135
19: [F_171(19)=19:9], [1], 1/6098892800
21: [t21n150, t21n161, t21n91], [1, 1, 2], 29/285
23: [M(23), M(23)], [1, 1], 2/130945815

In the above output, a subgroup printed as 1/2[S(n1)^n2]S(n2), 1/2[S(n1)^n2]S(n2), where
n = n1n2 holds, denotes the intersection of An with the wreath product Sn1 o Sn2 ≤ Sn. (Note that the
Atlas denotes the subgroup 1/2[S(3)^3]S(3) of A9 as 33 : S4.) The groups printed as P|L(2,8) and
PYL(2,16) denote PΓL(2,8) and PΓL(2,16), respectively. And the three subgroups of A21 have the
structures (S3 oS7)∩A21, (S7 oS3)∩A21, and PGL(3,4), respectively.

Note that A9 contains two conjugacy classes of maximal subgroups of the type PΓL(2,8)∼= L2(8) :
3, and that each 9-cycle in A9 is contained in exactly three conjugate subgroups of this type. For
n ∈ {13,15,17}, An contains two conjugacy classes of isomorphic maximal subgroups of linear type,
and each n-cycle is contained in subgroups from each class. Finally, A21 contains only one class of
maximal subgroups of linear type.

For the two groups A5 and A7, the values computed above are not sufficient. See Section 11.5.2
and 11.5.4 for a further treatment.

The above computations look like a brute-force approach, but note that the computation of the
maximal subgroups of alternating and symmetric groups in GAP uses the classification of these sub-

Computations with the GAP Character Table Library 415

groups, and also the conjugacy classes of elements in alternating and symmetric groups can be com-
puted cheaply.

Alternative (character-theoretic) computations for n ∈ {5,7,9,11,13} were shown in Sec-
tion 11.4.3. (A hand calculation for the case n = 19 can be found in [BW75].)

11.5.2 A5

We show that S = A5 satisfies the following.

(a) σ(S) = 1/3, and this value is attained exactly for σ(S,s) with s of order 5.

(b) For s ∈ S of order 5, M(S,s) consists of one group of the type D10.

(c) P(S) = 1/3, and this value is attained exactly for P(S,s) with s of order 5.

(d) Each element in S together with one of (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) generates a proper
subgroup of S.

(e) Both the spread and the uniform spread of S is exactly two (see [BW75]), with s of order 5.

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.
Example

gap> t:= CharacterTable("A5");;
gap> ProbGenInfoSimple(t);
["A5", 1/3, 2, ["5A"], [1]]

Statement (b) can be read off from the primitive permutation characters, and the fact that the
unique class of maximal subgroups that contain elements of order 5 consists of groups of the structure
D10, see [CCN+85, p. 2].

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 5, 5]
gap> PrimitivePermutationCharacters(t);
[Character(CharacterTable("A5"), [5, 1, 2, 0, 0]),

Character(CharacterTable("A5"), [6, 2, 0, 1, 1]),
Character(CharacterTable("A5"), [10, 2, 1, 0, 0])]

For statement (c), we compute that for all nonidentity elements s ∈ S and involutions g ∈ S,
P(g,s) ≥ 1/3 holds, with equality if and only if s has order 5. We actually compute, for class repre-
sentatives s, the proportion of involutions g such that 〈g,s〉6=S holds.

Example
gap> g:= AlternatingGroup(5);;
gap> inv:= g.1^2 * g.2;
(1,4)(2,5)
gap> cclreps:= List(ConjugacyClasses(g), Representative);;
gap> SortParallel(List(cclreps, Order), cclreps);
gap> List(cclreps, Order);
[1, 2, 3, 5, 5]
gap> Size(ConjugacyClass(g, inv));
15

Computations with the GAP Character Table Library 416

gap> prop:= List(cclreps,
> r -> RatioOfNongenerationTransPermGroup(g, inv, r));
[1, 1, 3/5, 1/3, 1/3]
gap> Minimum(prop);
1/3

Statement (d) follows by explicit computations.
Example

gap> triple:= [(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)];;
gap> CommonGeneratorWithGivenElements(g, cclreps, triple);
fail

As for statement (e), we know from (a) that the uniform spread of S is at least two, and from (d)
that the spread is less than three.

11.5.3 A6

We show that S = A6 satisfies the following.

(a) σ(S) = 2/3, and this value is attained exactly for σ(S,s) with s of order 5.

(b) For s of order 5, M(S,s) consists of two nonconjugate groups of the type A5.

(c) P(S) = 5/9, and this value is attained exactly for P(S,s) with s of order 5.

(d) Each element in S together with one of (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) generates a proper
subgroup of S.

(e) Both the spread and the uniform spread of S is exactly two (see [BW75]), with s of order 4.

(f) For x, y ∈ S×6 , there is s ∈ S6 such that S⊆ 〈x,s〉∩ 〈y,s〉. It is not possible to find s ∈ S with this
property, or s in a prescribed conjugacy class of S6.

(g) σ(PGL(2,9)) = 1/6 and σ(M10) = 1/9, with s of order 10 and 8, respectively.

(Note that in this example, the optimal choice of s for P(S) cannot be used to obtain the result on
the exact spread.)

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.
Example

gap> t:= CharacterTable("A6");;
gap> ProbGenInfoSimple(t);
["A6", 2/3, 1, ["5A"], [2]]

Statement (b) can be read off from the permutation characters, and the fact that the two classes
of maximal subgroups that contain elements of order 5 consist of groups of the structure A5,
see [CCN+85, p. 4].

Computations with the GAP Character Table Library 417

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 3, 4, 5, 5]
gap> prim:= PrimitivePermutationCharacters(t);
[Character(CharacterTable("A6"), [6, 2, 3, 0, 0, 1, 1]),

Character(CharacterTable("A6"), [6, 2, 0, 3, 0, 1, 1]),
Character(CharacterTable("A6"), [10, 2, 1, 1, 2, 0, 0]),
Character(CharacterTable("A6"), [15, 3, 3, 0, 1, 0, 0]),
Character(CharacterTable("A6"), [15, 3, 0, 3, 1, 0, 0])]

For statement (c), we first compute that for all nonidentity elements s ∈ S and involutions g ∈
S, P(g,s) ≥ 5/9 holds, with equality if and only if s has order 5. We actually compute, for class
representatives s, the proportion of involutions g such that 〈g,s〉6=S holds.

Example
gap> S:= AlternatingGroup(6);;
gap> inv:= (S.1*S.2)^2;
(1,3)(2,5)
gap> cclreps:= List(ConjugacyClasses(S), Representative);;
gap> SortParallel(List(cclreps, Order), cclreps);
gap> List(cclreps, Order);
[1, 2, 3, 3, 4, 5, 5]
gap> C:= ConjugacyClass(S, inv);;
gap> Size(C);
45
gap> prop:= List(cclreps,
> r -> RatioOfNongenerationTransPermGroup(S, inv, r));
[1, 1, 1, 1, 29/45, 5/9, 5/9]
gap> Minimum(prop);
5/9

Now statement (c) follows from the fact that for g∈ S of order larger than two, σ(S,g)≤ 1/2< 5/9
holds.

Example
gap> ApproxP(prim, 6);
[0, 2/3, 1/2, 1/2, 0, 1/3, 1/3]

Statement (d) follows by explicit computations.
Example

gap> triple:= [(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)];;
gap> CommonGeneratorWithGivenElements(S, cclreps, triple);
fail

An alternative triple to that in statement (d) is the one given in [BW75].
Example

gap> triple:= [(1,3)(2,4), (1,5)(2,6), (3,6)(4,5)];;
gap> CommonGeneratorWithGivenElements(S, cclreps, triple);
fail

Of course we can also construct such a triple, as follows.

Computations with the GAP Character Table Library 418

Example
gap> TripleWithProperty([[inv], C, C],
> l -> ForAll(S, elm ->
> ForAny(l, x -> not IsGeneratorsOfTransPermGroup(S, [elm, x]))));
[(1,3)(2,5), (1,3)(2,6), (1,3)(2,4)]

For statement (e), we use the random approach described in Section 11.3.3.
Example

gap> s:= (1,2,3,4)(5,6);;
gap> reps:= Filtered(cclreps, x -> Order(x) > 1);;
gap> ResetGlobalRandomNumberGenerators();
gap> for pair in UnorderedTuples(reps, 2) do
> if RandomCheckUniformSpread(S, pair, s, 40) <> true then
> Print("#E nongeneration!\n");
> fi;
> od;

We get no output, so a suitable element of order 4 works in all cases. Note that we cannot use an
element of order 5, because it fixes a point in the natural permutation representation, and we may take
x1 = (1,2,3) and x2 = (4,5,6). With this argument, only elements of order 4 and double 3-cycles are
possible choices for s, and the latter are excluded by the fact that an outer automorphism maps the
class of double s-cycles in A6 to the class of 3-cycles. So no element in A6 of order different from 4
works.

Next we show statement (f). Already in A6.21 = S6, elements s of order 4 do in general not work
because they do not generate with transpositions.

Example
gap> G:= SymmetricGroup(6);;
gap> RatioOfNongenerationTransPermGroup(G, s, (1,2));
1

Also, choosing s from a prescribed conjugacy class of S6 (that is, also s outside A6 is allowed)
with the property that A6 ⊆ 〈x,s〉∩ 〈y,s〉 is not possible. Note that only 6-cycles are possible for s if
x and y are commuting transpositions, and –applying the outer automorphism– no 6-cycle works for
two commuting fixed-point free involutions. (The group is small enough for a brute force test.)

Example
gap> goods:= Filtered(Elements(G),
> s -> IsGeneratorsOfTransPermGroup(G, [s, (1,2)]) and
> IsGeneratorsOfTransPermGroup(G, [s, (3,4)]));;
gap> Collected(List(goods, CycleStructurePerm));
[[[,,,, 1], 24]]
gap> goods:= Filtered(Elements(G),
> s -> IsGeneratorsOfTransPermGroup(G, [s, (1,2)(3,4)(5,6)]) and
> IsGeneratorsOfTransPermGroup(G, [s, (1,3)(2,4)(5,6)]));;
gap> Collected(List(goods, CycleStructurePerm));
[[[1, 1], 24]]

However, for each pair of nonidentity element x, y ∈ S6, there is s ∈ S6 such that 〈x,s〉 and 〈y,s〉
both contain A6. (If s works for the pair (x,y) then sg works for (xg,yg), so it is sufficient to consider

Computations with the GAP Character Table Library 419

only orbit representatives (x,y) under the conjugation action of G on pairs. Thus we check conjugacy
class representatives x and, for fixed x, representatives of orbits of CG(x) on the classes yG, i. e.,
representatives of CG(y)-CG(x)-double cosets in G. Moreover, clearly we can restrict the checks to
elements x, y of prime order.)

Example
gap> Sgens:= GeneratorsOfGroup(S);;
gap> primord:= Filtered(List(ConjugacyClasses(G), Representative),
> x -> IsPrimeInt(Order(x)));;
gap> for x in primord do
> for y in primord do
> for pair in DoubleCosetRepsAndSizes(G, Centralizer(G, y),
> Centralizer(G, x)) do
> if not ForAny(G, s -> IsSubset(Group(x,s), S) and
> IsSubset(Group(y^pair[1], s), S)) then
> Error([x, y]);
> fi;
> od;
> od;
> od;

In other words, the spread of S6 is 2 but the uniform spread of S6 is not 2 but only 1.
We cannot always find s ∈ A6 with the required property: If x is a transposition then any s with

S⊆ 〈x,s〉 must be a 5-cycle.
Example

gap> filt:= Filtered(S, s -> IsSubset(Group((1,2), s), S));;
gap> Collected(List(filt, Order));
[[5, 48]]

Moreover, clearly such s fixes one of the moved points of x, so we may prescribe a transposition
y 6=x that commutes with x, it satisfies S * 〈y,s〉.

For the other two automorphic extensions A6.22 = PGL(2,9) and A6.23 = M10, we compute the
character-theoretic bounds σ(A6.22) = 1/6 and σ(A6.23) = 1/9, which shows statement (g).

Example
gap> ProbGenInfoSimple(CharacterTable("A6.2_2"));
["A6.2_2", 1/6, 5, ["10A"], [1]]
gap> ProbGenInfoSimple(CharacterTable("A6.2_3"));
["A6.2_3", 1/9, 8, ["8C"], [1]]

Note that σ ′(PGL(2,9),s) = 1/6, with s of order 5, and σ ′(M10,s) = 0 for any s ∈ A6 since M10 is
a non-split extension of A6.

Example
gap> t:= CharacterTable("A6");;
gap> t2:= CharacterTable("A6.2_2");;
gap> spos:= PositionsProperty(OrdersClassRepresentatives(t), x -> x = 5);;
gap> ProbGenInfoAlmostSimple(t, t2, spos);
["A6.2_2", 1/6, ["5A", "5B"], [1, 1]]

Computations with the GAP Character Table Library 420

11.5.4 A7

We show that S = A7 satisfies the following.

(a) σ(S) = 2/5, and this value is attained exactly for σ(S,s) with s of order 7.

(b) For s of order 7, M(S,s) consists of two nonconjugate subgroups of the type L2(7).

(c) P(S) = 2/5, and this value is attained exactly for P(S,s) with s of order 7.

(d) The uniform spread of S is exactly three, with s of order 7.

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.
Example

gap> t:= CharacterTable("A7");;
gap> ProbGenInfoSimple(t);
["A7", 2/5, 2, ["7A"], [2]]

Statement (b) can be read off from the permutation characters, and the fact that the two classes
of maximal subgroups that contain elements of order 7 consist of groups of the structure L2(7),
see [CCN+85, p. 10].

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 3, 4, 5, 6, 7, 7]
gap> prim:= PrimitivePermutationCharacters(t);
[Character(CharacterTable("A7"), [7, 3, 4, 1, 1, 2, 0, 0, 0]),

Character(CharacterTable("A7"), [15, 3, 0, 3, 1, 0, 0, 1, 1]),
Character(CharacterTable("A7"), [15, 3, 0, 3, 1, 0, 0, 1, 1]),
Character(CharacterTable("A7"), [21, 5, 6, 0, 1, 1, 2, 0, 0]),
Character(CharacterTable("A7"), [35, 7, 5, 2, 1, 0, 1, 0, 0])

]

For statement (c), we compute that for all nonidentity elements s ∈ S and involutions g ∈ S,
P(g,s) ≥ 2/5 holds, with equality if and only if s has order 7. We actually compute, for class repre-
sentatives s, the proportion of involutions g such that 〈g,s〉6=S holds.

Example
gap> g:= AlternatingGroup(7);;
gap> inv:= (g.1^3*g.2)^3;
(2,6)(3,7)
gap> ccl:= List(ConjugacyClasses(g), Representative);;
gap> SortParallel(List(ccl, Order), ccl);
gap> List(ccl, Order);
[1, 2, 3, 3, 4, 5, 6, 7, 7]
gap> Size(ConjugacyClass(g, inv));
105
gap> prop:= List(ccl, r -> RatioOfNongenerationTransPermGroup(g, inv, r));
[1, 1, 1, 1, 89/105, 17/21, 19/35, 2/5, 2/5]
gap> Minimum(prop);
2/5

Computations with the GAP Character Table Library 421

For statement (d), we use the random approach described in Section 11.3.3. By the character-
theoretic bounds, it suffices to consider triples of elements in the classes 2A or 3B.

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 3, 4, 5, 6, 7, 7]
gap> spos:= Position(OrdersClassRepresentatives(t), 7);;
gap> SizesCentralizers(t);
[2520, 24, 36, 9, 4, 5, 12, 7, 7]
gap> ApproxP(prim, spos);
[0, 2/5, 0, 2/5, 2/15, 0, 0, 2/15, 2/15]
gap> s:= (1,2,3,4,5,6,7);;
gap> 3B:= (1,2,3)(4,5,6);;
gap> C3B:= ConjugacyClass(g, 3B);;
gap> Size(C3B);
280
gap> ResetGlobalRandomNumberGenerators();
gap> for triple in UnorderedTuples([inv, 3B], 3) do
> if RandomCheckUniformSpread(g, triple, s, 80) <> true then
> Print("#E nongeneration!\n");
> fi;
> od;

We get no output, so the uniform spread of S is at least three.
Alternatively, we can use the lemma from Section 11.2.2; this approach is technically more in-

volved but faster. We work with the diagonal product of the two degree 15 representations of S, which
is constructed from the information stored in the GAP Library of Tables of Marks.

Example
gap> tom:= TableOfMarks("A7");;
gap> a7:= UnderlyingGroup(tom);;
gap> tommaxes:= MaximalSubgroupsTom(tom);
[[39, 38, 37, 36, 35], [7, 15, 15, 21, 35]]
gap> index15:= List(tommaxes[1]{ [2, 3] },
> i -> RepresentativeTom(tom, i));
[Group([(1,3)(2,7), (1,5,7)(3,4,6)]),

Group([(1,4)(2,3), (2,4,6)(3,5,7)])]
gap> deg15:= List(index15, s -> RightTransversal(a7, s));;
gap> reps:= List(deg15, l -> Action(a7, l, OnRight));
[Group([(1,5,7)(2,9,10)(3,11,4)(6,12,8)(13,14,15), (1,8,15,5,12)

(2,13,11,3,10)(4,14,9,7,6)]),
Group([(1,2,3)(4,6,5)(7,8,9)(10,12,11)(13,15,14), (1,12,3,13,10)

(2,9,15,4,11)(5,6,14,7,8)])]
gap> g:= DiagonalProductOfPermGroups(reps);;
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 7;
gap> NrMovedPoints(s);
28
gap> mpg:= MovedPoints(g);;
gap> fixs:= Difference(mpg, MovedPoints(s));;
gap> orb_s:= Orbit(g, fixs, OnSets);;
gap> Length(orb_s);

Computations with the GAP Character Table Library 422

120
gap> SizesCentralizers(t);
[2520, 24, 36, 9, 4, 5, 12, 7, 7]
gap> repeat 2a:= Random(g); until Order(2a) = 2;
gap> repeat 3b:= Random(g);
> until Order(3b) = 3 and Size(Centralizer(g, 3b)) = 9;
gap> orb2a:= Orbit(g, Difference(mpg, MovedPoints(2a)), OnSets);;
gap> orb3b:= Orbit(g, Difference(mpg, MovedPoints(3b)), OnSets);;
gap> orb2aor3b:= Union(orb2a, orb3b);;
gap> TripleWithProperty([[orb2a[1], orb3b[1]], orb2aor3b, orb2aor3b],
> l -> ForAll(orb_s,
> f -> not IsEmpty(Intersection(Union(l), f))));
fail

It remains to show that for any choice of s ∈ S, a quadruple of elements in S× exists such that s
generates a proper subgroup of S together with at least one of these elements.

First we observe (without using GAP) that there is a pair of 3-cycles whose fixed points cover
the seven points of the natural permutation representation. This implies the statement for all elements
s ∈ S that fix a point in this representation. So it remains to consider elements s of the orders six and
seven.

For the order seven element, the above setup and the lemma from Section 11.2.2 can be used.
Example

gap> QuadrupleWithProperty([[orb2a[1]], orb2a, orb2a, orb2a],
> l -> ForAll(orb_s,
> f -> not IsEmpty(Intersection(Union(l), f))));
[[2, 5, 12, 18, 19, 26], [7, 8, 9, 16, 21, 25],

[1, 6, 10, 17, 20, 27], [13, 14, 15, 28, 29, 30]]

For the order six element, we use the diagonal product of the primitive permutation representations
of the degrees 21 and 35.

Example
gap> has6A:= List(tommaxes[1]{ [4, 5] },
> i -> RepresentativeTom(tom, i));
[Group([(1,2)(3,7), (2,6,5,4)(3,7)]),

Group([(2,3)(5,7), (1,2)(4,5,6,7), (2,3)(5,6)])]
gap> trans:= List(has6A, s -> RightTransversal(a7, s));;
gap> reps:= List(trans, l -> Action(a7, l, OnRight));
[Group([(1,16,12)(2,17,13)(3,18,11)(4,19,14)(15,20,21), (1,4,7,9,10)

(2,5,8,3,6)(11,12,15,14,13)(16,20,19,17,18)]),
Group([(2,16,6)(3,17,7)(4,18,8)(5,19,9)(10,20,26)(11,21,27)

(12,22,28)(13,23,29)(14,24,30)(15,25,31), (1,2,3,4,5)
(6,10,13,15,9)(7,11,14,8,12)(16,20,23,25,19)(17,21,24,18,22)
(26,32,35,31,28)(27,33,29,34,30)])]

gap> g:= DiagonalProductOfPermGroups(reps);;
gap> repeat s:= Random(g);
> until Order(s) = 6;
gap> NrMovedPoints(s);
53
gap> mpg:= MovedPoints(g);;
gap> fixs:= Difference(mpg, MovedPoints(s));;

Computations with the GAP Character Table Library 423

gap> orb_s:= Orbit(g, fixs, OnSets);;
gap> Length(orb_s);
105
gap> repeat 3a:= Random(g);
> until Order(3a) = 3 and Size(Centralizer(g, 3a)) = 36;
gap> orb3a:= Orbit(g, Difference(mpg, MovedPoints(3a)), OnSets);;
gap> Length(orb3a);
35
gap> TripleWithProperty([[orb3a[1]], orb3a, orb3a],
> l -> ForAll(orb_s,
> f -> not IsEmpty(Intersection(Union(l), f))));
[[1, 4, 6, 12, 14, 15, 34, 37, 40, 43, 49],

[1, 4, 6, 16, 19, 20, 27, 30, 33, 44, 49],
[2, 3, 4, 5, 7, 9, 26, 47, 48, 50, 53]]

So we have found not only a quadruple but even a triple of 3-cycles that excludes candidates s of
order six.

11.5.5 Ld(q)

In the treatment of small dimensional linear groups S = SL(d,q), [BGK08] uses a Singer element s
of order (qd−1)/(q−1). (So the order of the corresponding element in PSL(d,q) = (qd−1)/[(q−
1)gcd(d,q−1)].) By [Ber00], M(S,s) consists of extension field type subgroups, except in the cases
d = 2, q∈ {2,5,7,9}, and (d,q) = (3,4). These subgroups have the structure GL(d/p,qp) : αq∩S, for
prime divisors p of d, where αq denotes the Frobenius automorphism that acts on matrices by raising
each entry to the q-th power. (If q is a prime then we have GL(d/p,qp) : αq = ΓL(d/p,qp).) Since s
acts irreducibly, it is contained in at most one conjugate of each class of extension field type subgroups
(cf. [BGK08, Lemma 2.12]).

First we write a GAP function RelativeSigmaL that takes a positive integer d and a basis B of
the field extension of degree n over the field with q elements, and returns the group GL(d,qn) : αq, as
a subgroup of GL(dn,q).

Example
gap> RelativeSigmaL:= function(d, B)
> local n, F, q, glgens, diag, pi, frob, i;
>
> n:= Length(B);
> F:= LeftActingDomain(UnderlyingLeftModule(B));
> q:= Size(F);
>
> # Create the generating matrices inside the linear subgroup.
> glgens:= List(GeneratorsOfGroup(SL(d, q^n)),
> m -> BlownUpMat(B, m));
>
> # Create the matrix of a diagonal part that maps to determinant 1.
> diag:= IdentityMat(d*n, F);
> diag{ [1 .. n] }{ [1 .. n] }:= BlownUpMat(B, [[Z(q^n)^(q-1)]]);
> Add(glgens, diag);
>
> # Create the matrix that realizes the Frobenius action,
> # and adjust the determinant.

Computations with the GAP Character Table Library 424

> pi:= List(B, b -> Coefficients(B, b^q));
> frob:= NullMat(d*n, d*n, F);
> for i in [0 .. d-1] do
> frob{ [1 .. n] + i*n }{ [1 .. n] + i*n }:= pi;
> od;
> diag:= IdentityMat(d*n, F);
> diag{ [1 .. n] }{ [1 .. n] }:= BlownUpMat(B, [[Z(q^n)]]);
> diag:= diag^LogFFE(Inverse(Determinant(frob)), Determinant(diag));
>
> # Return the result.
> return Group(Concatenation(glgens, [diag * frob]));
> end;;

The next function computes σ(SL(d,q),s), by computing the sum of µ(g,S/(GL(d/p,qp) : αq∩
S)), for prime divisors p of d, and taking the maximum over g ∈ S×. The computations take place in
a permutation representation of PSL(d,q).

Example
gap> ApproxPForSL:= function(d, q)
> local G, epi, PG, primes, maxes, names, ccl;
>
> # Check whether this is an admissible case (see [Be00]).
> if (d = 2 and q in [2, 5, 7, 9]) or (d = 3 and q = 4) then
> return fail;
> fi;
>
> # Create the group SL(d,q), and the map to PSL(d,q).
> G:= SL(d, q);
> epi:= ActionHomomorphism(G, NormedRowVectors(GF(q)^d), OnLines);
> PG:= ImagesSource(epi);
>
> # Create the subgroups corresponding to the prime divisors of ‘d’.
> primes:= PrimeDivisors(d);
> maxes:= List(primes, p -> RelativeSigmaL(d/p,
> Basis(AsField(GF(q), GF(q^p)))));
> names:= List(primes, p -> Concatenation("GL(", String(d/p), ",",
> String(q^p), ").", String(p)));
> if 2 < q then
> names:= List(names, name -> Concatenation(name, " cap G"));
> fi;
>
> # Compute the conjugacy classes of prime order elements in the maxes.
> # (In order to avoid computing all conjugacy classes of these subgroups,
> # we work in Sylow subgroups.)
> ccl:= List(List(maxes, x -> ImagesSet(epi, x)),
> M -> ClassesOfPrimeOrder(M, PrimeDivisors(Size(M)),
> TrivialSubgroup(M)));
>
> return [names, UpperBoundFixedPointRatios(PG, ccl, true)[1]];
> end;;

We apply this function to the cases that are interesting in [BGK08, Section 5.12].

Computations with the GAP Character Table Library 425

Example
gap> pairs:= [[3, 2], [3, 3], [4, 2], [4, 3], [4, 4],
> [6, 2], [6, 3], [6, 4], [6, 5], [8, 2], [10, 2]];;
gap> array:= [];;
gap> for pair in pairs do
> d:= pair[1]; q:= pair[2];
> approx:= ApproxPForSL(d, q);
> Add(array, [Concatenation("SL(", String(d), ",", String(q), ")"),
> (q^d-1)/(q-1),
> approx[1], approx[2]]);
> od;
gap> oldsize:= SizeScreen();;
gap> SizeScreen([80]);;
gap> PrintFormattedArray(array);

SL(3,2) 7 ["GL(1,8).3"] 1/4
SL(3,3) 13 ["GL(1,27).3 cap G"] 1/24
SL(4,2) 15 ["GL(2,4).2"] 3/14
SL(4,3) 40 ["GL(2,9).2 cap G"] 53/1053
SL(4,4) 85 ["GL(2,16).2 cap G"] 1/108
SL(6,2) 63 ["GL(3,4).2", "GL(2,8).3"] 365/55552
SL(6,3) 364 ["GL(3,9).2 cap G", "GL(2,27).3 cap G"] 22843/123845436
SL(6,4) 1365 ["GL(3,16).2 cap G", "GL(2,64).3 cap G"] 1/85932
SL(6,5) 3906 ["GL(3,25).2 cap G", "GL(2,125).3 cap G"] 1/484220
SL(8,2) 255 ["GL(4,4).2"] 1/7874

SL(10,2) 1023 ["GL(5,4).2", "GL(2,32).5"] 1/129794
gap> SizeScreen(oldsize);;

The only missing case for [BGK08] is S = L3(4), for which M(S,s) consists of three groups of the
type L3(2) (see [CCN+85, p. 23]). The group L3(4) has been considered already in Section 11.4.3,
where σ(S,s) = 1/5 has been proved. Also the cases SL(3,3), SL(4,2)∼= A8, and SL(4,3) have been
handled there.

An alternative character-theoretic proof for S = L6(2) looks as follows. In this case, the subgroups
in M(S,s) have the types ΓL(3,4) ∼= GL(3,4).2 ∼= 3.L3(4).3.22 and ΓL(2,8) ∼= GL(2,8).3 ∼= (7×
L2(8)).3.

Example
gap> t:= CharacterTable("L6(2)");;
gap> s1:= CharacterTable("3.L3(4).3.2_2");;
gap> s2:= CharacterTable("(7xL2(8)).3");;
gap> SigmaFromMaxes(t, "63A", [s1, s2], [1, 1]);
365/55552

11.5.6 ∗ Ld(q) with prime d

For S = SL(d,q) with prime dimension d, and s ∈ S a Singer cycle, we have M(S,s) = {M}, where
M = NS(〈s〉)∼= ΓL(1,qd)∩S. So

σ(g,s) = µ(g,S/M) = |gS∩M|/|gS|< |M|/|gS| ≤ (qd−1) ·d/|gS|

holds for any g ∈ S \ Z(S), which implies σ(S,s) < max{(qd − 1) · d/|gS|;g ∈ S \ Z(S)}. The right
hand side of this inequality is returned by the following function. In [BGK08, Lemma 3.8], the global
upper bound 1/qd is derived for primes d ≥ 5.

Computations with the GAP Character Table Library 426

Example
gap> UpperBoundForSL:= function(d, q)
> local G, Msize, ccl;
>
> if not IsPrimeInt(d) then
> Error("<d> must be a prime");
> fi;
>
> G:= SL(d, q);
> Msize:= (q^d-1) * d;
> ccl:= Filtered(ConjugacyClasses(G),
> c -> Msize mod Order(Representative(c)) = 0
> and Size(c) <> 1);
>
> return Msize / Minimum(List(ccl, Size));
> end;;

The interesting values are (d,q) with d ∈ {5,7,11} and q ∈ {2,3,4}, and perhaps also (d,q) ∈
{(3,2),(3,3)}. (Here we exclude SL(11,4) because writing down the conjugacy classes of this group
would exceed the permitted memory.)

Example
gap> NrConjugacyClasses(SL(11,4));
1397660
gap> pairs:= [[3, 2], [3, 3], [5, 2], [5, 3], [5, 4],
> [7, 2], [7, 3], [7, 4],
> [11, 2], [11, 3]];;
gap> array:= [];;
gap> for pair in pairs do
> d:= pair[1]; q:= pair[2];
> approx:= UpperBoundForSL(d, q);
> Add(array, [Concatenation("SL(", String(d), ",", String(q), ")"),
> (q^d-1)/(q-1),
> approx]);
> od;
gap> PrintFormattedArray(array);

SL(3,2) 7 7/8
SL(3,3) 13 3/4
SL(5,2) 31 31/64512
SL(5,3) 121 10/81
SL(5,4) 341 15/256
SL(7,2) 127 7/9142272
SL(7,3) 1093 14/729
SL(7,4) 5461 21/4096

SL(11,2) 2047 2047/34112245508649716682268134604800
SL(11,3) 88573 22/59049

The exact values are clearly better than the above bounds. We compute them for L5(2) and L7(2).
In the latter case, the class fusion of the 127 : 7 type subgroup M is not uniquely determined by
the character tables; here we use the additional information that the elements of order 7 in M have
centralizer order 49 in L7(2). (See Section 11.4.3 for the examples with d = 3.)

Computations with the GAP Character Table Library 427

Example
gap> SigmaFromMaxes(CharacterTable("L5(2)"), "31A",
> [CharacterTable("31:5")], [1]);
1/5376
gap> t:= CharacterTable("L7(2)");;
gap> s:= CharacterTable("P:Q", [127, 7]);;
gap> pi:= PossiblePermutationCharacters(s, t);;
gap> Length(pi);
2
gap> ord7:= PositionsProperty(OrdersClassRepresentatives(t), x -> x = 7);
[38, 45, 76, 77, 83]
gap> sizes:= SizesCentralizers(t){ ord7 };
[141120, 141120, 3528, 3528, 49]
gap> List(pi, x -> x[83]);
[42, 0]
gap> spos:= Position(OrdersClassRepresentatives(t), 127);;
gap> Maximum(ApproxP(pi{ [1] }, spos));
1/4388290560

11.5.7 Automorphic Extensions of Ld(q)

For the following values of d and q, automorphic extensions G of Ld(q) had to be checked for [BGK08,
Section 5.12].

(d,q) ∈ {(3,4),(6,2),(6,3),(6,4),(6,5),(10,2)}

The first case has been treated in Section 11.4.4. For the other cases, we compute σ ′(G,s) below.
In any case, the extension by a graph automorphism occurs, which can be described by mapping

each matrix in SL(d,q) to its inverse transpose. If q > 2, also extensions by diagonal automorphisms
occur, which are induced by conjugation with elements in GL(d,q). If q is nonprime then also exten-
sions by field automorphisms occur, which can be described by powering the matrix entries by roots
of q. Finally, products (of prime order) of these three kinds of automorphisms have to be considered.

We start with the extension G of S = SL(d,q) by a graph automorphism. G can be embedded into
GL(2d,q) by representing the matrix A ∈ S as a block diagonal matrix with diagonal blocks equal
to A and A−tr, and representing the graph automorphism by a permutation matrix that interchanges
the two blocks. In order to construct the field extension type subgroups of G, we have to choose the
basis of the field extension in such a way that the subgroup is normalized by the permutation matrix;
a sufficient condition is that the matrices of the Fq-linear mappings induced by the basis elements are
symmetric.

(We do not give a function that computes a basis with this property from the parameters d and q.
Instead, we only write down the bases that we will need.)

Example
gap> SymmetricBasis:= function(q, n)
> local vectors, B, issymmetric;
>
> if q = 2 and n = 2 then
> vectors:= [Z(2)^0, Z(2^2)];
> elif q = 2 and n = 3 then
> vectors:= [Z(2)^0, Z(2^3), Z(2^3)^5];
> elif q = 2 and n = 5 then
> vectors:= [Z(2)^0, Z(2^5), Z(2^5)^4, Z(2^5)^25, Z(2^5)^26];

Computations with the GAP Character Table Library 428

> elif q = 3 and n = 2 then
> vectors:= [Z(3)^0, Z(3^2)];
> elif q = 3 and n = 3 then
> vectors:= [Z(3)^0, Z(3^3)^2, Z(3^3)^7];
> elif q = 4 and n = 2 then
> vectors:= [Z(2)^0, Z(2^4)^3];
> elif q = 4 and n = 3 then
> vectors:= [Z(2)^0, Z(2^3), Z(2^3)^5];
> elif q = 5 and n = 2 then
> vectors:= [Z(5)^0, Z(5^2)^2];
> elif q = 5 and n = 3 then
> vectors:= [Z(5)^0, Z(5^3)^9, Z(5^3)^27];
> else
> Error("sorry, no basis for <q> and <n> stored");
> fi;
>
> B:= Basis(AsField(GF(q), GF(q^n)), vectors);
>
> # Check that the basis really has the required property.
> issymmetric:= M -> M = TransposedMat(M);
> if not ForAll(B, b -> issymmetric(BlownUpMat(B, [[b]]))) then
> Error("wrong basis!");
> fi;
>
> # Return the result.
> return B;
> end;;

In later examples, we will need similar embeddings of matrices. Therefore, we provide a more
general function EmbeddedMatrix that takes a field F, a matrix mat, and a function func, and returns
a block diagonal matrix over F whose diagonal blocks are mat and func(mat).

Example
gap> BindGlobal("EmbeddedMatrix", function(F, mat, func)
> local d, result;
>
> d:= Length(mat);
> result:= NullMat(2*d, 2*d, F);
> result{ [1 .. d] }{ [1 .. d] }:= mat;
> result{ [d+1 .. 2*d] }{ [d+1 .. 2*d] }:= func(mat);
>
> return result;
> end);

The following function is similar to ApproxPForSL, the differences are that the group G in ques-
tion is not SL(d,q) but the extension of this group by a graph automorphism, and that σ ′(G,s) is
computed not σ(G,s).

Example
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut:= function(d, q)
> local embedG, swap, G, orb, epi, PG, Gprime, primes, maxes, ccl, names;
>
> # Check whether this is an admissible case (see [Be00],

Computations with the GAP Character Table Library 429

> # note that a graph automorphism exists only for ‘d > 2’).
> if d = 2 or (d = 3 and q = 4) then
> return fail;
> fi;
>
> # Provide a function that constructs a block diagonal matrix.
> embedG:= mat -> EmbeddedMatrix(GF(q), mat,
> M -> TransposedMat(M^-1));
>
> # Create the matrix that exchanges the two blocks.
> swap:= NullMat(2*d, 2*d, GF(q));
> swap{ [1 .. d] }{ [d+1 .. 2*d] }:= IdentityMat(d, GF(q));
> swap{ [d+1 .. 2*d] }{ [1 .. d] }:= IdentityMat(d, GF(q));
>
> # Create the group SL(d,q).2, and the map to the projective group.
> G:= ClosureGroupDefault(Group(List(GeneratorsOfGroup(SL(d, q)),
> embedG)),
> swap);
> orb:= Orbit(G, One(G)[1], OnLines);
> epi:= ActionHomomorphism(G, orb, OnLines);
> PG:= ImagesSource(epi);
> Gprime:= DerivedSubgroup(PG);
>
> # Create the subgroups corresponding to the prime divisors of ‘d’.
> primes:= PrimeDivisors(d);
> maxes:= List(primes,
> p -> ClosureGroupDefault(Group(List(GeneratorsOfGroup(
> RelativeSigmaL(d/p, SymmetricBasis(q, p))),
> embedG)),
> swap));
>
> # Compute conjugacy classes of outer involutions in the maxes.
> # (In order to avoid computing all conjugacy classes of these subgroups,
> # we work in the Sylow 2 subgroups.)
> maxes:= List(maxes, M -> ImagesSet(epi, M));
> ccl:= List(maxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));
> names:= List(primes, p -> Concatenation("GL(", String(d/p), ",",
> String(q^p), ").", String(p)));
>
> return [names, UpperBoundFixedPointRatios(PG, ccl, true)[1]];
> end;;

And these are the results for the groups we are interested in (and others).
Example

gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(4, 3);
[["GL(2,9).2"], 17/117]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(4, 4);
[["GL(2,16).2"], 73/1008]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(6, 2);
[["GL(3,4).2", "GL(2,8).3"], 41/1984]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(6, 3);
[["GL(3,9).2", "GL(2,27).3"], 541/352836]

Computations with the GAP Character Table Library 430

gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(6, 4);
[["GL(3,16).2", "GL(2,64).3"], 3265/12570624]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(6, 5);
[["GL(3,25).2", "GL(2,125).3"], 13001/195250000]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(8, 2);
[["GL(4,4).2"], 367/1007872]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut(10, 2);
[["GL(5,4).2", "GL(2,32).5"], 609281/476346056704]

Now we consider diagonal automorphisms. We modify the approach for SL(d,q) by constructing
the field extension type subgroups of GL(d,q) . . .

Example
gap> RelativeGammaL:= function(d, B)
> local n, F, q, diag;
>
> n:= Length(B);
> F:= LeftActingDomain(UnderlyingLeftModule(B));
> q:= Size(F);
> diag:= IdentityMat(d * n, F);
> diag{[1 .. n]}{[1 .. n]}:= BlownUpMat(B, [[Z(q^n)]]);
> return ClosureGroup(RelativeSigmaL(d, B), diag);
> end;;

. . . and counting the elements of prime order outside the simple group.
Example

gap> ApproxPForOuterClassesInGL:= function(d, q)
> local G, epi, PG, Gprime, primes, maxes, names;
>
> # Check whether this is an admissible case (see [Be00]).
> if (d = 2 and q in [2, 5, 7, 9]) or (d = 3 and q = 4) then
> return fail;
> fi;
>
> # Create the group GL(d,q), and the map to PGL(d,q).
> G:= GL(d, q);
> epi:= ActionHomomorphism(G, NormedRowVectors(GF(q)^d), OnLines);
> PG:= ImagesSource(epi);
> Gprime:= ImagesSet(epi, SL(d, q));
>
> # Create the subgroups corresponding to the prime divisors of ‘d’.
> primes:= PrimeDivisors(d);
> maxes:= List(primes, p -> RelativeGammaL(d/p,
> Basis(AsField(GF(q), GF(q^p)))));
> maxes:= List(maxes, M -> ImagesSet(epi, M));
> names:= List(primes, p -> Concatenation("M(", String(d/p), ",",
> String(q^p), ")"));
>
> return [names,
> UpperBoundFixedPointRatios(PG, List(maxes,
> M -> ClassesOfPrimeOrder(M,
> PrimeDivisors(Index(PG, Gprime)), Gprime)),

Computations with the GAP Character Table Library 431

> true)[1]];
> end;;

Here are the required results.
Example

gap> ApproxPForOuterClassesInGL(6, 3);
[["M(3,9)", "M(2,27)"], 41/882090]
gap> ApproxPForOuterClassesInGL(4, 3);
[["M(2,9)"], 0]
gap> ApproxPForOuterClassesInGL(6, 4);
[["M(3,16)", "M(2,64)"], 1/87296]
gap> ApproxPForOuterClassesInGL(6, 5);
[["M(3,25)", "M(2,125)"], 821563/756593750000]

(Note that the extension field type subgroup in PGL(4,3) = L4(3).21 is a non-split extension of its
intersection with L4(3), hence the zero value.)

Concerning extensions by Frobenius automorphisms, only the case (d,q) = (6,4) is interesting
in [BGK08]. In fact, we would not need to compute anything for the extension G of S = SL(6,4) by
the Frobenius map that squares each matrix entry. This is because M′(G,s) consists of the normalizers
of the two subgroups of the types SL(3,16) and SL(2,64), and the former maximal subgroup is a non-
split extension of its intersection with S, so only one maximal subgroup can contribute to σ ′(G,s),
which is thus smaller than 1/2, by [BGK08, Prop. 2.6].

However, it is easy enough to compute the exact value of σ ′(G,s). We work with the projective
action of S on its natural module, and compute the permutation induced by the Frobenius map as the
Frobenius action on the normed row vectors.

Example
gap> matgrp:= SL(6,4);;
gap> dom:= NormedRowVectors(GF(4)^6);;
gap> Gprime:= Action(matgrp, dom, OnLines);;
gap> pi:= PermList(List(dom, v -> Position(dom, List(v, x -> x^2))));;
gap> G:= ClosureGroup(Gprime, pi);;

Then we compute the maximal subgroups, the classes of outer involutions, and the bound, similar
to the situation with graph automorphisms.

Example
gap> maxes:= List([2, 3], p -> Normalizer(G,
> Action(RelativeSigmaL(6/p,
> Basis(AsField(GF(4), GF(4^p)))), dom, OnLines)));;
gap> ccl:= List(maxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));;
gap> List(ccl, Length);
[0, 1]
gap> UpperBoundFixedPointRatios(G, ccl, true);
[1/34467840, true]

For (d,q) = (6,4), we have to consider also the extension G of S = SL(6,4) by the product α

of the Frobenius map and the graph automorphism. We use the same approach as for the graph
automorphism, i. e., we embed SL(6,4) into a 12-dimensional group of 6× 6 block matrices, where
the second block is the image of the first block under α , and describe α by the transposition of the
two blocks.

First we construct the projective actions of S and G on an orbit of 1-spaces.

Computations with the GAP Character Table Library 432

Example
gap> embedFG:= function(F, mat)
> return EmbeddedMatrix(F, mat,
> M -> List(TransposedMat(M^-1),
> row -> List(row, x -> x^2)));
> end;;
gap> d:= 6;; q:= 4;;
gap> alpha:= NullMat(2*d, 2*d, GF(q));;
gap> alpha{ [1 .. d] }{ [d+1 .. 2*d] }:= IdentityMat(d, GF(q));;
gap> alpha{ [d+1 .. 2*d] }{ [1 .. d] }:= IdentityMat(d, GF(q));;
gap> Gprime:= Group(List(GeneratorsOfGroup(SL(d,q)),
> mat -> embedFG(GF(q), mat)));;
gap> G:= ClosureGroupDefault(Gprime, alpha);;
gap> orb:= Orbit(G, One(G)[1], OnLines);;
gap> G:= Action(G, orb, OnLines);;
gap> Gprime:= Action(Gprime, orb, OnLines);;

Next we construct the maximal subgroups, the classes of outer involutions, and the bound.
Example

gap> maxes:= List(PrimeDivisors(d), p -> Group(List(GeneratorsOfGroup(
> RelativeSigmaL(d/p, Basis(AsField(GF(q), GF(q^p))))),
> mat -> embedFG(GF(q), mat))));;
gap> maxes:= List(maxes, x -> Action(x, orb, OnLines));;
gap> maxes:= List(maxes, x -> Normalizer(G, x));;
gap> ccl:= List(maxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));;
gap> List(ccl, Length);
[0, 1]
gap> UpperBoundFixedPointRatios(G, ccl, true);
[1/10792960, true]

The only missing cases are the extensions of SL(6,3) and SL(6,5) by the involutory outer auto-
morphism that acts as the product of a diagonal and a graph automorphism.

In the case S = SL(6,3), we can directly write down the extension G.
Example

gap> d:= 6;; q:= 3;;
gap> diag:= IdentityMat(d, GF(q));;
gap> diag[1][1]:= Z(q);;
gap> embedDG:= mat -> EmbeddedMatrix(GF(q), mat,
> M -> TransposedMat(M^-1)^diag);;
gap> Gprime:= Group(List(GeneratorsOfGroup(SL(d,q)), embedDG));;
gap> alpha:= NullMat(2*d, 2*d, GF(q));;
gap> alpha{ [1 .. d] }{ [d+1 .. 2*d] }:= IdentityMat(d, GF(q));;
gap> alpha{ [d+1 .. 2*d] }{ [1 .. d] }:= IdentityMat(d, GF(q));;
gap> G:= ClosureGroupDefault(Gprime, alpha);;

The maximal subgroups are constructed as the normalizers in G of the extension field type sub-
groups in S. We work with a permutation representation of G.

Example
gap> maxes:= List(PrimeDivisors(d), p -> Group(List(GeneratorsOfGroup(
> RelativeSigmaL(d/p, Basis(AsField(GF(q), GF(q^p))))),

Computations with the GAP Character Table Library 433

> embedDG)));;
gap> orb:= Orbit(G, One(G)[1], OnLines);;
gap> G:= Action(G, orb, OnLines);;
gap> Gprime:= Action(Gprime, orb, OnLines);;
gap> maxes:= List(maxes, M -> Normalizer(G, Action(M, orb, OnLines)));;
gap> ccl:= List(maxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));;
gap> List(ccl, Length);
[1, 1]
gap> UpperBoundFixedPointRatios(G, ccl, true);
[25/352836, true]

For S = SL(6,5), this approach does not work because we cannot realize the diagonal involution
by an involutory matrix. Instead, we consider the extension of GL(6,5)∼= 2.(2×L6(5)).2 by the graph
automorphism α , which can be embedded into GL(12,5).

Example
gap> d:= 6;; q:= 5;;
gap> embedG:= mat -> EmbeddedMatrix(GF(q),
> mat, M -> TransposedMat(M^-1));;
gap> Gprime:= Group(List(GeneratorsOfGroup(SL(d,q)), embedG));;
gap> maxes:= List(PrimeDivisors(d), p -> Group(List(GeneratorsOfGroup(
> RelativeSigmaL(d/p, Basis(AsField(GF(q), GF(q^p))))),
> embedG)));;
gap> diag:= IdentityMat(d, GF(q));;
gap> diag[1][1]:= Z(q);;
gap> diag:= embedG(diag);;
gap> alpha:= NullMat(2*d, 2*d, GF(q));;
gap> alpha{ [1 .. d] }{ [d+1 .. 2*d] }:= IdentityMat(d, GF(q));;
gap> alpha{ [d+1 .. 2*d] }{ [1 .. d] }:= IdentityMat(d, GF(q));;
gap> G:= ClosureGroupDefault(Gprime, alpha * diag);;

Now we switch to the permutation action of this group on the 1-dimensional subspaces, thus factor-
ing out the cyclic normal subgroup of order four. In this action, the involutory diagonal automorphism
is represented by an involution, and we can proceed as above.

Example
gap> orb:= Orbit(G, One(G)[1], OnLines);;
gap> Gprime:= Action(Gprime, orb, OnLines);;
gap> G:= Action(G, orb, OnLines);;
gap> maxes:= List(maxes, M -> Action(M, orb, OnLines));;
gap> extmaxes:= List(maxes, M -> Normalizer(G, M));;
gap> ccl:= List(extmaxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));;
gap> List(ccl, Length);
[2, 1]
gap> UpperBoundFixedPointRatios(G, ccl, true);
[3863/6052750000, true]

In the same way, we can recheck the values for the extensions of SL(6,5) by the diagonal or by
the graph automorphism.

Example
gap> diag:= Permutation(diag, orb, OnLines);;
gap> G:= ClosureGroupDefault(Gprime, diag);;

Computations with the GAP Character Table Library 434

gap> extmaxes:= List(maxes, M -> Normalizer(G, M));;
gap> ccl:= List(extmaxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));;
gap> List(ccl, Length);
[3, 1]
gap> UpperBoundFixedPointRatios(G, ccl, true);
[821563/756593750000, true]
gap> alpha:= Permutation(alpha, orb, OnLines);;
gap> G:= ClosureGroupDefault(Gprime, alpha);;
gap> extmaxes:= List(maxes, M -> Normalizer(G, M));;
gap> ccl:= List(extmaxes, M -> ClassesOfPrimeOrder(M, [2], Gprime));;
gap> List(ccl, Length);
[2, 2]
gap> UpperBoundFixedPointRatios(G, ccl, true);
[13001/195250000, true]

gap> t2:= CharacterTable("L6(2).2");; gap> map:= InverseMap(GetFusionMap(t, t2));; gap>
torso:= List(Concatenation(prim), pi -> CompositionMaps(pi, map));; gap> ext:= List(torso, x
-> PermChars(t2, rec(torso:= x))); [[Character(CharacterTable("L6(2).2"), [55552, 0, 128,
256, 337, 112, 22, 0, 0, 16, 0, 16, 2, 17, 0, 0, 8, 2, 4, 28, 0, 0, 0, 4, 1, 0, 1, 0, 0, 4, 0, 2, 2, 2,
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1120, 192, 32, 0, 0, 40, 13, 0, 4, 6, 0, 4, 4, 4, 0, 2, 8, 5, 0, 2, 0, 0, 0,
0, 1, 0, 1, 0])], [Character(CharacterTable("L6(2).2"), [1904640, 0, 0, 512, 960, 0, 120, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 73, 24, 3, 0, 0, 15, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
1, 960, 960, 0, 0, 0, 0, 24, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 0])]] gap>
sigma:= ApproxP(Concatenation(ext), > Position(OrdersClassRepresentatives(t2), 63));; gap>
Maximum(sigma{ Difference(PositionsProperty(> OrdersClassRepresentatives(t2), IsPrimeInt), >
ClassPositionsOfDerivedSubgroup(t2)) }); 41/1984 –>

11.5.8 L3(2)

We show that S = L3(2) = SL(3,2) satisfies the following.

(a) σ(S) = 1/4, and this value is attained exactly for σ(S,s) with s of order 7.

(b) For s of order 7, M(S,s) consists of one group of the type 7 : 3.

(c) P(S) = 1/4, and this value is attained exactly for P(S,s) with s of order 7.

(d) The uniform spread of S is at exactly three, with s of order 7, and the spread of S is exactly four.
(This had been left open in [BW75].)

(Note that in this example, the spread and the uniform spread differ.)
Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.

Example
gap> t:= CharacterTable("L3(2)");;
gap> ProbGenInfoSimple(t);
["L3(2)", 1/4, 3, ["7A"], [1]]

Statement (b) can be read off from the permutation characters, and the fact that the unique class
of maximal subgroups that contain elements of order 7 consists of groups of the structure 7 : 3,
see [CCN+85, p. 3].

Computations with the GAP Character Table Library 435

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 4, 7, 7]
gap> PrimitivePermutationCharacters(t);
[Character(CharacterTable("L3(2)"), [7, 3, 1, 1, 0, 0]),

Character(CharacterTable("L3(2)"), [7, 3, 1, 1, 0, 0]),
Character(CharacterTable("L3(2)"), [8, 0, 2, 0, 1, 1])]

For the other statements, we will use the primitive permutation representations on 7 and 8 points
of S (computed from the GAP Library of Tables of Marks), and their diagonal products of the degrees
14 and 15.

Example
gap> tom:= TableOfMarks("L3(2)");;
gap> g:= UnderlyingGroup(tom);
Group([(2,4)(5,7), (1,2,3)(4,5,6)])
gap> mx:= MaximalSubgroupsTom(tom);
[[14, 13, 12], [7, 7, 8]]
gap> maxes:= List(mx[1], i -> RepresentativeTom(tom, i));;
gap> tr:= List(maxes, s -> RightTransversal(g, s));;
gap> acts:= List(tr, x -> Action(g, x, OnRight));;
gap> g7:= acts[1];
Group([(3,4)(6,7), (1,3,2)(4,6,5)])
gap> g8:= acts[3];
Group([(1,6)(2,5)(3,8)(4,7), (1,7,3)(2,5,8)])
gap> g14:= DiagonalProductOfPermGroups(acts{ [1, 2] });
Group([(3,4)(6,7)(11,13)(12,14), (1,3,2)(4,6,5)(8,11,9)(10,12,13)])
gap> g15:= DiagonalProductOfPermGroups(acts{ [2, 3] });
Group([(4,6)(5,7)(8,13)(9,12)(10,15)(11,14), (1,4,2)(3,5,6)(8,14,10)

(9,12,15)])

First we compute that for all nonidentity elements s ∈ S and order three elements g ∈ S, P(g,s)≥
1/4 holds, with equality if and only if s has order 7; this implies statement (c). We actually compute,
for class representatives s, the proportion of order three elements g such that 〈g,s〉6=S holds.

Example
gap> ccl:= List(ConjugacyClasses(g7), Representative);;
gap> SortParallel(List(ccl, Order), ccl);
gap> List(ccl, Order);
[1, 2, 3, 4, 7, 7]
gap> Size(ConjugacyClass(g7, ccl[3]));
56
gap> prop:= List(ccl,
> r -> RatioOfNongenerationTransPermGroup(g7, ccl[3], r));
[1, 5/7, 19/28, 2/7, 1/4, 1/4]
gap> Minimum(prop);
1/4

Now we show that the uniform spread of S is less than four. In any of the primitive permutation
representations of degree seven, we find three involutions whose sets of fixed points cover the seven
points. The elements s of order different from 7 in S fix a point in this representation, so each such s
generates a proper subgroup of S together with one of the three involutions.

Computations with the GAP Character Table Library 436

Example
gap> x:= g7.1;
(3,4)(6,7)
gap> fix:= Difference(MovedPoints(g7), MovedPoints(x));
[1, 2, 5]
gap> orb:= Orbit(g7, fix, OnSets);
[[1, 2, 5], [1, 3, 4], [2, 3, 6], [2, 4, 7], [1, 6, 7],

[3, 5, 7], [4, 5, 6]]
gap> Union(orb{ [1, 2, 5] }) = [1 .. 7];
true

So we still have to exclude elements s of order 7. In the primitive permutation representation of
S on eight points, we find four elements of order three whose sets of fixed points cover the set of
all points that are moved by S, so with each element of order seven in S, one of them generates an
intransitive group.

Example
gap> three:= g8.2;
(1,7,3)(2,5,8)
gap> fix:= Difference(MovedPoints(g8), MovedPoints(three));
[4, 6]
gap> orb:= Orbit(g8, fix, OnSets);;
gap> QuadrupleWithProperty([[fix], orb, orb, orb],
> list -> Union(list) = [1 .. 8]);
[[4, 6], [1, 7], [3, 8], [2, 5]]

Together with statement (a), this proves that the uniform spread of S is exactly three, with s of
order seven.

Each element of S fixes a point in the permutation representation on 15 points. So for proving that
the spread of S is less than five, it is sufficient to find a quintuple of elements whose sets of fixed points
cover all 15 points. (From the permutation characters it is clear that four of these elements must have
order three, and the fifth must be an involution.)

Example
gap> x:= g15.1;
(4,6)(5,7)(8,13)(9,12)(10,15)(11,14)
gap> fixx:= Difference(MovedPoints(g15), MovedPoints(x));
[1, 2, 3]
gap> orbx:= Orbit(g15, fixx, OnSets);
[[1, 2, 3], [1, 4, 5], [1, 6, 7], [2, 4, 6], [3, 4, 7],

[3, 5, 6], [2, 5, 7]]
gap> y:= g15.2;
(1,4,2)(3,5,6)(8,14,10)(9,12,15)
gap> fixy:= Difference(MovedPoints(g15), MovedPoints(y));
[7, 11, 13]
gap> orby:= Orbit(g15, fixy, OnSets);;
gap> QuadrupleWithProperty([[fixy], orby, orby, orby],
> l -> Difference([1 .. 15], Union(l)) in orbx);
[[7, 11, 13], [5, 8, 14], [1, 10, 15], [3, 9, 12]]

It remains to show that the spread of S is (at least) four. By the consideration of permutation
characters, we know that we can find a suitable order seven element for all quadruples in question

Computations with the GAP Character Table Library 437

except perhaps quadruples of order three elements. We show that for each such case, we can choose s
of order four. Since M(S,s) consists of two subgroups of the type S4, we work with the representation
on 14 points.)

First we compute s and the S-orbit of its fixed points, and the S-orbit of the fixed points of an
element x of order three. Then we prove that for each quadruple of conjugates of x, the union of their
fixed points intersects the fixed points of at least one conjugate of s trivially.

Example
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g14);
> until Order(s) = 4;
gap> s;
(1,3)(2,6,7,5)(9,11,10,12)(13,14)
gap> fixs:= Difference(MovedPoints(g14), MovedPoints(s));
[4, 8]
gap> orbs:= Orbit(g14, fixs, OnSets);;
gap> Length(orbs);
21
gap> three:= g14.2;
(1,3,2)(4,6,5)(8,11,9)(10,12,13)
gap> fix:= Difference(MovedPoints(g14), MovedPoints(three));
[7, 14]
gap> orb:= Orbit(g14, fix, OnSets);;
gap> Length(orb);
28
gap> QuadrupleWithProperty([[fix], orb, orb, orb],
> l -> ForAll(orbs, o -> not IsEmpty(Intersection(o,
> Union(l)))));
fail

By the lemma from Section 11.2.2, we are done.

11.5.9 M11

We show that S = M11 satisfies the following.

(a) σ(S) = 1/3, and this value is attained exactly for σ(S,s) with s of order 11.

(b) For s of order 11, M(S,s) consists of one group of the type L2(11).

(c) P(S) = 1/3, and this value is attained exactly for P(S,s) with s of order 11.

(d) Both the uniform spread and the spread of S is exactly three, with s of order 11.

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.1.
Example

gap> t:= CharacterTable("M11");;
gap> ProbGenInfoSimple(t);
["M11", 1/3, 2, ["11A"], [1]]

Statement (b) can be read off from the permutation characters, and the fact that the unique class
of maximal subgroups that contain elements of order 11 consists of groups of the structure L2(11),
see [CCN+85, p. 18].

Computations with the GAP Character Table Library 438

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 4, 5, 6, 8, 8, 11, 11]
gap> PrimitivePermutationCharacters(t);
[Character(CharacterTable("M11"),

[11, 3, 2, 3, 1, 0, 1, 1, 0, 0]),
Character(CharacterTable("M11"),
[12, 4, 3, 0, 2, 1, 0, 0, 1, 1]),
Character(CharacterTable("M11"),
[55, 7, 1, 3, 0, 1, 1, 1, 0, 0]),
Character(CharacterTable("M11"),
[66, 10, 3, 2, 1, 1, 0, 0, 0, 0]),
Character(CharacterTable("M11"),
[165, 13, 3, 1, 0, 1, 1, 1, 0, 0])]

gap> Maxes(t);
["A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4"]

For the other statements, we will use the primitive permutation representations of S on 11 and
12 points (which are fetched from the Atlas of Group Representations [WWT+]), and their diagonal
product.

Example
gap> gens11:= OneAtlasGeneratingSet("M11", NrMovedPoints, 11);
rec(charactername := "1a+10a", constituents := [1, 2],

contents := "core",
generators := [(2,10)(4,11)(5,7)(8,9), (1,4,3,8)(2,5,6,9)],
groupname := "M11", id := "",
identifier := ["M11", ["M11G1-p11B0.m1", "M11G1-p11B0.m2"], 1,

11], isPrimitive := true, maxnr := 1, p := 11, rankAction := 2,
repname := "M11G1-p11B0", repnr := 1, size := 7920,
stabilizer := "A6.2_3", standardization := 1, transitivity := 4,
type := "perm")

gap> g11:= GroupWithGenerators(gens11.generators);;
gap> gens12:= OneAtlasGeneratingSet("M11", NrMovedPoints, 12);;
gap> g12:= GroupWithGenerators(gens12.generators);;
gap> g23:= DiagonalProductOfPermGroups([g11, g12]);
Group([(2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21), (1,4,3,8)

(2,5,6,9)(12,17,18,15)(13,19)(14,20)(16,22,23,21)])

First we compute that for all nonidentity elements s∈ S and involutions g∈ S, P(g,s)≥ 1/3 holds,
with equality if and only if s has order 11; this implies statement (c). We actually compute, for class
representatives s, the proportion of involutions g such that 〈g,s〉6=S holds.

Example
gap> inv:= g11.1;
(2,10)(4,11)(5,7)(8,9)
gap> ccl:= List(ConjugacyClasses(g11), Representative);;
gap> SortParallel(List(ccl, Order), ccl);
gap> List(ccl, Order);
[1, 2, 3, 4, 5, 6, 8, 8, 11, 11]
gap> Size(ConjugacyClass(g11, inv));
165
gap> prop:= List(ccl,

Computations with the GAP Character Table Library 439

> r -> RatioOfNongenerationTransPermGroup(g11, inv, r));
[1, 1, 1, 149/165, 25/33, 31/55, 23/55, 23/55, 1/3, 1/3]
gap> Minimum(prop);
1/3

For the first part of statement (d), we have to deal only with the case of triples of involutions.
The 11-cycle s is contained in exactly one maximal subgroup of S, of index 12. By Corollary 1

in Section 11.2.2, it is enough to show that in the primitive degree 12 representation of S, the fixed
points of no triple (x1,x2,x3) of involutions in S can cover all twelve points; equivalenly (considering
complements), we show that there is no triple such that the intersection of the sets of moved points is
empty.

Example
gap> inv:= g12.1;
(1,6)(2,9)(5,7)(8,10)
gap> moved:= MovedPoints(inv);
[1, 2, 5, 6, 7, 8, 9, 10]
gap> orb12:= Orbit(g12, moved, OnSets);;
gap> Length(orb12);
165
gap> TripleWithProperty([orb12{[1]}, orb12, orb12],
> list -> IsEmpty(Intersection(list)));
fail

This implies that the uniform spread of S is at least three.
Now we show that there is a quadruple consisting of one element of order three and three involu-

tions whose fixed points cover all points in the degree 23 representation constructed above; since the
permutation character of this representation is strictly positive, this implies that S does not have spread
four, by Corollary 2 in Section 11.2.2, and we have proved statement (d).

Example
gap> inv:= g23.1;
(2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21)
gap> moved:= MovedPoints(inv);
[2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21]
gap> orb23:= Orbit(g23, moved, OnSets);;
gap> three:= (g23.1*g23.2^2)^2;
(2,6,10)(4,8,7)(5,9,11)(12,17,23)(15,18,16)(19,21,22)
gap> movedthree:= MovedPoints(three);;
gap> QuadrupleWithProperty([[movedthree], orb23, orb23, orb23],
> list -> IsEmpty(Intersection(list)));
[[2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23],

[1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21],
[1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 23],
[1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23]]

11.5.10 M12

We show that S = M12 satisfies the following.

(a) σ(S) = 1/3, and this value is attained exactly for σ(S,s) with s of order 10.

Computations with the GAP Character Table Library 440

(b) For s ∈ S of order 10, M(S,s) consists of two nonconjugate subgroups of the type A6.22, and
one group of the type 2×S5.

(c) P(S) = 31/99, and this value is attained exactly for P(S,s) with s of order 10.

(d) The uniform spread of S is at least three, with s of order 10.

(e) σ ′(Aut(S),s) = 4/99.

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.1.
Example

gap> t:= CharacterTable("M12");;
gap> ProbGenInfoSimple(t);
["M12", 1/3, 2, ["10A"], [3]]

Statement (b) can be read off from the permutation characters, and the fact that the only classes
of maximal subgroups that contain elements of order 10 consist of groups of the structures A6.22 (two
classes) and 2×S5 (one class), see [CCN+85, p. 33].

Example
gap> spos:= Position(OrdersClassRepresentatives(t), 10);
13
gap> prim:= PrimitivePermutationCharacters(t);;
gap> List(prim, x -> x{ [1, spos] });
[[12, 0], [12, 0], [66, 1], [66, 1], [144, 0], [220, 0],

[220, 0], [396, 1], [495, 0], [495, 0], [1320, 0]]
gap> Maxes(t);
["M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7",

"2xS5", "M8.S4", "4^2:D12", "A4xS3"]

For statement (c) (which implies statement (d)), we use the primitive permutation representation
on 12 points.

Example
gap> g:= MathieuGroup(12);
Group([(1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6), (1,12)(2,11)

(3,6)(4,8)(5,9)(7,10)])

First we show that for s of order 10, P(S,s) = 31/99 holds.
Example

gap> approx:= ApproxP(prim, spos);
[0, 3/11, 1/3, 1/11, 1/132, 13/99, 13/99, 13/396, 1/132, 1/33, 1/33,

1/33, 13/396, 0, 0]
gap> 2B:= g.2^2;
(3,11)(4,5)(6,10)(7,8)
gap> Size(ConjugacyClass(g, 2B));
495
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 10;
gap> prop:= RatioOfNongenerationTransPermGroup(g, 2B, s);
31/99
gap> Filtered(approx, x -> x >= prop);
[1/3]

Computations with the GAP Character Table Library 441

Next we show that for s of order different from 10, P(g,s) is larger than 31/99 for suitable g ∈ S×.
Except for s in the class 6A (which fixes no point in the degree 12 representation), it suffices to consider
g in the class 2B (with four fixed points).

Example
gap> x:= g.2^2;
(3,11)(4,5)(6,10)(7,8)
gap> ccl:= List(ConjugacyClasses(g), Representative);;
gap> SortParallel(List(ccl, Order), ccl);
gap> prop:= List(ccl, r -> RatioOfNongenerationTransPermGroup(g, x, r));;
gap> SortedList(prop);
[7/55, 31/99, 5/9, 5/9, 39/55, 383/495, 383/495, 43/55, 29/33, 1, 1,

1, 1, 1, 1]
gap> bad:= Filtered(prop, x -> x < 31/99);
[7/55]
gap> pos:= Position(prop, bad[1]);;
gap> [Order(ccl[pos]), NrMovedPoints(ccl[pos])];
[6, 12]

In the remaining case, we choose g in the class 2A (which is fixed point free).
Example

gap> x:= g.3;
(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)
gap> s:= ccl[pos];;
gap> prop:= RatioOfNongenerationTransPermGroup(g, x, s);
17/33
gap> prop > 31/99;
true

Statement (e) has been shown already in Section 11.4.2.

11.5.11 O7(3)

We show that S = O7(3) satisfies the following.

(a) σ(S) = 199/351, and this value is attained exactly for σ(S,s) with s of order 14.

(b) For s ∈ S of order 14, M(S,s) consists of one group of the type 2.U4(3).22 = Ω−(6,3).2 and
two nonconjugate groups of the type S9.

(c) P(S) = 155/351, and this value is attained exactly for P(S,s) with s of order 14.

(d) The uniform spread of S is at least three, with s of order 14.

(e) σ ′(Aut(S),s) = 1/3.

Currently GAP provides neither the table of marks of S nor all character tables of its maximal
subgroups. First we compute those primitive permutation characters of S that have the degrees 351
(point stabilizer 2.U4(3).22), 364 (point stabilizer 35 : U4(2).2), 378 (point stabilizer L4(3).22), 1080
(point stabilizer G2(3), two classes), 1120 (point stabilizer 33+3 : L3(3)), 3159 (point stabilizer S6(2),
two classes), 12636 (point stabilizer S9, two classes), 22113 (point stabilizer (22×U4(2)).2, which
extends to D8×U4(2).2 in O7(3).2), and 28431 (point stabilizer 26 : A7).

Computations with the GAP Character Table Library 442

(So we ignore the primitive permutation characters of the degrees 3640, 265356, and 331695.
Note that the orders of the corresponding subgroups are not divisible by 7.)

Example
gap> t:= CharacterTable("O7(3)");;
gap> someprim:= [];;
gap> pi:= PossiblePermutationCharacters(
> CharacterTable("2.U4(3).2_2"), t);; Length(pi);
1
gap> Append(someprim, pi);
gap> pi:= PermChars(t, rec(torso:= [364]));; Length(pi);
1
gap> Append(someprim, pi);
gap> pi:= PossiblePermutationCharacters(
> CharacterTable("L4(3).2_2"), t);; Length(pi);
1
gap> Append(someprim, pi);
gap> pi:= PossiblePermutationCharacters(CharacterTable("G2(3)"), t);
[Character(CharacterTable("O7(3)"),

[1080, 0, 0, 24, 108, 0, 0, 0, 27, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0,
0, 0, 0, 12, 0, 0, 0, 0, 0, 3, 6, 0, 3, 2, 2, 2, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 4, 0, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]),

Character(CharacterTable("O7(3)"),
[1080, 0, 0, 24, 108, 0, 0, 27, 0, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0,

0, 0, 0, 12, 0, 0, 0, 0, 3, 0, 0, 6, 3, 2, 2, 2, 0, 0, 3, 0, 0,
0, 0, 0, 0, 0, 4, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0])]

gap> Append(someprim, pi);
gap> pi:= PermChars(t, rec(torso:= [1120]));; Length(pi);
1
gap> Append(someprim, pi);
gap> pi:= PossiblePermutationCharacters(CharacterTable("S6(2)"), t);
[Character(CharacterTable("O7(3)"),

[3159, 567, 135, 39, 0, 81, 0, 0, 27, 27, 0, 15, 3, 3, 7, 4, 0,
27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 3, 9, 3, 0, 2, 1, 1, 0, 0, 0,
3, 0, 2, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]),

Character(CharacterTable("O7(3)"),
[3159, 567, 135, 39, 0, 81, 0, 27, 0, 27, 0, 15, 3, 3, 7, 4, 0,

27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 3, 0, 3, 9, 0, 2, 1, 1, 0, 0, 3,
0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0])]

gap> Append(someprim, pi);
gap> pi:= PossiblePermutationCharacters(CharacterTable("S9"), t);
[Character(CharacterTable("O7(3)"),

[12636, 1296, 216, 84, 0, 81, 0, 0, 108, 27, 0, 6, 0, 12, 10, 1,
0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 12, 9, 3, 0, 1, 0, 2, 0,
0, 0, 3, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1]), Character(CharacterTable("O7(3)"),

[12636, 1296, 216, 84, 0, 81, 0, 108, 0, 27, 0, 6, 0, 12, 10, 1,
0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 12, 0, 3, 9, 0, 1, 0, 2, 0,
0, 3, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1])]

gap> Append(someprim, pi);
gap> t2:= CharacterTable("O7(3).2");;
gap> s2:= CharacterTable("Dihedral", 8) * CharacterTable("U4(2).2");
CharacterTable("Dihedral(8)xU4(2).2")

Computations with the GAP Character Table Library 443

gap> pi:= PossiblePermutationCharacters(s2, t2);; Length(pi);
1
gap> pi:= RestrictedClassFunctions(pi, t);;
gap> Append(someprim, pi);
gap> pi:= PossiblePermutationCharacters(
> CharacterTable("2^6:A7"), t);; Length(pi);
1
gap> Append(someprim, pi);
gap> List(someprim, x -> x[1]);
[351, 364, 378, 1080, 1080, 1120, 3159, 3159, 12636, 12636, 22113,

28431]

Note that in the three cases where two possible permutation characters were found, there are in
fact two classes of subgroups that induce different permutation characters. For the subgroups of the
types G2(3) and S6(2), this is stated in [CCN+85, p. 109], and for the subgroups of the type S9, this
follows from the fact that each S9 type subgroup in S contains elements in exactly one of the classes
3D or 3E, and these two classes are fused by the outer automorphism of S.

Example
gap> cl:= PositionsProperty(AtlasClassNames(t),
> x -> x in ["3D", "3E"]);
[8, 9]
gap> List(Filtered(someprim, x -> x[1] = 12636), pi -> pi{ cl });
[[0, 108], [108, 0]]
gap> GetFusionMap(t, t2){ cl };
[8, 8]

Now we compute the lower bounds for σ(S,s′) that are given by the sublist someprim of the
primitive permutation characters.

Example
gap> spos:= Position(OrdersClassRepresentatives(t), 14);
52
gap> Maximum(ApproxP(someprim, spos));
199/351

This shows that σ(S,s) = 199/351 holds. For statement (a), we have to show that choosing s′

from another class than 14A yields a larger value for σ(S,s′).
Example

gap> approx:= List([1 .. NrConjugacyClasses(t)],
> i -> Maximum(ApproxP(someprim, i)));;
gap> PositionsProperty(approx, x -> x <= 199/351);
[52]

Statement (b) can be read off from the permutation characters.
Example

gap> pos:= PositionsProperty(someprim, x -> x[spos] <> 0);
[1, 9, 10]
gap> List(someprim{ pos }, x -> x{ [1, spos] });
[[351, 1], [12636, 1], [12636, 1]]

Computations with the GAP Character Table Library 444

For statement (c), we first compute P(g,s) for g in the class 2A, via explicit computations with
the group. For dealing with this case, we first construct a faithful permutation representation of O7(3)
from the natural matrix representation of SO(7,3).

Example
gap> so73:= SpecialOrthogonalGroup(7, 3);;
gap> o73:= DerivedSubgroup(so73);;
gap> orbs:= OrbitsDomain(o73, Elements(GF(3)^7));;
gap> Set(orbs, Length);
[1, 702, 728, 756]
gap> g:= Action(o73, First(orbs, x -> Length(x) = 702));;
gap> Size(g) = Size(t);
true

A 2A element g can be found as the 7-th power of any element of order 14 in S.
Example

gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 14;
gap> 2A:= s^7;;
gap> bad:= RatioOfNongenerationTransPermGroup(g, 2A, s);
155/351
gap> bad > 1/3;
true
gap> approx:= ApproxP(someprim, spos);;
gap> PositionsProperty(approx, x -> x >= 1/3);
[2]

This shows that P(g,s) = 155/351 > 1/3. Since σ(g,s) < 1/3 for all nonidentity g not in the
class 2A, we have P(S,s) = 155/351. For statement (c), it remains to show that P(S,s′) is larger than
155/351 whenever s′ is not of order 14. First we compute P(g,s′), for g in the class 2A.

Example
gap> consider:= RepresentativesMaximallyCyclicSubgroups(t);
[18, 19, 25, 26, 27, 30, 31, 32, 34, 35, 38, 39, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58]
gap> Length(consider);
28
gap> consider:= ClassesPerhapsCorrespondingToTableColumns(g, t, consider);;
gap> Length(consider);
31
gap> consider:= List(consider, Representative);;
gap> SortParallel(List(consider, Order), consider);
gap> app2A:= List(consider, c ->
> RatioOfNongenerationTransPermGroup(g, 2A, c));;
gap> SortedList(app2A);
[1/3, 1/3, 155/351, 191/351, 67/117, 23/39, 23/39, 85/117, 10/13,

10/13, 1,
1]

gap> test:= PositionsProperty(app2A, x -> x <= 155/351);;
gap> List(test, i -> Order(consider[i]));
[13, 13, 14]

Computations with the GAP Character Table Library 445

We see that only for s′ in one of the two (algebraically conjugate) classes of element order 13,
P(S,s′) has a chance to be smaller than 155/351. This possibility is now excluded by counting ele-
ments in the class 3A that do not generate S together with s′ of order 13.

Example
gap> C3A:= First(ConjugacyClasses(g),
> c -> Order(Representative(c)) = 3 and Size(c) = 7280);;
gap> repeat ss:= Random(g);
> until Order(ss) = 13;
gap> bad:= RatioOfNongenerationTransPermGroup(g, Representative(C3A), ss);
17/35
gap> bad > 155/351;
true

Now we show statement (d): For each triple (x1,x2,x3) of nonidentity elements in S, there is an
element s in the class 14A such that 〈xi,s〉= S holds for 1≤ i≤ 3. We can read off from the character-
theoretic data that only those triples have to be checked for which at least two elements are contained
in the class 2A, and the third element lies in one of the classes 2A, 2B, 3B.

Example
gap> approx:= ApproxP(someprim, spos);;
gap> max:= Maximum(approx{ [3 .. Length(approx)] });
59/351
gap> 155 + 2*59 < 351;
true
gap> third:= PositionsProperty(approx, x -> 2 * 155/351 + x >= 1);
[2, 3, 6]
gap> ClassNames(t){ third };
["2a", "2b", "3b"]

We can find elements in the classes 2B and 3B as powers of arbitrary elements of the orders 20 and
15, respectively.

Example
gap> ord20:= PositionsProperty(OrdersClassRepresentatives(t),
> x -> x = 20);
[58]
gap> PowerMap(t, 10){ ord20 };
[3]
gap> repeat x:= Random(g);
> until Order(x) = 20;
gap> 2B:= x^10;;
gap> C2B:= ConjugacyClass(g, 2B);;
gap> ord15:= PositionsProperty(OrdersClassRepresentatives(t),
> x -> x = 15);
[53]
gap> PowerMap(t, 10){ ord15 };
[6]
gap> repeat x:= Random(g);
> until Order(x) = 15;
gap> 3B:= x^5;;
gap> C3B:= ConjugacyClass(g, 3B);;

Computations with the GAP Character Table Library 446

The existence of s can be shown with the random approach described in Section 11.3.3.
Example

gap> repeat s:= Random(g);
> until Order(s) = 14;
gap> RandomCheckUniformSpread(g, [2A, 2A, 2A], s, 50);
true
gap> RandomCheckUniformSpread(g, [2B, 2A, 2A], s, 50);
true
gap> RandomCheckUniformSpread(g, [3B, 2A, 2A], s, 50);
true

Finally, we show statement (e). Let G = Aut(S) = S.2. By [CCN+85, p. 109], M′(G,s) consists of
the extension of the 2.U4(3).21 type subgroup. We compute the extension of the permutation character.

Example
gap> prim:= someprim{ [1] };
[Character(CharacterTable("O7(3)"),

[351, 127, 47, 15, 27, 45, 36, 0, 0, 9, 0, 15, 3, 3, 7, 6, 19, 19,
10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 0, 3, 3, 0, 1, 1, 1, 6, 3, 0,
0, 2, 2, 0, 3, 0, 3, 3, 0, 0, 1, 0, 0, 1, 0, 4, 4, 1, 2, 0])]

gap> spos:= Position(AtlasClassNames(t), "14A");;
gap> t2:= CharacterTable("O7(3).2");;
gap> map:= InverseMap(GetFusionMap(t, t2));;
gap> torso:= List(prim, pi -> CompositionMaps(pi, map));;
gap> ext:= List(torso, x -> PermChars(t2, rec(torso:= x)));
[[Character(CharacterTable("O7(3).2"),

[351, 127, 47, 15, 27, 45, 36, 0, 9, 0, 15, 3, 3, 7, 6, 19,
19, 10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 3, 0, 1, 1, 1, 6, 3,
0, 2, 2, 0, 3, 0, 3, 3, 0, 1, 0, 0, 1, 0, 4, 1, 2, 0, 117,
37, 21, 45, 1, 13, 5, 1, 9, 9, 18, 15, 1, 7, 9, 6, 4, 0, 3,
0, 3, 3, 6, 2, 2, 9, 6, 1, 3, 1, 4, 1, 2, 1, 1, 0, 3, 1, 0,
0, 0, 0, 1, 1, 0, 0])]]

gap> approx:= ApproxP(Concatenation(ext),
> Position(AtlasClassNames(t2), "14A"));;
gap> Maximum(approx{ Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2)) });
1/3

11.5.12 O+
8 (2)

We show that S = O+
8 (2) = Ω+(8,2) satisfies the following.

(a) σ(S) = 334/315, and this value is attained exactly for σ(S,s) with s of order 15.

(b) For s ∈ S of order 15, M(S,s) consists of one group of the type S6(2), two conjugate groups
of the type 26 : A8, two conjugate groups of the type A9, and one group of each of the types
(3×U4(2)) : 2 = (3×Ω−(6,2)) : 2 and (A5×A5) : 22 = (Ω−(4,2)×Ω−(4,2)) : 22.

(c) P(S) = 29/42, and this value is attained exactly for P(S,s) with s of order 15.

(d) Let x,y ∈ S such that x,y,xy lie in the unique involution class of length 1575 of S. (This is the
class 2A.) Then each element in S together with one of x, y, xy generates a proper subgroup of S.

Computations with the GAP Character Table Library 447

(e) Both the spread and the uniform spread of S is exactly two, with s of order 15.

(f) For each choice of s∈ S, there is an extension S.2 such that for any element g in the (outer) class
2F, 〈s,g〉 does not contain S.

(g) For an element s of order 15 in S, either S is the only maximal subgroup of S.2 that contains
s, or the maximal subgroups of S.2 that contain s are S and the extensions of the subgroups
listed in statement (b); these groups have the structures S6(2)× 2, 26 : S8 (twice), S9 (twice),
S3×U4(2).2, and S5 o2.

(h) For s ∈ S of order 15 and arbitrary g ∈ S.3\S, we have 〈s,g〉= S.3.

(i) If x, y are nonidentity elements in Aut(S) then there is an element s of order 15 in S such that
S⊆ 〈x,s〉∩ 〈y,s〉.

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.
Example

gap> t:= CharacterTable("O8+(2)");;
gap> ProbGenInfoSimple(t);
["O8+(2)", 334/315, 0, ["15A", "15B", "15C"], [7, 7, 7]]

Statement (b) can be read off from the permutation characters, and the fact that the only classes of
maximal subgroups that contain elements of order 15 consist of groups of the structures as claimed,
see [CCN+85, p. 85].

Example
gap> prim:= PrimitivePermutationCharacters(t);;
gap> spos:= Position(OrdersClassRepresentatives(t), 15);;
gap> List(Filtered(prim, x -> x[spos] <> 0), l -> l{ [1, spos] });
[[120, 1], [135, 2], [960, 2], [1120, 1], [12096, 1]]

For the remaining statements, we take a primitive permutation representation on 120 points, and
assume that the permutation character is 1a+35a+84a. (See [CCN+85, p. 85], note that the three
classes of maximal subgroups of index 120 in S are conjugate under triality.)

Example
gap> matgroup:= DerivedSubgroup(GeneralOrthogonalGroup(1, 8, 2));;
gap> points:= NormedRowVectors(GF(2)^8);;
gap> orbs:= OrbitsDomain(matgroup, points);;
gap> List(orbs, Length);
[135, 120]
gap> g:= Action(matgroup, orbs[2]);;
gap> Size(g);
174182400
gap> pi:= Sum(Irr(t){ [1, 3, 7] });
Character(CharacterTable("O8+(2)"),
[120, 24, 32, 0, 0, 8, 36, 0, 0, 3, 6, 12, 4, 8, 0, 0, 0, 10, 0, 0,
12, 0, 0, 8, 0, 0, 3, 6, 0, 0, 2, 0, 0, 2, 1, 2, 2, 3, 0, 0, 2, 0,
0, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0])

In order to show statement (c), we first observe that for s in the class 15A and g not in one of the
classes 2A, 2B, 3A, σ(g,s)< 1/3 holds, and for the exceptional three classes, we have σ(g,s)> 1/2.

Computations with the GAP Character Table Library 448

Example
gap> approx:= ApproxP(prim, spos);;
gap> testpos:= PositionsProperty(approx, x -> x >= 1/3);
[2, 3, 7]
gap> AtlasClassNames(t){ testpos };
["2A", "2B", "3A"]
gap> approx{ testpos };
[254/315, 334/315, 1093/1120]
gap> ForAll(approx{ testpos }, x -> x > 1/2);
true

Now we compute the values P(g,s), for s in the class 15A and g in one of the classes 2A, 2B, 3A.
By our choice of the character of the permutation representation we use, the class 15A is deter-

mined as the unique class of element order 15 with one fixed point. (Note that the three classes of
element order 15 in S are conjugate under triality.) A 2A element can be found as the fourth power of
any element of order 8 in S, a 3A element can be found as the fifth power of a 15A element, and a 2B
element can be found as the sixth power of an element of order 12, with 32 fixed points.

Example
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 15 and NrMovedPoints(g) = 1 + NrMovedPoints(s);
gap> 3A:= s^5;;
gap> repeat x:= Random(g); until Order(x) = 8;
gap> 2A:= x^4;;
gap> repeat x:= Random(g); until Order(x) = 12 and
> NrMovedPoints(g) = 32 + NrMovedPoints(x^6);
gap> 2B:= x^6;;
gap> prop15A:= List([2A, 2B, 3A],
> x -> RatioOfNongenerationTransPermGroup(g, x, s));
[23/35, 29/42, 149/224]
gap> Maximum(prop15A);
29/42

This means that for s in the class 15A, we have P(S,s) = 29/42, and the same holds for all s of
order 15 since the three classes of element order 15 are conjugate under triality. Now we show that for
s of order different from 15, the value P(g,s) is larger than 29/42, for g in one of the classes 2A, 2B,
3A, or their images under triality. This implies statement (c).

Example
gap> test:= List([2A, 2B, 3A], x -> ConjugacyClass(g, x));;
gap> ccl:= ConjugacyClasses(g);;
gap> consider:= Filtered(ccl, c -> Size(c) in List(test, Size));;
gap> Length(consider);
7
gap> filt:= Filtered(ccl, c -> ForAll(consider, cc ->
> RatioOfNongenerationTransPermGroup(g, Representative(cc),
> Representative(c)) <= 29/42));;
gap> Length(filt);
3
gap> List(filt, c -> Order(Representative(c)));
[15, 15, 15]

Computations with the GAP Character Table Library 449

Now we show statement (d). First we observe that all those Klein four groups in S whose in-
volutions lie in the class 2A are conjugate in S. Note that this is the unique class of length 1575
in S, and also the unique class whose elements have 24 fixed points in the degree 120 permutation
representation.

For that, we use the character table of S to read off that S contains exactly 14175 such subgroups,
and we use the group to compute one such subgroup and its normalizer of index 14175.

Example
gap> SizesConjugacyClasses(t);
[1, 1575, 3780, 3780, 3780, 56700, 2240, 2240, 2240, 89600, 268800,

37800, 340200, 907200, 907200, 907200, 2721600, 580608, 580608,
580608, 100800, 100800, 100800, 604800, 604800, 604800, 806400,
806400, 806400, 806400, 2419200, 2419200, 2419200, 7257600,
24883200, 5443200, 5443200, 6451200, 6451200, 6451200, 8709120,
8709120, 8709120, 1209600, 1209600, 1209600, 4838400, 7257600,
7257600, 7257600, 11612160, 11612160, 11612160]

gap> NrPolyhedralSubgroups(t, 2, 2, 2);
rec(number := 14175, type := "V4")
gap> repeat x:= Random(g);
> until Order(x) mod 2 = 0
> and NrMovedPoints(x^(Order(x)/2)) = 120 - 24;
gap> x:= x^(Order(x)/2);;
gap> repeat y:= x^Random(g);
> until NrMovedPoints(x*y) = 120 - 24;
gap> v4:= SubgroupNC(g, [x, y]);;
gap> n:= Normalizer(g, v4);;
gap> Index(g, n);
14175

We verify that the triple has the required property.
Example

gap> maxorder:= RepresentativesMaximallyCyclicSubgroups(t);;
gap> maxorderreps:= List(ClassesPerhapsCorrespondingToTableColumns(g, t,
> maxorder), Representative);;
gap> Length(maxorderreps);
28
gap> CommonGeneratorWithGivenElements(g, maxorderreps, [x, y, x*y]);
fail

For the simple group S, it remains to show statement (e). We want to show that for any choice of
two nonidentity elements x, y in S, there is an element s in the class 15A such that 〈s,x〉 = 〈s,y〉 = S
holds. Only x, y in the classes given by the list testpos must be considered, by the estimates σ(g,s).

We replace the values σ(g,s) by the exact values P(g,s), for g in one of these three classes. Each
of the three classes is determined by its element order and its number of fixed points.

Example
gap> reps:= List(ccl, Representative);;
gap> bading:= List(testpos, i -> Filtered(reps,
> r -> Order(r) = OrdersClassRepresentatives(t)[i] and
> NrMovedPoints(r) = 120 - pi[i]));;
gap> List(bading, Length);
[1, 1, 1]
gap> bading:= List(bading, x -> x[1]);;

Computations with the GAP Character Table Library 450

For each pair (C1,C2) of classes represented by this list, we have to show that for any choice of
elements x ∈C1, y ∈C2 there is s in the class 15A such that 〈s,x〉= 〈s,y〉= S holds. This is done with
the random approach that is described in Section 11.3.3.

Example
gap> for pair in UnorderedTuples(bading, 2) do
> test:= RandomCheckUniformSpread(g, pair, s, 80);
> if test <> true then
> Error(test);
> fi;
> od;

We get no error message, so statement (e) holds.
Now we turn to the automorphic extensions of S. First we compute a permutation representation

of SO+(8,2)∼= S.2 and an element g in the class 2F, which is the unique conjugacy class of size 120
in S.2.

Example
gap> matgrp:= SO(1,8,2);;
gap> g2:= Image(IsomorphismPermGroup(matgrp));;
gap> IsTransitive(g2, MovedPoints(g2));
true
gap> repeat x:= Random(g2); until Order(x) = 14;
gap> 2F:= x^7;;
gap> Size(ConjugacyClass(g2, 2F));
120

Only for s in six conjugacy classes of S, there is a nonzero probability to have S.2 = 〈g,s〉.
Example

gap> der:= DerivedSubgroup(g2);;
gap> cclreps:= List(ConjugacyClasses(der), Representative);;
gap> nongen:= List(cclreps,
> x -> RatioOfNongenerationTransPermGroup(g2, 2F, x));;
gap> goodpos:= PositionsProperty(nongen, x -> x < 1);;
gap> invariants:= List(goodpos, i -> [Order(cclreps[i]),
> Size(Centralizer(g2, cclreps[i])), nongen[i]]);;
gap> SortedList(invariants);
[[10, 20, 1/3], [10, 20, 1/3], [12, 24, 2/5], [12, 24, 2/5],

[15, 15, 0], [15, 15, 0]]

S contains three classes of element order 10, which are conjugate in S.3. For a fixed extension of
the type S.2, the element s can be chosen only in two of these three classes, which means that there
is another group of the type S.2 (more precisely, another subgroup of index three in S.S3) in which
this choice of s is not suitable –note that the general aim is to find s ∈ S uniformly for all automorphic
extensions of S. Analogous statements hold for the other possibilities for s, so statement (f) follows.

Statement (g) follows from the list of maximal subgroups in [CCN+85, p. 85].
Statement (h) follows from the fact that S is the only maximal subgroup of S.3 that contains

elements of order 15, according to the list of maximal subgroups in [CCN+85, p. 85]. Alternatively,
if we do not want to assume this information, we can use explicit computations, as follows. All we
have to check is that any element in the classes 3F and 3G generates S.3 together with a fixed element
of order 15 in S.

Computations with the GAP Character Table Library 451

We compute a permutation representation of S.3 as the derived subgroup of a subgroup of the type
S.S3 inside the sporadic simple Fischer group Fi22; these subgroups lie in the fourth class of maximal
subgroups of Fi22, see [CCN+85, p. 163]. An element in the class 3F of S.3 can be found as a power
of an order 21 element, and an element in the class 3G can be found as the fourth power of a 12P
element.

Example
gap> aut:= Group(AtlasGenerators("Fi22", 1, 4).generators);;
gap> Size(aut) = 6 * Size(t);
true
gap> g3:= DerivedSubgroup(aut);;
gap> orbs:= OrbitsDomain(g3, MovedPoints(g3));;
gap> List(orbs, Length);
[3150, 360]
gap> g3:= Action(g3, orbs[2]);;
gap> repeat s:= Random(g3); until Order(s) = 15;
gap> repeat x:= Random(g3); until Order(x) = 21;
gap> 3F:= x^7;;
gap> RatioOfNongenerationTransPermGroup(g3, 3F, s);
0
gap> repeat x:= Random(g3);
> until Order(x) = 12 and Size(Centralizer(g3, x^4)) = 648;
gap> 3G:= x^4;;
gap> RatioOfNongenerationTransPermGroup(g3, 3G, s);
0

Finally, consider statement (i). It implies that [BGK08, Corollary 1.5] holds for Ω+(8,2), with
s of order 15. Note that by part (f), s cannot be chosen in a prescribed conjugacy class of S that is
independent of the elements x, y.

If x and y lie in S then statement (i) follows from part (e), and by part (g), the case that x or y lie
in S.3 \ S is also not a problem. We now show that also x or y in S.2 \ S is not a problem. Here we
have to deal with the cases that x and y lie in the same subgroup of index 3 in Aut(S) or in different
such subgroups. Actually we show that for each index 3 subgroup H = S.2 < Aut(S), we can choose
s from two of the three classes of element order 15 in S such that S is the only maximal subgroup of
H that contains s, and thus 〈x,s〉 contains H, for any choice of x ∈ H \S.

For that, we note that no novelty in S.2 contains elements of order 15, so all maximal subgroups
of S.2 that contain such elements –besides S– have one of the indices 120,135,960,1120, or 12096,
and point stabilizers of the types S6(2)× 2, 26 : S8, S9, S3×U4(2) : 2, or S5 o 2. We compute the
corresponding permutation characters.

Example
gap> t2:= CharacterTable("O8+(2).2");;
gap> s:= CharacterTable("S6(2)") * CharacterTable("Cyclic", 2);;
gap> pi:= PossiblePermutationCharacters(s, t2);;
gap> prim:= pi;;
gap> pi:= PermChars(t2, rec(torso:= [135]));;
gap> Append(prim, pi);
gap> pi:= PossiblePermutationCharacters(CharacterTable("A9.2"), t2);;
gap> Append(prim, pi);
gap> s:= CharacterTable("Dihedral(6)") * CharacterTable("U4(2).2");;
gap> pi:= PossiblePermutationCharacters(s, t2);;
gap> Append(prim, pi);

Computations with the GAP Character Table Library 452

gap> s:= CharacterTableWreathSymmetric(CharacterTable("S5"), 2);;
gap> pi:= PossiblePermutationCharacters(s, t2);;
gap> Append(prim, pi);
gap> Length(prim);
5
gap> ord15:= PositionsProperty(OrdersClassRepresentatives(t2),
> x -> x = 15);
[39, 40]
gap> List(prim, pi -> pi{ ord15 });
[[1, 0], [2, 0], [2, 0], [1, 0], [1, 0]]
gap> List(ord15, i -> Maximum(ApproxP(prim, i)));
[307/120, 0]

Here it is appropriate to clean the workspace again.
Example

gap> CleanWorkspace();

11.5.13 O+
8 (3)

We show that S = O+
8 (3) satisfies the following.

(a) σ(S) = 863/1820, and this value is attained exactly for σ(S,s) with s of order 20.

(b) For s ∈ S of order 20, M(S,s) consists of two nonconjugate groups of the type O7(3) = Ω(7,3),
two conjugate subgroups of the type 36 : L4(3), two nonconjugate subgroups of the type (A4×
U4(2)) : 2, and one subgroup of each of the types 2.U4(3).(22)122 and (A6×A6) : 22.

(c) P(S) = 194/455, and this value is attained exactly for P(S,s) with s of order 20.

(d) The uniform spread of S is at least three, with s of order 20.

(e) The preimage of s in the matrix group 2.S = Ω+(8,3) can be chosen of order 40, and
then the maximal subgroups of 2.S containing s have the structures 2.O7(3), 36 : 2.L4(3),
4.U4(3).22 = SU(4,3).22, 2.(A4 ×U4(2)).2 = 2.(PSp(2,3)⊗ PSp(4,3)).2, and 2.(A6 × A6) :
22 = 2.(Ω−(4,3)×Ω−(4,3)) : 22, respectively.

(f) For s∈ S of order 20, we have P′(S.21,s)∈{83/567,574/1215}, P′(S.22,s)∈{0,1} (depending
on the choice of s), and σ ′(S.3,s) = 0.

Furthermore, for any choice of s′ ∈ S, we have σ ′(S.22,s′) = 1 for some group S.22. However,
if it is allowed to choose s from an Aut(S)-class of elements of order 20 (and not from a fixed
S-class) then we can achieve σ(g,s) = 0 for any given g ∈ S.22 \S.

(g) The maximal subgroups of S.21 that contain an element of order 20 are either S and the exten-
sions of the subgroups listed in statement (b) or they are S and L4(3).22, 36 : L4(3).2 (twice),
2.U4(3).(22)122.2, and (A6×A6) : 22.2.

In the former case, the groups have the structures O7(3) : 2 (twice), 36 : (L4(3)× 2) (twice),
S4×U4(2).2 (twice), 2.U4(3).(22)122.2, and (A6×A6) : 22×2.

Statement (a) follows from inspection of the primitive permutation characters.

Computations with the GAP Character Table Library 453

Example
gap> t:= CharacterTable("O8+(3)");;
gap> ProbGenInfoSimple(t);
["O8+(3)", 863/1820, 2, ["20A", "20B", "20C"], [8, 8, 8]]

Also statement (b) follows from the information provided by the character table of S (cf. [CCN+85,
p. 140]).

Example
gap> prim:= PrimitivePermutationCharacters(t);;
gap> ord:= OrdersClassRepresentatives(t);;
gap> spos:= Position(ord, 20);;
gap> filt:= PositionsProperty(prim, x -> x[spos] <> 0);
[1, 2, 7, 15, 18, 19, 24]
gap> Maxes(t){ filt };
["O7(3)", "O8+(3)M2", "3^6:L4(3)", "2.U4(3).(2^2)_{122}",

"(A4xU4(2)):2", "O8+(3)M19", "(A6xA6):2^2"]
gap> prim{ filt }{ [1, spos] };
[[1080, 1], [1080, 1], [1120, 2], [189540, 1],

[7960680, 1], [7960680, 1], [9552816, 1]]

For statement (c), we first show that P(S,s) = 194/455 holds. Since this value is larger than 1/3,
we have to inspect only those classes gS for which σ(g,s)≥ 1/3 holds,

Example
gap> ord:= OrdersClassRepresentatives(t);;
gap> ord20:= PositionsProperty(ord, x -> x = 20);;
gap> cand:= [];;
gap> for i in ord20 do
> approx:= ApproxP(prim, i);
> Add(cand, PositionsProperty(approx, x -> x >= 1/3));
> od;
gap> cand;
[[2, 6, 7, 10], [3, 6, 8, 11], [4, 6, 9, 12]]
gap> AtlasClassNames(t){ cand[1] };
["2A", "3A", "3B", "3E"]

The three possibilities form one orbit under the outer automorphism group of S.
Example

gap> t3:= CharacterTable("O8+(3).3");;
gap> tfust3:= GetFusionMap(t, t3);;
gap> List(cand, x -> tfust3{ x });
[[2, 4, 5, 6], [2, 4, 5, 6], [2, 4, 5, 6]]

By symmetry, we may consider only the first possibility, and assume that s is in the class 20A.
We work with a permutation representation of degree 1080, and assume that the permutation

character is 1a+260a+819a. (Note that all permutation characters of S of degree 1080 are conjugate
under Aut(S).)

Example
gap> g:= Action(SO(1,8,3), NormedRowVectors(GF(3)^8), OnLines);;
gap> Size(g);

Computations with the GAP Character Table Library 454

9904359628800
gap> g:= DerivedSubgroup(g);; Size(g);
4952179814400
gap> orbs:= OrbitsDomain(g, MovedPoints(g));;
gap> List(orbs, Length);
[1080, 1080, 1120]
gap> g:= Action(g, orbs[1]);;
gap> PositionProperty(Irr(t), chi -> chi[1] = 819);
9
gap> permchar:= Sum(Irr(t){ [1, 2, 9] });
Character(CharacterTable("O8+(3)"),
[1080, 128, 0, 0, 24, 108, 135, 0, 0, 108, 0, 0, 27, 27, 0, 0, 18,
9, 12, 16, 0, 0, 4, 15, 0, 0, 20, 0, 0, 12, 11, 0, 0, 20, 0, 0, 15,
0, 0, 12, 0, 0, 2, 0, 0, 3, 3, 0, 0, 6, 6, 0, 0, 3, 2, 2, 2, 18, 0,
0, 9, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 12, 0, 0, 3, 0, 0, 0,
0, 0, 4, 3, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 3,
0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0])

Now we show that for s in the class 20A (which fixes one point), the proportion of nongenerating
elements g in one of the classes 2A, 3A, 3B, 3E has the maximum 194/455, which is attained exactly
for 3A. (We find a 2A element as a power of s, a 3A element as a power of any element of order 18, a
3B and a 3E element as elements with 135 and 108 fixed points, respectively, which occur as powers
of suitable elements of order 15.)

Example
gap> permchar{ ord20 };
[1, 0, 0]
gap> AtlasClassNames(t)[PowerMap(t, 10)[ord20[1]]];
"2A"
gap> ord18:= PositionsProperty(ord, x -> x = 18);;
gap> Set(AtlasClassNames(t){ PowerMap(t, 6){ ord18 } });
["3A"]
gap> ord15:= PositionsProperty(ord, x -> x = 15);;
gap> PowerMap(t, 5){ ord15 };
[7, 8, 9, 10, 11, 12]
gap> AtlasClassNames(t){ [7 .. 12] };
["3B", "3C", "3D", "3E", "3F", "3G"]
gap> permchar{ [7 .. 12] };
[135, 0, 0, 108, 0, 0]
gap> mp:= NrMovedPoints(g);;
gap> ResetGlobalRandomNumberGenerators();
gap> repeat 20A:= Random(g);
> until Order(20A) = 20 and mp - NrMovedPoints(20A) = 1;
gap> 2A:= 20A^10;;
gap> repeat x:= Random(g); until Order(x) = 18;
gap> 3A:= x^6;;
gap> repeat x:= Random(g);
> until Order(x) = 15 and mp - NrMovedPoints(x^5) = 135;
gap> 3B:= x^5;;
gap> repeat x:= Random(g);
> until Order(x) = 15 and mp - NrMovedPoints(x^5) = 108;
gap> 3E:= x^5;;
gap> nongen:= List([2A, 3A, 3B, 3E],

Computations with the GAP Character Table Library 455

> c -> RatioOfNongenerationTransPermGroup(g, c, 20A));
[3901/9477, 194/455, 451/1092, 451/1092]
gap> Maximum(nongen);
194/455

Next we compute the values P(g,s), for g is in the class 3A and certain elements s. It is enough to
consider representatives s of maximally cyclic subgroups in S, but here we can do better, as follows.
Since 3A is the unique class of length 72800, it is fixed under Aut(S), so it is enough to consider one
element s from each Aut(S)-orbit on the classes of S. We use the class fusion between the character
tables of S and Aut(S) for computing orbit representatives.

Example
gap> maxorder:= RepresentativesMaximallyCyclicSubgroups(t);;
gap> Length(maxorder);
57
gap> autt:= CharacterTable("O8+(3).S4");;
gap> fus:= PossibleClassFusions(t, autt);;
gap> orbreps:= Set(fus, map -> Set(ProjectionMap(map)));
[[1, 2, 5, 6, 7, 13, 17, 18, 19, 20, 23, 24, 27, 30, 31, 37, 43,

46, 50, 54, 55, 56, 57, 58, 64, 68, 72, 75, 78, 84, 85, 89, 95,
96, 97, 100, 106, 112]]

gap> totest:= Intersection(maxorder, orbreps[1]);
[43, 50, 54, 56, 57, 64, 68, 75, 78, 84, 85, 89, 95, 97, 100, 106,

112]
gap> Length(totest);
17
gap> AtlasClassNames(t){ totest };
["6Q", "6X", "6B1", "8A", "8B", "9G", "9K", "12A", "12D", "12J",

"12K", "12O", "13A", "14A", "15A", "18A", "20A"]

This means that we have to test one element of each of the element orders 13, 14, 15, and 18 (note
that we know already a bound for elements of order 20), plus certain elements of the orders 6, 8, 9,
and 12 which can be identified by their centralizer orders and (for elements of order 6 and 8) perhaps
the centralizer orders of some powers.

Example
gap> elementstotest:= [];;
gap> for elord in [13, 14, 15, 18] do
> repeat s:= Random(g);
> until Order(s) = elord;
> Add(elementstotest, s);
> od;

The next elements to be tested are in the classes 6B1 (centralizer order 162), in one of 9G–9J
(centralizer order 729), in one of 9K–9N (centralizer order 81), in one of 12A–12C (centralizer order
1728), in one of 12D–12I (centralizer order 432), in 12J (centralizer order 192), in one of 12K–12N
(centralizer order 108), and in one of 12O–12T (centralizer order 72).

Example
gap> ordcent:= [[6, 162], [9, 729], [9, 81], [12, 1728],
> [12, 432], [12, 192], [12, 108], [12, 72]];;
gap> cents:= SizesCentralizers(t);;

Computations with the GAP Character Table Library 456

gap> for pair in ordcent do
> Print(pair, ": ", AtlasClassNames(t){
> Filtered([1 .. Length(ord)],
> i -> ord[i] = pair[1] and cents[i] = pair[2]) }, "\n");
> repeat s:= Random(g);
> until Order(s) = pair[1] and Size(Centralizer(g, s)) = pair[2];
> Add(elementstotest, s);
> od;
[6, 162]: ["6B1"]
[9, 729]: ["9G", "9H", "9I", "9J"]
[9, 81]: ["9K", "9L", "9M", "9N"]
[12, 1728]: ["12A", "12B", "12C"]
[12, 432]: ["12D", "12E", "12F", "12G", "12H", "12I"]
[12, 192]: ["12J"]
[12, 108]: ["12K", "12L", "12M", "12N"]
[12, 72]: ["12O", "12P", "12Q", "12R", "12S", "12T"]

The next elements to be tested are in one of the classes 6Q–6S (centralizer order 648).
Example

gap> AtlasClassNames(t){ Filtered([1 .. Length(ord)],
> i -> cents[i] = 648 and cents[PowerMap(t, 2)[i]] = 52488
> and cents[PowerMap(t, 3)[i]] = 26127360) };
["6Q", "6R", "6S"]
gap> repeat s:= Random(g);
> until Order(s) = 6 and Size(Centralizer(g, s)) = 648
> and Size(Centralizer(g, s^2)) = 52488
> and Size(Centralizer(g, s^3)) = 26127360;
gap> Add(elementstotest, s);

The next elements to be tested are in the class 6X–6A1 (centralizer order 648).
Example

gap> AtlasClassNames(t){ Filtered([1 .. Length(ord)],
> i -> cents[i] = 648 and cents[PowerMap(t, 2)[i]] = 52488
> and cents[PowerMap(t, 3)[i]] = 331776) };
["6X", "6Y", "6Z", "6A1"]
gap> repeat s:= Random(g);
> until Order(s) = 6 and Size(Centralizer(g, s)) = 648
> and Size(Centralizer(g, s^2)) = 52488
> and Size(Centralizer(g, s^3)) = 331776;
gap> Add(elementstotest, s);

Finally, we add elements from the classes 8A and 8B.
Example

gap> AtlasClassNames(t){ Filtered([1 .. Length(ord)],
> i -> ord[i] = 8 and cents[PowerMap(t, 2)[i]] = 13824) };
["8A"]
gap> repeat s:= Random(g);
> until Order(s) = 8 and Size(Centralizer(g, s^2)) = 13824;
gap> Add(elementstotest, s);
gap> AtlasClassNames(t){ Filtered([1 .. Length(ord)],

Computations with the GAP Character Table Library 457

> i -> ord[i] = 8 and cents[PowerMap(t, 2)[i]] = 1536) };
["8B"]
gap> repeat s:= Random(g);
> until Order(s) = 8 and Size(Centralizer(g, s^2)) = 1536;
gap> Add(elementstotest, s);

Now we compute the ratios. It turns out that from these candidates, only elements s of the orders
14 and 15 satisfy P(g,s)< 194/455.

Example
gap> nongen:= List(elementstotest,
> s -> RatioOfNongenerationTransPermGroup(g, 3A, s));;
gap> smaller:= PositionsProperty(nongen, x -> x < 194/455);
[2, 3]
gap> nongen{ smaller };
[127/325, 1453/3640]

So the only candidates for s that may be better than order 20 elements are elements of order 14 or
15. In order to exclude these two possibilities, we compute P(g,s) for s in the class 14A and g = s7 in
the class 2A, and for s in the class 15A and g in the class 2A, which yields values that are larger than
194/455.

Example
gap> repeat s:= Random(g);
> until Order(s) = 14 and NrMovedPoints(s) = 1078;
gap> 2A:= s^7;;
gap> nongen:= RatioOfNongenerationTransPermGroup(g, 2A, s);
1573/3645
gap> nongen > 194/455;
true
gap> repeat s:= Random(g);
> until Order(s) = 15 and NrMovedPoints(s) = 1080 - 3;
gap> nongen:= RatioOfNongenerationTransPermGroup(g, 2A, s);
490/1053
gap> nongen > 194/455;
true

For statement (d), we show that for each triple of elements in the union of the classes 2A, 3A, 3B,
3E there is an element in the class 20A that generates S together with each element of the triple.

Example
gap> for tup in UnorderedTuples([2A, 3A, 3B, 3E], 3) do
> cl:= ShallowCopy(tup);
> test:= RandomCheckUniformSpread(g, cl, 20A, 100);
> if test <> true then
> Error(test);
> fi;
> od;

We get no error message, so statement (d) is true.
For statement (e), first we show that 2.S = Ω+(8,3) contains elements of order 40 but S does not.

Computations with the GAP Character Table Library 458

Example
gap> der:= DerivedSubgroup(SO(1,8,3));;
gap> repeat x:= PseudoRandom(der); until Order(x) = 40;
gap> 40 in ord;
false

Thus elements of order 40 must arise as preimages of order 20 elements under the natural epimor-
phism from 2.S to S, which means that we may choose an order 40 preimage ŝ of s. Then M(2.S, ŝ)
consists of central extensions of the subgroups listed in statement (b). The perfect subgroups O7(3),
L4(3), 2.U4(3), and U4(2) of these groups must lift to their Schur double covers in 2.S because other-
wise the preimages would not contain elements of order 40.

Next we consider the preimage of the subgroup U = (A4 ×U4(2)).2 of S. We show that the
preimages of the two direct factors A4 and U4(2) in U ′ = A4×U4(2) are Schur covers. For A4, this
follows from the fact that the preimage of U ′ must contain elements of order 20, and that U4(2) does
not contain elements of order 10.

Example
gap> u42:= CharacterTable("U4(2)");;
gap> Filtered(OrdersClassRepresentatives(u42), x -> x mod 5 = 0);
[5]

In order to show that the U4(2) type subgroup of U ′ lifts to its double cover in 2.S, we note that
the class 2B of U4(2) lifts to a class of elements of order four in the double cover 2.U4(2), and that the
corresponding class of elements in U is S-conjugate to the class of involutions in the direct factor A4
(which is the unique class of length three in U).

Example
gap> u:= CharacterTable(Maxes(t)[18]);
CharacterTable("(A4xU4(2)):2")
gap> 2u42:= CharacterTable("2.U4(2)");;
gap> OrdersClassRepresentatives(2u42)[4];
4
gap> GetFusionMap(2u42, u42)[4];
3
gap> OrdersClassRepresentatives(u42)[3];
2
gap> List(PossibleClassFusions(u42, u), x -> x[3]);
[8]
gap> PositionsProperty(SizesConjugacyClasses(u), x -> x = 3);
[2]
gap> ForAll(PossibleClassFusions(u, t), x -> x[2] = x[8]);
true

The last subgroup for which the structure of the preimage has to be shown is U = (A6×A6) : 22.
We claim that each of the A6 type subgroups in the derived subgroup U ′ = A6×A6 lifts to its double
cover in 2.S. Since all elements of order 20 in U lie in U ′, at least one of the two direct factors must
lift to its double cover, in order to give rise to an order 40 element in U . In fact both factors lift to the
double cover since the two direct factors are interchanged by conjugation in U ; the latter follows form
tha fact that U has no normal subgroup of type A6.

Computations with the GAP Character Table Library 459

Example
gap> u:= CharacterTable(Maxes(t)[24]);
CharacterTable("(A6xA6):2^2")
gap> ClassPositionsOfDerivedSubgroup(u);
[1 .. 22]
gap> PositionsProperty(OrdersClassRepresentatives(u), x -> x = 20);
[8]
gap> List(ClassPositionsOfNormalSubgroups(u),
> x -> Sum(SizesConjugacyClasses(u){ x }));
[1, 129600, 259200, 259200, 259200, 518400]

So statement (e) holds.
For statement (f), we have to consider the upward extensions S.21, S.22, and S.3.
First we look at S.21, an extension by an outer automorphism that acts as a double transposition in

the outer automorphism group S4. Note that the symmetry between the three classes of element oder
20 in S is broken in S.21, two of these classes have square roots in S.21, the third has not.

Example
gap> t2:= CharacterTable("O8+(3).2_1");;
gap> ord20:= PositionsProperty(OrdersClassRepresentatives(t2),
> x -> x = 20);;
gap> ord20:= Intersection(ord20, ClassPositionsOfDerivedSubgroup(t2));
[84, 85, 86]
gap> List(ord20, x -> x in PowerMap(t2, 2));
[false, true, true]

Changing the viewpoint, we see that for each class of element order 20 in S, there is a group of the
type S.21 in which the elements in this class do not have square roots, and there are groups of this type
in which these elements have square roots. So we have to deal with two different cases, and we do this
by first collecting the permutation characters induced from all maximal subgroups of S.21 (other than
S) that contain elements of order 20 in S, and then considering s in each of these classes of S.

We fix an embedding of S into S.21 in which the elements in the class 20A do not have square
roots. This situation is given for the stored class fusion between the tables in the GAP Character Table
Library.

Example
gap> tfust2:= GetFusionMap(t, t2);;
gap> tfust2{ PositionsProperty(OrdersClassRepresentatives(t),
> x -> x = 20) };
[84, 85, 86]

The six different actions of S on the cosets of O7(3) type subgroups induce pairwise different
permutation characters that form an orbit under the action of Aut(S). Four of these characters cannot
extend to S.21, the other two extend to permutation characters of S.21 on the cosets of O7(3).2 type
subgroups; these subgroups contain 20A elements.

Example
gap> primt2:= [];;
gap> poss:= PossiblePermutationCharacters(CharacterTable("O7(3)"), t);;
gap> invfus:= InverseMap(tfust2);;
gap> List(poss, pi -> ForAll(CompositionMaps(pi, invfus), IsInt));

Computations with the GAP Character Table Library 460

[false, false, false, false, true, true]
gap> PossiblePermutationCharacters(
> CharacterTable("O7(3)") * CharacterTable("Cyclic", 2), t2);
[]
gap> ext:= PossiblePermutationCharacters(CharacterTable("O7(3).2"), t2);;
gap> List(ext, pi -> pi{ ord20 });
[[1, 0, 0], [1, 0, 0]]
gap> Append(primt2, ext);

The novelties in S.21 that arise from O7(3) type subgroups of S have the structure L4(3).22. These
subgroups contain elements in the classes 20B and 20C of S.

Example
gap> ext:= PossiblePermutationCharacters(CharacterTable("L4(3).2^2"), t2);;
gap> List(ext, pi -> pi{ ord20 });
[[0, 0, 1], [0, 1, 0]]
gap> Append(primt2, ext);

Note that from the possible permutation characters of S.21 on the cosets of L4(3) : 2×2 type sub-
groups, we see that such subgroups must contain 20A elements, i. e., all such subgroups of S.21 lie in-
side O7(3).2 type subgroups. This means that the structure description of these novelties in [CCN+85,
p. 140] is not correct. The correct structure is L4(3).22.)

Example
gap> List(PossiblePermutationCharacters(CharacterTable("L4(3).2_2") *
> CharacterTable("Cyclic", 2), t2), pi -> pi{ ord20 });
[[1, 0, 0]]

All 36 : L4(3) type subgroups of S extend to S.21. We compute these permutation characters as the
possible permutation characters of the right degree.

Example
gap> ext:= PermChars(t2, rec(torso:= [1120]));;
gap> List(ext, pi -> pi{ ord20 });
[[2, 0, 0], [0, 0, 2], [0, 2, 0]]
gap> Append(primt2, ext);

Also all 2.U4(3).22 type subgroups of S extend to S.21. We compute the permutation characters as
the extensions of the corresponding permutation characters of S.

Example
gap> filt:= Filtered(prim, x -> x[1] = 189540);;
gap> cand:= List(filt, x -> CompositionMaps(x, invfus));;
gap> ext:= Concatenation(List(cand,
> pi -> PermChars(t2, rec(torso:= pi))));;
gap> List(ext, x -> x{ ord20 });
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> Append(primt2, ext);

The extensions of (A4×U4(2)) : 2 type subgroups of S to S.21 have the type S4×U4(2) : 2, they
contain 20A elements.

Computations with the GAP Character Table Library 461

Example
gap> ext:= PossiblePermutationCharacters(CharacterTable("Symmetric", 4) *
> CharacterTable("U4(2).2"), t2);;
gap> List(ext, x -> x{ ord20 });
[[1, 0, 0], [1, 0, 0]]
gap> Append(primt2, ext);

All (A6×A6) : 22 type subgroups of S extend to S.21. We compute the permutation characters as
the extensions of the corresponding permutation characters of S.

Example
gap> filt:= Filtered(prim, x -> x[1] = 9552816);;
gap> cand:= List(filt, x -> CompositionMaps(x, InverseMap(tfust2)));;
gap> ext:= Concatenation(List(cand,
> pi -> PermChars(t2, rec(torso:= pi))));;
gap> List(ext, x -> x{ ord20 });
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
gap> Append(primt2, ext);

We have found all relevant permutation characters of S.21. This together with the list in [CCN+85,
p. 140] implies statement (g).

Now we compute the bounds σ ′(S.21,s).
Example

gap> Length(primt2);
15
gap> approx:= List(ord20, x -> ApproxP(primt2, x));;
gap> outer:= Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2));;
gap> List(approx, l -> Maximum(l{ outer }));
[574/1215, 83/567, 83/567]

Next we look at S.22, an extension by an outer automorphism that acts as a transposition in the
outer automorphism group S4. Similar to the above situation, the symmetry between the three classes
of element oder 20 in S is broken also in S.22: The first is a conjugacy class of S.22, the other two
classes are fused in S.22,

Example
gap> t2:= CharacterTable("O8+(3).2_2");;
gap> ord20:= PositionsProperty(OrdersClassRepresentatives(t2),
> x -> x = 20);;
gap> ord20:= Intersection(ord20, ClassPositionsOfDerivedSubgroup(t2));
[82, 83]
gap> tfust2:= GetFusionMap(t, t2);;
gap> tfust2{ PositionsProperty(OrdersClassRepresentatives(t),
> x -> x = 20) };
[82, 83, 83]

Like in the case S.21, we compute the permutation characters induced from all maximal subgroups
of S.22 (other than S) that contain elements of order 20 in S.

Computations with the GAP Character Table Library 462

We fix the embedding of S into S.22 in which the class 20A of S is a class of S.22. This situation is
given for the stored class fusion between the tables in the GAP Character Table Library.

Exactly two classes of O7(3) type subgroups in S extend to S.22, these groups contain 20A ele-
ments.

Example
gap> primt2:= [];;
gap> ext:= PermChars(t2, rec(torso:= [1080]));;
gap> List(ext, pi -> pi{ ord20 });
[[1, 0], [1, 0]]
gap> Append(primt2, ext);

Only one class of 36 : L4(3) type subgroups extends to S.22. (Note that we need not consider the
novelties of the type 33+6 : (L3(3)×2), because the order of these groups is not divisible by 5.)

Example
gap> ext:= PermChars(t2, rec(torso:= [1120]));;
gap> List(ext, pi -> pi{ ord20 });
[[2, 0]]
gap> Append(primt2, ext);

Only one class of 2.U4(3).22 type subgroups of S extends to S.22. We compute the permutation
character as the extension of the corresponding permutation characters of S.

Example
gap> filt:= Filtered(prim, x -> x[1] = 189540);;
gap> cand:= List(filt, x -> CompositionMaps(x, InverseMap(tfust2)));;
gap> ext:= Concatenation(List(cand,
> pi -> PermChars(t2, rec(torso:= pi))));;
gap> List(ext, x -> x{ ord20 });
[[1, 0]]
gap> Append(primt2, ext);

Two classes of (A4×U4(2)) : 2 type subgroups of S extend to S.22.
Example

gap> filt:= Filtered(prim, x -> x[1] = 7960680);;
gap> cand:= List(filt, x -> CompositionMaps(x, InverseMap(tfust2)));;
gap> ext:= Concatenation(List(cand,
> pi -> PermChars(t2, rec(torso:= pi))));;
gap> List(ext, x -> x{ ord20 });
[[1, 0], [1, 0]]
gap> Append(primt2, ext);

Exactly one class of (A6×A6) : 22 type subgroups in S extends to S.22, and the extensions have
the structure S6 o2.

Example
gap> ext:= PossiblePermutationCharacters(CharacterTableWreathSymmetric(
> CharacterTable("S6"), 2), t2);;
gap> List(ext, x -> x{ ord20 });
[[1, 0]]
gap> Append(primt2, ext);

Computations with the GAP Character Table Library 463

We have found all relevant permutation characters of S.22, and compute the bounds σ ′(S.22,s).
Example

gap> Length(primt2);
7
gap> approx:= List(ord20, x -> ApproxP(primt2, x));;
gap> outer:= Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2));;
gap> List(approx, l -> Maximum(l{ outer }));
[14/9, 0]

This means that there is an extension of the type S.22 in which s cannot be chosen such that the
bound is less than 1/2. More precisely, we have σ(g,s) ≥ 1/2 exactly for g in the unique outer
involution class of size 1080.

Example
gap> approx:= ApproxP(primt2, ord20[1]);;
gap> bad:= Filtered(outer, i -> approx[i] >= 1/2);
[84]
gap> OrdersClassRepresentatives(t2){ bad };
[2]
gap> SizesConjugacyClasses(t2){ bad };
[1080]
gap> Number(SizesConjugacyClasses(t2), x -> x = 1080);
1

So we compute the proportion of elements in this class that generate S.22 together with an element
s of order 20 in S. (As above, we have to consider two conjugacy classes.) For that, we first compute
a permutation representation of S.22, using that S.22 is isomporphic to the two subgroups of index 2
in PGO+(8,3) = O+

8 (3).2
2
122 that are different from PSO+(8,3) = O+

8 (3).21, cf. [CCN+85, p. 140].
Example

gap> go:= GO(1,8,3);;
gap> so:= SO(1,8,3);;
gap> outerelm:= First(GeneratorsOfGroup(go), x -> not x in so);;
gap> g2:= ClosureGroup(DerivedSubgroup(so), outerelm);;
gap> Size(g2);
19808719257600
gap> dom:= NormedRowVectors(GF(3)^8);;
gap> orbs:= OrbitsDomain(g2, dom, OnLines);;
gap> List(orbs, Length);
[1080, 1080, 1120]
gap> act:= Action(g2, orbs[1], OnLines);;

An involution g can be found as a power of one of the given generators.
Example

gap> Order(outerelm);
26
gap> g:= Permutation(outerelm^13, orbs[1], OnLines);;
gap> Size(ConjugacyClass(act, g));
1080

Computations with the GAP Character Table Library 464

Now we find the candidates for the elements s, and compute their ratios of nongeneration.
Example

gap> ord20;
[82, 83]
gap> SizesCentralizers(t2){ ord20 };
[40, 20]
gap> der:= DerivedSubgroup(act);;
gap> repeat 20A:= Random(der);
> until Order(20A) = 20 and Size(Centralizer(act, 20A)) = 40;
gap> RatioOfNongenerationTransPermGroup(act, g, 20A);
1
gap> repeat 20BC:= Random(der);
> until Order(20BC) = 20 and Size(Centralizer(act, 20BC)) = 20;
gap> RatioOfNongenerationTransPermGroup(act, g, 20BC);
0

This means that for s in one S-class of elements of order 20, we have P′(g,s) = 1, and s in the
other two S-classes of elements of order 20 generates with any conjugate of g.

Concerning S.22, it remains to show that we cannot find a better element than s. For that, we first
compute class representatives s′ in S, w.r.t. conjugacy in S.22, and then compute P′(s′,g). (It would
be enough to check representatives of classes of maximal element order, but computing all classes is
easy enough.)

Example
gap> ccl:= ConjugacyClasses(act);;
gap> der:= DerivedSubgroup(act);;
gap> reps:= Filtered(List(ccl, Representative), x -> x in der);;
gap> Length(reps);
83
gap> ratios:= List(reps,
> s -> RatioOfNongenerationTransPermGroup(act, g, s));;
gap> cand:= PositionsProperty(ratios, x -> x < 1);;
gap> ratios:= ratios{ cand };;
gap> SortParallel(ratios, cand);
gap> ratios;
[0, 1/10, 1/10, 16/135, 1/3, 1/3, 11/27, 7/15, 7/15]

For S.22, it remains to show that there is no element s′ ∈ S such that P′(s′x,g) < 1 holds for any
x∈Aut(S) and g∈ S.22. So we are done when we can show that each class given by cand is conjugate
in S.3 to a class outside cand. The classes can be identified by element orders and centralizer orders.

Example
gap> invs:= List(cand,
> x -> [Order(reps[x]), Size(Centralizer(der, reps[x]))]);
[[20, 20], [18, 108], [18, 108], [14, 28], [15, 45],

[15, 45], [10, 40], [12, 72], [12, 72]]

Namely, cand contains no full S.3-orbit of classes of the element orders 20, 18, 14, 15, and 10;
also, cand does not contain full S.3-orbits on the classes 12O–12T.

Finally, we deal with S.3. The fact that no maximal subgroup of S containing an element of order
20 extends to S.3 follows either from the list of maximal subgroups of S in [CCN+85, p. 140] or
directly from the permutation characters.

Computations with the GAP Character Table Library 465

Example
gap> t3:= CharacterTable("O8+(3).3");;
gap> tfust3:= GetFusionMap(t, t3);;
gap> inv:= InverseMap(tfust3);;
gap> filt:= PositionsProperty(prim, x -> x[spos] <> 0);;
gap> ForAll(prim{ filt },
> pi -> ForAny(CompositionMaps(pi, inv), IsList));
true

So we have to consider only the classes of novelties in S.3, but the order of none of these groups
is divisible by 20 –again see [CCN+85, p. 140]). This means that any element in S.3\S together with
an element of order 20 in S generates S.3. This is in fact stronger than statement (f), which claims
this property only for elements of prime order in S.3 \ S (and their roots); note that S.3 \ S contains
elements of the orders 9 and 27.

Example
gap> outer:= Difference([1 .. NrConjugacyClasses(t3)],
> ClassPositionsOfDerivedSubgroup(t3));
[53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94]

gap> Set(OrdersClassRepresentatives(t3){ outer });
[3, 6, 9, 12, 18, 21, 24, 27, 36, 39]

Before we turn to the next computations, we clean the workspace.
Example

gap> CleanWorkspace();

11.5.14 O+
8 (4)

We show that S = O+
8 (4) = Ω+(8,4) satisfies the following.

(a) For suitable s ∈ S of the type 2− ⊥ 6− (i. e., s decomposes the natural 8-dimensional module for
S into an orthogonal sum of two irreducible modules of the dimensions 2 and 6, respectively)
and of order 65, M(S,s) consists of exactly three pairwise nonconjugate subgroups of the type
(5×O−6 (4)).2 = (5×Ω−(6,4)).2.

(b) σ(S,s)≤ 34817/1645056.

(c) In the extensions S.21 and S.3 of S by graph automorphisms, there is at most one maximal
subgroup besides S that contains s. For the extension S.22 of S by a field automorphism, we have
σ ′(S.22,s) = 0. In the extension S.23 of S by the product of an involutory graph automorphism
and a field automorphism, there is a unique maximal subgroup besides S that contains s.

A safe source for determining M(S,s) is [Kle87]. By inspection of the result matrix in this paper,
we get that the only maximal subgroups of S that contain elements of order 65 occur in the rows 9–14
and 23–25; they have the isomorphism types S6(4) = Sp(6,4)∼=O7(4) =Ω(7,4) and (5×O−6 (4)).2 =
(5×Ω−(6,4)).2, respectively, and for each of these, there are three conjugacy classes of subgroups in
S, which are conjugate under the triality graph automorphism of S.

We start with the natural matrix representation of S. For convenience, we compute an isomorphic
permutation group on 5525 points.

Computations with the GAP Character Table Library 466

Example
gap> q:= 4;; n:= 8;;
gap> G:= DerivedSubgroup(SO(1, n, q));;
gap> points:= NormedRowVectors(GF(q)^n);;
gap> orbs:= OrbitsDomain(G, points, OnLines);;
gap> List(orbs, Length);
[5525, 16320]
gap> hom:= ActionHomomorphism(G, orbs[1], OnLines);;
gap> G:= Image(hom);;

The group S contains exactly six conjugacy classes of (cyclic) subgroups of order 65; this follows
from the fact that the centralizer of any Sylow 13 subgroup in S has the structure 5×5×13.

Example
gap> Collected(Factors(Size(G)));
[[2, 24], [3, 5], [5, 4], [7, 1], [13, 1], [17, 2]]
gap> ResetGlobalRandomNumberGenerators();
gap> repeat x:= Random(G);
> until Order(x) mod 13 = 0;
gap> x:= x^(Order(x) / 13);;
gap> c:= Centralizer(G, x);;
gap> IsAbelian(c); AbelianInvariants(c);
true
[5, 5, 13]

The group S6(4) contains exactly one class of subgroups of order 65, since the conjugacy classes
of elements of order 65 in S6(4) are algebraically conjugate.

Example
gap> t:= CharacterTable("S6(4)");;
gap> ord65:= PositionsProperty(OrdersClassRepresentatives(t),
> x -> x = 65);
[105, 106, 107, 108, 109, 110, 111, 112]
gap> ord65 = ClassOrbit(t, ord65[1]);
true

Thus there are at least three classes of order 65 elements in S that are not contained in S6(4) type
subgroups of S. So we choose such an element s, and have to consider only overgroups of the type
(5×Ω−(6,4)).2.

The group Ω−(6,4)∼=U4(4) contains exactly one class of subgroups of order 65.
Example

gap> t:= CharacterTable("U4(4)");;
gap> ords:= OrdersClassRepresentatives(t);;
gap> ord65:= PositionsProperty(ords, x -> x = 65);;
gap> ord65 = ClassOrbit(t, ord65[1]);
true

So 5×Ω−(6,4) contains exactly six such classes. Furthermore, subgroups in different classes are
not S-conjugate.

Computations with the GAP Character Table Library 467

Example
gap> syl5:= SylowSubgroup(c, 5);;
gap> elms:= Filtered(Elements(syl5), y -> Order(y) = 5);;
gap> reps:= Set(elms, SmallestGeneratorPerm);; Length(reps);
6
gap> reps65:= List(reps, y -> SubgroupNC(G, [y * x]));;
gap> pairs:= Filtered(UnorderedTuples([1 .. 6], 2),
> p -> p[1] <> p[2]);;
gap> ForAny(pairs, p -> IsConjugate(G, reps65[p[1]], reps65[p[2]]));
false

We consider only subgroups M ≤ S in the three S-classes of the type (5×Ω−(6,4)).2.
Example

gap> cand:= List(reps, y -> Normalizer(G, SubgroupNC(G, [y])));;
gap> cand:= Filtered(cand, y -> Size(y) = 10 * Size(t));;
gap> Length(cand);
3

(Note that one of the members in M(S,s) is the stabilizer in S of the orthogonal decomposition
2− ⊥ 6−, the other two members are not reducible.)

By the above, the classes of subgroups of order 65 in each such M are in bijection with the corre-
sponding classes in S. Since NS(〈g〉)⊆M holds for any g ∈M of order 65, also the conjugacy classes
of elements of order 65 in M are in bijection with those in S.

Example
gap> norms:= List(reps65, y -> Normalizer(G, y));;
gap> ForAll(norms, y -> ForAll(cand, M -> IsSubset(M, y)));
true

As a consequence, we have gS∩M = gM and thus 1S
M(g) = 1. This implies statement (a).

In order to show statement (b), we want to use the function UpperBoundFixedPointRatios
introduced in Section 11.3.3. For that, we first compute the conjugacy classes of the three class
representatives M. (Since the groups have elementary abelian Sylow 5 subgroups of the order 54,
computing all conjugacy classes appears to be faster than using ClassesOfPrimeOrder.) Then we
compute an upper bound for σ(S,s).

Example
gap> syl5:= SylowSubgroup(cand[1], 5);;
gap> Size(syl5); IsElementaryAbelian(syl5);
625
true
gap> UpperBoundFixedPointRatios(G, List(cand, ConjugacyClasses), false);
[34817/1645056, false]

Remark:
Computing the exact value σ(S,s) in the above setup would require to test the S-conjugacy of

certain order 5 elements in M. With the current GAP implementation, some of the relevant tests need
several hours of CPU time.

An alternative approach would be to compute the permutation action of S on the cosets of M,
of degree 6580224, and to count the fixed points of conjugacy class representatives of prime order.

Computations with the GAP Character Table Library 468

The currently available GAP library methods are not sufficient for computing this in reasonable time.
“Ad-hoc code” for this special case works, but it seemed to be not appropriate to include it here.

In the proof of statement (c), again we consult the result matrix in [Kle87]. For S.3, the maximal
subgroups are in the rows 4, 15, 22, 26, and 61. Only row 26 yields subgroups that contain elements
s of order 65, they have the isomorphism type (5×GU(3,4)).2 ∼= (52 ×U3(4)).2. Note that the
conjugacy classes of the members in M(S,s) are permuted by the outer automorphism of order 3, so
none of the subgroups in M(S,s) extends to S.3. By [BGK08, Lemma 2.4 (2)], if there is a maximal
subgroup of S.3 besides S that contains s then this subgroup is the normalizer in S.3 of the intersection
of the three members of M(S,s), i. e., s is contained in at most one such subgroup.

For S.21, only the rows 9 and 23 yield maximal subgroups containing elements of order 65, and
since we had chosen s in such a way that row 9 was excluded already for the simple group, only
extensions of the elements in M(S,s) can appear. Exactly one of these three subgroups of S extends to
S.21, so again we get just one maximal subgroup of S.21, besides S, that contains s.

All subgroups in M(S,s) extend to S.22, see [Kle87]. We compute the extensions of the above
subgroups M of S to S.22, by constructing the action of the field automorphism in the permutation
representation we used for S. In other words, we compute the projective action of the Frobenius map.

Example
gap> frob:= PermList(List(orbs[1], v -> Position(orbs[1],
> List(v, x -> x^2))));;
gap> G2:= ClosureGroupDefault(G, frob);;
gap> cand2:= List(cand, M -> Normalizer(G2, M));;
gap> ccl:= List(cand2,
> M2 -> PcConjugacyClassReps(SylowSubgroup(M2, 2)));;
gap> List(ccl, l -> Number(l, x -> Order(x) = 2 and not x in G));
[0, 0, 0]

So in each case, the extension of M to its normalizer in S.22 is non-split. This implies σ ′(S.22,s) =
0.

Finally, in the extension of S by the product of a graph automorphism and the field automorphism,
exactly that member of M(S,s) is invariant that is invariant under the graph automorphism, hence
statement (c) holds.

It is again time to clean the workspace.
Example

gap> CleanWorkspace();

11.5.15 ∗ O9(3)

The group S = O9(3) = Ω9(3) is the first member in the series dealt with in [BGK08, Proposition 5.7],
and serves as an example to illustrate this statement.

(a) For s ∈ S of the type 1 ⊥ 8− (i. e., s decomposes the natural 9-dimensional module for S into
an orthogonal sum of two irreducible modules of the dimensions 1 and 8, respectively) and of
order (34 +1)/2 = 41, M(S,s) consists of one group of the type O−8 (3).21 = PGO−(8,3).

(b) σ(S,s) = 1/3.

(c) The uniform spread of S is at least three, with s of order 41.

Computations with the GAP Character Table Library 469

By [MSW94], the only maximal subgroup of S that contains s is the stabilizer M of the orthogonal
decomposition. The group 2×O−8 (3).21 = GO−(8,3) embeds naturally into SO(9,3), its intersection
with S is PGO−(8,3). This proves statement (a).

The group M is the stabilizer of a 1-space, it has index 3240 in S.
Example

gap> g:= SO(9, 3);;
gap> g:= DerivedSubgroup(g);;
gap> Size(g);
65784756654489600
gap> orbs:= OrbitsDomain(g, NormedRowVectors(GF(3)^9), OnLines);;
gap> List(orbs, Length) / 41;
[3240/41, 81, 80]
gap> Size(SO(9, 3)) / Size(GO(-1, 8, 3));
3240

So we compute the unique transitive permutation character of S that has degree 3240.
Example

gap> t:= CharacterTable("O9(3)");;
gap> pi:= PermChars(t, rec(torso:= [3240]));
[Character(CharacterTable("O9(3)"),

[3240, 1080, 380, 132, 48, 324, 378, 351, 0, 0, 54, 27, 54, 27, 0,
118, 0, 36, 46, 18, 12, 2, 8, 45, 0, 108, 108, 135, 126, 0, 0,
56, 0, 0, 36, 47, 38, 27, 39, 36, 24, 12, 18, 18, 15, 24, 2,
18, 15, 9, 0, 0, 0, 2, 0, 18, 11, 3, 9, 6, 6, 9, 6, 3, 6, 3, 0,
6, 16, 0, 4, 6, 2, 45, 36, 0, 0, 0, 0, 0, 0, 0, 9, 9, 6, 3, 0,
0, 15, 13, 0, 5, 7, 36, 0, 10, 0, 10, 19, 6, 15, 0, 0, 0, 0,
12, 3, 10, 0, 3, 3, 7, 0, 6, 6, 2, 8, 0, 4, 0, 2, 0, 1, 3, 0,
0, 3, 0, 3, 2, 2, 3, 3, 6, 2, 2, 9, 6, 3, 0, 0, 18, 9, 0, 0,
12, 0, 0, 8, 0, 6, 9, 5, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 2, 1,
3, 3, 1, 0, 0, 4, 1, 0, 0, 1, 0, 3, 3, 1, 1, 2, 2, 0, 0, 1, 3,
4, 0, 1, 2, 0, 0, 1, 0, 4, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 0])]

gap> spos:= Position(OrdersClassRepresentatives(t), 41);
208
gap> approx:= ApproxP(pi, spos);;
gap> Maximum(approx);
1/3
gap> PositionsProperty(approx, x -> x = 1/3);
[2]
gap> SizesConjugacyClasses(t)[2];
3321
gap> OrdersClassRepresentatives(t)[2];
2

We see that P(S,s) = σ(S,s) = 1/3 holds, and that σ(g,s) attains this maximum only for g in one
class of involutions in S; let us call this class 2A. (This class consists of the negatives of a class of
reflections in GO(9,3).) This shows statement (b).

In order to show that the uniform spread of S is at least three, it suffices to show that for each triple
of 2A elements, there is an element s of order 41 in S that generates S with each element of the triple.

We work with the primitive permutation representation of S on 3240 points. In this representation,
s fixes exactly one point, and by statement (a), s generates S with x ∈ S if and only if x moves this

Computations with the GAP Character Table Library 470

point. Since the number of fixed points of each 2A involution in S is exactly one third of the moved
points of S, it suffices to show that we cannot choose three such involutions with mutually disjoint
fixed point sets. And this is shown particularly easily because it will turn out that already for any two
different 2A involutions, the sets of fixed points of are never disjoint.

First we compute a 2A element, which is determined as an involution with exactly 1080 fixed
points.

Example
gap> g:= Action(g, orbs[1], OnLines);;
gap> repeat
> repeat x:= Random(g); ord:= Order(x); until ord mod 2 = 0;
> y:= x^(ord/2);
> until NrMovedPoints(y) = 3240 - 1080;

Next we compute the sets of fixed points of the elements in the class 2A, by forming the S-orbit of
the set of fixed points of the chosen 2A element.

Example
gap> fp:= Difference(MovedPoints(g), MovedPoints(y));;
gap> orb:= Orbit(g, fp, OnSets);;

Finally, we show that for any pair of 2A elements, their sets of fixed points intersect nontrivially.
(Of course we can fix one of the two elements.) This proves statement (c).

Example
gap> ForAny(orb, l -> IsEmpty(Intersection(l, fp)));
false

11.5.16 O−10(3)

We show that the group S = O−10(3) = PΩ
−(10,3) satisfies the following.

(a) For s ∈ S irreducible of order (35 + 1)/4 = 61, M(S,s) consists of one subgroup of the type
SU(5,3)∼=U5(3).

(b) σ(S,s) = 1/1066.

By [Ber00], the maximal subgroups of S containing s are of extension field type, and by [KL90,
Prop. 4.3.18 and 4.3.20], these groups have the structure SU(5,3) =U5(3) (which lift to 2×U5(3)<
GU(5,3) in Ω−(10,3) = 2.S) or Ω(5,9).2, but the order of the latter group is not divisible by |s|.
Furthermore, by [BGK08, Lemma 2.12 (b)], s is contained in only one member of the former class.

Example
gap> Size(GO(5,9)) / 61;
6886425600/61

When the first version of these computations was written, the character tables of both S and U5(3)
were not contained in the GAP Character Table Library, so we worked with the groups. Meanwhile
the character tables are available, thus we can show also a character theoretic solution.)

Computations with the GAP Character Table Library 471

Example
gap> t:= CharacterTable("O10-(3)"); s:= CharacterTable("U5(3)");
CharacterTable("O10-(3)")
CharacterTable("U5(3)")
gap> SigmaFromMaxes(t, "61A", [s], [1]);
1/1066

(Now follow the computations with groups.)
The first step is the construction of the embedding of M = SU(5,3) into the matrix group 2.S, that

is, we write the matrix generators of M as linear mappings on the natural module for 2.S, and then
conjugate them such that the result matrices respect the bilinear form of 2.S. For convenience, we
choose a basis for the field extension F9/F3 such that the F3-linear mapping given by the invariant
form of M is invariant under the F3-linear mappings given by the generators of M.

Example
gap> m:= SU(5,3);;
gap> so:= SO(-1,10,3);;
gap> omega:= DerivedSubgroup(so);;
gap> om:= InvariantBilinearForm(so).matrix;;
gap> Display(om);
. 1
1
. . 1
. . . 2
. . . . 2
. 2
. 2 . . .
. 2 . .
. 2 .
. 2

gap> b:= Basis(GF(9), [Z(3)^0, Z(3^2)^2]);
Basis(GF(3^2), [Z(3)^0, Z(3^2)^2])
gap> blow:= List(GeneratorsOfGroup(m), x -> BlownUpMat(b, x));;
gap> form:= BlownUpMat(b, InvariantSesquilinearForm(m).matrix);;
gap> ForAll(blow, x -> x * form * TransposedMat(x) = form);
true
gap> Display(form);
. 1 .
. 1
. 1 . . .
. 1 . .
. . . . 1
. 1
. . 1
. . . 1
1
. 1

The matrix om of the invariant bilinear form of 2.S is equivalent to the identity matrix I. So we
compute matrices T1 and T2 that transform om and form, respectively, to ±I.

Example
gap> T1:= IdentityMat(10, GF(3));;
gap> T1{[1..3]}{[1..3]}:= [[1,1,0],[1,-1,1],[1,-1,-1]]*Z(3)^0;;

Computations with the GAP Character Table Library 472

gap> pi:= PermutationMat((1,10)(3,8), 10, GF(3));;
gap> tr:= NullMat(10,10,GF(3));;
gap> tr{[1, 2]}{[1, 2]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[3, 4]}{[3, 4]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[7, 8]}{[7, 8]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[9,10]}{[9,10]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[5, 6]}{[5, 6]}:= [[1,0],[0,1]]*Z(3)^0;;
gap> tr2:= IdentityMat(10,GF(3));;
gap> tr2{[1,3]}{[1,3]}:= [[-1,1],[1,1]]*Z(3)^0;;
gap> tr2{[7,9]}{[7,9]}:= [[-1,1],[1,1]]*Z(3)^0;;
gap> T2:= tr2 * tr * pi;;
gap> D:= T1^-1 * T2;;
gap> tblow:= List(blow, x -> D * x * D^-1);;
gap> IsSubset(omega, tblow);
true

Now we switch to a permutation representation of S, and use the embedding of M into 2.S to obtain
the corresponding subgroup of type M in S. Then we compute an upper bound for max{µ(g,S/M);g∈
S×}.

Example
gap> orbs:= OrbitsDomain(omega, NormedRowVectors(GF(3)^10), OnLines);;
gap> List(orbs, Length);
[9882, 9882, 9760]
gap> permgrp:= Action(omega, orbs[3], OnLines);;
gap> M:= SubgroupNC(permgrp,
> List(tblow, x -> Permutation(x, orbs[3], OnLines)));;
gap> ccl:= ClassesOfPrimeOrder(M, PrimeDivisors(Size(M)),
> TrivialSubgroup(M));;
gap> UpperBoundFixedPointRatios(permgrp, [ccl], false);
[1/1066, true]

The entry true in the second position of the result indicates that in fact the exact value for the
maximum of µ(g,S/M) has been computed. This implies statement (b).

We clean the workspace.
Example

gap> CleanWorkspace();

11.5.17 O−14(2)

We show that the group S = O−14(2) = Ω−(14,2) satisfies the following.

(a) For s ∈ S irreducible of order 27 + 1 = 129, M(S,s) consists of one subgroup M of the type
GU(7,2)∼= 3×U7(2).

(b) σ(S,s) = 1/2015.

By [Ber00], any maximal subgroup of S containing s is of extension field type, and by [KL90,
Table 3.5.F, Prop. 4.3.18], these groups have the type GU(7,2), and there is exactly one class of
subgroups of this type. Furthermore, by [BGK08, Lemma 2.12 (a)], s is contained in only one member
of this class.

Computations with the GAP Character Table Library 473

We embed U7(2) into S, by first replacing each element in F4 by the 2× 2 matrix of the induced
F2-linear mapping w.r.t. a suitable basis, and then conjugating the images of the generators such that
the invariant quadratic form of S is respected.

Example
gap> o:= SO(-1,14,2);;
gap> g:= SU(7,2);;
gap> b:= Basis(GF(4));;
gap> blow:= List(GeneratorsOfGroup(g), x -> BlownUpMat(b, x));;
gap> form:= NullMat(14, 14, GF(2));;
gap> for i in [1 .. 14] do form[i][15-i]:= Z(2); od;
gap> ForAll(blow, x -> x * form * TransposedMat(x) = form);
true
gap> pi:= PermutationMat((1,13)(3,11)(5,9), 14, GF(2));;
gap> pi * form * TransposedMat(pi) = InvariantBilinearForm(o).matrix;
true
gap> pi2:= PermutationMat((7,3)(8,4), 14, GF(2));;
gap> D:= pi2 * pi;;
gap> tblow:= List(blow, x -> D * x * D^-1);;
gap> IsSubset(o, tblow);
true

Note that the central subgroup of order three in GU(7,2) consists of scalar matrices.
Example

gap> omega:= DerivedSubgroup(o);;
gap> IsSubset(omega, tblow);
true
gap> z:= Z(4) * One(g);;
gap> tz:= D * BlownUpMat(b, z) * D^-1;;
gap> tz in omega;
true

Now we switch to a permutation representation of S, and compute the conjugacy classes of prime
element order in the subgroup M. The latter is done in two steps, first class representatives of the
simple subgroup U7(2) of M are computed, and then they are multiplied with the scalars in M.

Example
gap> orbs:= OrbitsDomain(omega, NormedRowVectors(GF(2)^14), OnLines);;
gap> List(orbs, Length);
[8127, 8256]
gap> omega:= Action(omega, orbs[1], OnLines);;
gap> gens:= List(GeneratorsOfGroup(g),
> x -> Permutation(D * BlownUpMat(b, x) * D^-1, orbs[1]));;
gap> g:= Group(gens);;
gap> ccl:= ClassesOfPrimeOrder(g, PrimeDivisors(Size(g)),
> TrivialSubgroup(g));;
gap> tz:= Permutation(tz, orbs[1]);;
gap> primereps:= List(ccl, Representative);;
gap> Add(primereps, ());
gap> reps:= Concatenation(List(primereps,
> x -> List([0 .. 2], i -> x * tz^i)));;
gap> primereps:= Filtered(reps, x -> IsPrimeInt(Order(x)));;

Computations with the GAP Character Table Library 474

gap> Length(primereps);
48

Finally, we apply UpperBoundFixedPointRatios (see Section 11.3.3) to compute an upper
bound for µ(g,S/M), for g ∈ S×.

Example
gap> M:= ClosureGroup(g, tz);;
gap> bccl:= List(primereps, x -> ConjugacyClass(M, x));;
gap> UpperBoundFixedPointRatios(omega, [bccl], false);
[1/2015, true]

Although some of the classes of M in the list bccl may be S-conjugate, the entry true in the
second position of the result indicates that in fact the exact value for the maximum of µ(g,S/M), for
g ∈ S×, has been computed. This implies statement (b).

We clean the workspace.
Example

gap> CleanWorkspace();

11.5.18 O+
12(3)

We show that the group S = O+
12(3) = PΩ

+(12,3) satisfies the following.

(a) S has a maximal subgroup M of the type NS(PΩ
+(6,9)), which has the structure PΩ

+(6,9).[4].

(b) µ(g,S/M)≤ 2/88209 holds for all g ∈ S×.

(This result is used in the proof of [BGK08, Proposition 5.14], where it is shown that for s ∈ S
of order 205, M(S,s) consists of one reducible subgroup G8 and at most two extension field type
subgroups of the type NS(PΩ

+(6,9)). By [GK00, Proposition 3.16], µ(g,S/G8)≤ 19/35 holds for all
g ∈ S×. This implies P(g,s)≤ 19/35 +2 ·2/88209 = 6901/88209 < 1/3.)

Statement (a) follows from [KL90, Prop. 4.3.14].
For statement (b), we embed GO+(6,9)∼= Ω+(6,9).22 into SO+(12,3) = 2.S.2, by replacing each

element in F9 by the 2×2 matrix of the induced F3-linear mapping w.r.t. a suitable basis (b1,b2). We
choose a basis with the property b1 = 1 and b2

2 = 1+b2, because then the image of a symmetric matrix
is again symmetric (so the image of the invariant form is an invariant form for the image of the group),
and apply an appropriate transformation to the images of the generators.

Example
gap> so:= SO(+1,12,3);;
gap> Display(InvariantBilinearForm(so).matrix);
. 1
1
. . 1
. . . 2
. . . . 2
. 2
. 2
. 2
. 2 . . .

Computations with the GAP Character Table Library 475

. 2 . .

. 2 .

. 2
gap> g:= GO(+1,6,9);;
gap> Z(9)^2 = Z(3)^0 + Z(9);
true
gap> b:= Basis(GF(9), [Z(3)^0, Z(9)]);
Basis(GF(3^2), [Z(3)^0, Z(3^2)])
gap> blow:= List(GeneratorsOfGroup(g), x -> BlownUpMat(b, x));;
gap> m:= BlownUpMat(b, InvariantBilinearForm(g).matrix);;
gap> Display(m);
. . 1
. . . 1
1
. 1
. . . . 2
. 2
. 2
. 2
. 2 . . .
. 2 . .
. 2 .
. 2

gap> pi:= PermutationMat((2,3), 12, GF(3));;
gap> tr:= IdentityMat(12, GF(3));;
gap> tr{[3,4]}{[3,4]}:= [[1,-1],[1,1]]*Z(3)^0;;
gap> D:= tr * pi;;
gap> D * m * TransposedMat(D) = InvariantBilinearForm(so).matrix;
true
gap> tblow:= List(blow, x -> D * x * D^-1);;
gap> IsSubset(so, tblow);
true

The image of GO+(6,9) under the embedding into SO+(12,3) does not lie in Ω+(12,3) = 2.S, so
a factor of two is missing in GO+(6,9)∩2.S for getting (the preimage 2.M of) the required maximal
subgroup M of S. Because of this, and also because currently it is time consuming to compute the
derived subgroup of SO+(12,3), we work with the upward extension PSO+(12,3) = S.2. Note that M
extends to a maximal subgroup of S.2.

First we factor out the centre of SO+(12,3), and switch to a permutation representation of S.2.
Example

gap> orbs:= OrbitsDomain(so, NormedRowVectors(GF(3)^12), OnLines);;
gap> List(orbs, Length);
[88452, 88452, 88816]
gap> act:= Action(so, orbs[1], OnLines);;
gap> SetSize(act, Size(so) / 2);

Next we rewrite the matrix generators for GO+(6,9) accordingly, and compute the normalizer in
S.2 of the subgroup they generate; this is the maximal subgroup M.2 we need.

Example
gap> u:= SubgroupNC(act,
> List(tblow, x -> Permutation(x, orbs[1], OnLines)));;

Computations with the GAP Character Table Library 476

gap> n:= Normalizer(act, u);;
gap> Size(n) / Size(u);
2

Now we compute class representatives of prime order in M.2, in a smaller faithful permutation
representation, and then the desired upper bound for µ(g,S/M).

Example
gap> norbs:= OrbitsDomain(n, MovedPoints(n));;
gap> List(norbs, Length);
[58968, 29484]
gap> hom:= ActionHomomorphism(n, norbs[2]);;
gap> nact:= Image(hom);;
gap> Size(nact) = Size(n);
true
gap> ccl:= ClassesOfPrimeOrder(nact, PrimeDivisors(Size(nact)),
> TrivialSubgroup(nact));;
gap> Length(ccl);
26
gap> preim:= List(ccl,
> x -> PreImagesRepresentative(hom, Representative(x)));;
gap> pccl:= List(preim, x -> ConjugacyClass(n, x));;
gap> for i in [1 .. Length(pccl)] do
> SetSize(pccl[i], Size(ccl[i]));
> od;
gap> UpperBoundFixedPointRatios(act, [pccl], false);
[2/88209, true]

Note that we have computed max{µ(g,S.2/M.2),g ∈ S.2×} ≥ max{µ(g,S.2/M.2),g ∈ S×} =
max{µ(g,S/M),g ∈ S×}.

11.5.19 ∗ S4(8)

We show that the group S = S4(8) = Sp(4,8) satisfies the following.

(a) For s ∈ S irreducible of order 65, M(S,s) consists of two nonconjugate subgroups of the type
S2(64).2 = Sp(2,64).2∼= L2(64).2∼= O−4 (8).2 = Ω−(4,8).2.

(b) σ(S,s) = 8/63.

By [Ber00], the only maximal subgroups of S that contain s are O−4 (8).2 = SO−(4,8) or of exten-
sion field type. By [KL90, Prop. 4.3.10, 4.8.6], there is one class of each of these subgroups (which
happen to be isomorphic).

These classes of subgroups induce different permutation characters. One argument to see this is
that the involutions in the outer half of extension field type subgroup S2(64).2 < S4(8) have a two-
dimensional fixed space, whereas the outer involutions in SO−(4,8) have a three-dimensional fixed
space.

The former statement can be seen by using a normal basis of the field extension F64/F8, such that
the action of the Frobenius automorphism (which yields a suitable outer involution) is just a double
transposition on the basis vectors of the natural module for S.

Computations with the GAP Character Table Library 477

Example
gap> sp:= SP(4,8);;
gap> Display(InvariantBilinearForm(sp).matrix);
. . . 1
. . 1 .
. 1 . .
1 . . .

gap> z:= Z(64);;
gap> f:= AsField(GF(8), GF(64));;
gap> repeat
> b:= Basis(f, [z, z^8]);
> z:= z * Z(64);
> until b <> fail;
gap> sub:= SP(2,64);;
gap> Display(InvariantBilinearForm(sub).matrix);
. 1
1 .

gap> ext:= Group(List(GeneratorsOfGroup(sub),
> x -> BlownUpMat(b, x)));;
gap> tr:= PermutationMat((3,4), 4, GF(2));;
gap> conj:= ConjugateGroup(ext, tr);;
gap> IsSubset(sp, conj);
true
gap> inv:= [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] * Z(2);;
gap> inv in sp;
true
gap> inv in conj;
false
gap> Length(NullspaceMat(inv - inv^0));
2

The latter statement can be shown by looking at an outer involution in SO−(4,8).
Example

gap> so:= SO(-1,4,8);;
gap> der:= DerivedSubgroup(so);;
gap> x:= First(GeneratorsOfGroup(so), x -> not x in der);;
gap> x:= x^(Order(x)/2);;
gap> Length(NullspaceMat(x - x^0));
3

The character table of L2(64).2 is currently not available in the GAP Character Table Library,
so we compute the possible permutation characters with a combinatorial approach, and show state-
ment (a).

Example
gap> CharacterTable("L2(64).2");
fail
gap> t:= CharacterTable("S4(8)");;
gap> degree:= Size(t) / (2 * Size(SL(2,64)));;
gap> pi:= PermChars(t, rec(torso:= [degree]));
[Character(CharacterTable("S4(8)"),

[2016, 0, 256, 32, 0, 36, 0, 8, 1, 0, 4, 0, 0, 0, 28, 28, 28, 0,

Computations with the GAP Character Table Library 478

0, 0, 0, 0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1]), Character(CharacterTable("S4(8)"),

[2016, 256, 0, 32, 36, 0, 0, 8, 1, 4, 0, 28, 28, 28, 0, 0, 0, 0,
0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 4, 4,
0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1])]

gap> spos:= Position(OrdersClassRepresentatives(t), 65);;
gap> List(pi, x -> x[spos]);
[1, 1]

Now we compute σ(S,s), which yields statement (b).
Example

gap> Maximum(ApproxP(pi, spos));
8/63

We clean the workspace.
Example

gap> CleanWorkspace();

11.5.20 S6(2)

We show that the group S = S6(2) = Sp(6,2) satisfies the following.

(a) σ(S) = 4/7, and this value is attained exactly for σ(S,s) with s of order 9.

(b) For s ∈ S of order 9, M(S,s) consists of one subgroup of the type U4(2).2 = Ω−(6,2).2 and
three conjugate subgroups of the type L2(8).3 = Sp(2,8).3.

(c) For s ∈ S of order 9, and g ∈ S×, we have P(g,s) < 1/3, except if g is in one of the classes 2A
(the transvection class) or 3A.

(d) For s ∈ S of order 15, and g ∈ S×, we have P(g,s)< 1/3, except if g is in one of the classes 2A
or 2B.

(e) P(S) = 11/21, and this value is attained exactly for P(S,s) with s of order 15.

(f) For all s′ ∈ S, we have P(g,s′)> 1/3 for g in at least two classes.

(g) The uniform spread of S is at least two, with s of order 9.

(Note that in this example, the optimal choice of s w.r.t. σ(S,s) is not optimal w.r.t. P(S,s).)
Statement (a) follows from the inspection of the primitive permutation characters, cf. Sec-

tion 11.4.3.
Example

gap> t:= CharacterTable("S6(2)");;
gap> ProbGenInfoSimple(t);
["S6(2)", 4/7, 1, ["9A"], [4]]

Computations with the GAP Character Table Library 479

Also statement (b) follows from the information provided by the character table of S (cf. [CCN+85,
p. 46]).

Example
gap> prim:= PrimitivePermutationCharacters(t);;
gap> ord:= OrdersClassRepresentatives(t);;
gap> spos:= Position(ord, 9);;
gap> filt:= PositionsProperty(prim, x -> x[spos] <> 0);
[1, 8]
gap> Maxes(t){ filt };
["U4(2).2", "L2(8).3"]
gap> List(prim{ filt }, x -> x[spos]);
[1, 3]

Now we consider statement (c). For s of order 9 and g in one of the classes 2A, 3A, we observe
that P(g,s) = σ(g,s) holds. This is because exactly one maximal subgroup of S contains both s and g.
For all other elements g, we have even σ(g,s)< 1/3.

Example
gap> prim:= PrimitivePermutationCharacters(t);;
gap> spos9:= Position(ord, 9);;
gap> approx9:= ApproxP(prim, spos9);;
gap> filt9:= PositionsProperty(approx9, x -> x >= 1/3);
[2, 6]
gap> AtlasClassNames(t){ filt9 };
["2A", "3A"]
gap> approx9{ filt9 };
[4/7, 5/14]
gap> List(Filtered(prim, x -> x[spos9] <> 0), x -> x{ filt9 });
[[16, 10], [0, 0]]

Similarly, statement (d) follows. For s of order 15 and g in one of the classes 2A, 2B, already the
degree 36 permutation character yields P(g,s) ≥ 1/3. And for all other elements g, again we have
σ(g,s)< 1/3.

Example
gap> spos15:= Position(ord, 15);;
gap> approx15:= ApproxP(prim, spos15);;
gap> filt15:= PositionsProperty(approx15, x -> x >= 1/3);
[2, 3]
gap> PositionsProperty(ApproxP(prim{ [2] }, spos15), x -> x >= 1/3);
[2, 3]
gap> AtlasClassNames(t){ filt15 };
["2A", "2B"]
gap> approx15{ filt15 };
[46/63, 8/21]

For the remaining statements, we use explicit computations with S, in the transitive degree 63
permutation representation. We start with a function that computes a transvection in Sd(2); note that
the invariant bilinear form used for symplectic groups in GAP is described by a matrix with nonzero
entries exactly in the positions (i,d +1− i), for 1≤ i≤ d.

Computations with the GAP Character Table Library 480

Example
gap> transvection:= function(d)
> local mat;
> mat:= IdentityMat(d, Z(2));
> mat{ [1, d] }{ [1, d] }:= [[0, 1], [1, 0]] * Z(2);
> return mat;
> end;;

First we compute, for statement (d), the exact values P(g,s) for g in one of the classes 2A or 2B,
and s of order 15. Note that the classes 2A, 2B are the unique classes of the lengths 63 and 315,
respectively.

Example
gap> PositionsProperty(SizesConjugacyClasses(t), x -> x in [63, 315]);
[2, 3]
gap> d:= 6;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism(matgrp, NormedRowVectors(GF(2)^d));;
gap> g:= Image(hom, matgrp);;
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s15:= Random(g);
> until Order(s15) = 15;
gap> 2A:= Image(hom, transvection(d));;
gap> Size(ConjugacyClass(g, 2A));
63
gap> IsTransitive(g, MovedPoints(g));
true
gap> RatioOfNongenerationTransPermGroup(g, 2A, s15);
11/21
gap> repeat 12C:= Random(g);
> until Order(12C) = 12 and Size(Centralizer(g, 12C)) = 12;
gap> 2B:= 12C^6;;
gap> Size(ConjugacyClass(g, 2B));
315
gap> RatioOfNongenerationTransPermGroup(g, 2B, s15);
8/21

For statement (e), we compute P(g,s′), for a transvection g and class representatives s′ of S. It
turns out that the minimum is 11/21, and it is attained for exactly one s′; by the above, this element
has order 15.

Example
gap> ccl:= ConjugacyClasses(g);;
gap> reps:= List(ccl, Representative);;
gap> nongen2A:= List(reps,
> x -> RatioOfNongenerationTransPermGroup(g, 2A, x));;
gap> min:= Minimum(nongen2A);
11/21
gap> Number(nongen2A, x -> x = min);
1

For statement (f), we show that for any choice of s′, at least two of the values P(g,s′), with g in
the classes 2A, 2B, or 3A, are larger than 1/3.

Computations with the GAP Character Table Library 481

Example
gap> nongen2B:= List(reps,
> x -> RatioOfNongenerationTransPermGroup(g, 2B, x));;
gap> 3A:= s15^5;;
gap> nongen3A:= List(reps,
> x -> RatioOfNongenerationTransPermGroup(g, 3A, x));;
gap> bad:= List([1 .. NrConjugacyClasses(t)],
> i -> Number([nongen2A, nongen2B, nongen3A],
> x -> x[i] > 1/3));;
gap> Minimum(bad);
2

Finally, for statement (g), we have to consider only the case that the two elements x, y are transvec-
tions.

Example
gap> PositionsProperty(approx9, x -> x + approx9[2] >= 1);
[2]

We use the random approach described in Section 11.3.3.
Example

gap> repeat s9:= Random(g);
> until Order(s9) = 9;
gap> RandomCheckUniformSpread(g, [2A, 2A], s9, 20);
true

11.5.21 S8(2)

We show that the group S = S8(2) satisfies the following.

(a) For s ∈ S of order 17, M(S,s) consists of one subgroup of each of the types O−8 (2).2 =
Ω−(8,2).2, S4(4).2 = Sp(4,4).2, and L2(17) = PSL(2,17).

(b) For s ∈ S of order 17, and g ∈ S×, we have P(g,s)< 1/3, except if g is a transvection.

(c) The uniform spread of S is at least two, with s of order 17.

Statement (a) follows from the list of maximal subgroups of S in [CCN+85, p. 123], and the fact
that 1S

H(s) = 1 holds for each H ∈M(S,s). Note that 17 divides the indices of the maximal subgroups
of the types O+

8 (2).2 and 27 : S6(2) in S, and obviously 17 does not divide the orders of the remaining
maximal subgroups.

The permutation characters induced from the first two subgroups are uniquely determined by the
ordinary character tables. The permutation character induced from the last subgroup is uniquely de-
termined if one considers also the corresponding Brauer tables; the correct class fusion is stored in the
GAP Character Table Library, see [Brea].

Example
gap> t:= CharacterTable("S8(2)");;
gap> pi1:= PossiblePermutationCharacters(CharacterTable("O8-(2).2"), t);;
gap> pi2:= PossiblePermutationCharacters(CharacterTable("S4(4).2"), t);;
gap> pi3:= [TrivialCharacter(CharacterTable("L2(17)"))^t];;

Computations with the GAP Character Table Library 482

gap> prim:= Concatenation(pi1, pi2, pi3);;
gap> Length(prim);
3
gap> spos:= Position(OrdersClassRepresentatives(t), 17);;
gap> List(prim, x -> x[spos]);
[1, 1, 1]

For statement (b), we observe that σ(g,s)< 1/3 if g is not a transvection, and that P(g,s) =σ(g,s)
for transvections g because exactly one of the three permutation characters is nonzero on both s and
the class of transvections.

Example
gap> approx:= ApproxP(prim, spos);;
gap> PositionsProperty(approx, x -> x >= 1/3);
[2]
gap> Number(prim, pi -> pi[2] <> 0 and pi[spos] <> 0);
1
gap> approx[2];
8/15

In statement (c), we have to consider only the case that the two elements x, y are transvections.
Example

gap> PositionsProperty(approx, x -> x + approx[2] >= 1);
[2]

We use the random approach described in Section 11.3.3.
Example

gap> d:= 8;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism(matgrp, NormedRowVectors(GF(2)^d));;
gap> x:= Image(hom, transvection(d));;
gap> g:= Image(hom, matgrp);;
gap> C:= ConjugacyClass(g, x);; Size(C);
255
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 17;
gap> RandomCheckUniformSpread(g, [x, x], s, 20);
true

11.5.22 ∗ S10(2)

We show that the group S = S10(2) satisfies the following.

(a) For s ∈ S of order 33, M(S,s) consists of one subgroup of each of the types Ω−(10,2).2 and
L2(32).5 = Sp(2,32).5.

(b) For s ∈ S of order 33, and g ∈ S×, we have P(g,s)< 1/3, except if g is a transvection.

(c) The uniform spread of S is at least two, with s of order 33.

Computations with the GAP Character Table Library 483

By [Ber00], the only maximal subgroups of S that contain s have the types stated in (a), and
by [KL90, Prop. 4.3.10 and 4.8.6], there is exactly one class of each of these subgroups.

We compute the values σ(g,s), for all g ∈ S×.
Example

gap> t:= CharacterTable("S10(2)");;
gap> pi1:= PossiblePermutationCharacters(CharacterTable("O10-(2).2"), t);;
gap> pi2:= PossiblePermutationCharacters(CharacterTable("L2(32).5"), t);;
gap> prim:= Concatenation(pi1, pi2);; Length(prim);
2
gap> spos:= Position(OrdersClassRepresentatives(t), 33);;
gap> approx:= ApproxP(prim, spos);;

For statement (b), we observe that σ(g,s)< 1/3 if g is not a transvection, and that P(g,s) =σ(g,s)
for transvections g because exactly one of the two permutation characters is nonzero on both s and the
class of transvections.

Example
gap> PositionsProperty(approx, x -> x >= 1/3);
[2]
gap> Number(prim, pi -> pi[2] <> 0 and pi[spos] <> 0);
1
gap> approx[2];
16/31

In statement (c), we have to consider only the case that the two elements x, y are transvections. We
use the random approach described in Section 11.3.3.

Example
gap> d:= 10;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism(matgrp, NormedRowVectors(GF(2)^d));;
gap> x:= Image(hom, transvection(d));;
gap> g:= Image(hom, matgrp);;
gap> C:= ConjugacyClass(g, x);; Size(C);
1023
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 33;
gap> RandomCheckUniformSpread(g, [x, x], s, 20);
true

11.5.23 U4(2)

We show that S =U4(2) = SU(4,2)∼= S4(3) = PSp(4,3) satisfies the following.

(a) σ(S) = 21/40, and this value is attained exactly for σ(S,s) with s of order 12.

(b) For s ∈ S of order 9, M(S,s) consists of two groups, of the types 31+2
+ :2A4 = GU(3,2) and

33:S4, respectively.

(c) P(S) = 2/5, and this value is attained exactly for P(S,s) with s of order 9.

Computations with the GAP Character Table Library 484

(d) The uniform spread of S is at least three, with s of order 9.

(e) σ ′(Aut(S),s) = 7/20.

(Note that in this example, the optimal choice of s w.r.t. σ(S,s) is not optimal w.r.t. P(S,s).)
Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.

Example
gap> t:= CharacterTable("U4(2)");;
gap> ProbGenInfoSimple(t);
["U4(2)", 21/40, 1, ["12A"], [2]]

Statement (b) can be read off from the permutation characters, and the fact that the only classes of
maximal subgroups that contain elements of order 9 consist of groups of the structures 31+2

+ : 2A4 and
33 : S4, see [CCN+85, p. 26].

Example
gap> OrdersClassRepresentatives(t);
[1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12]
gap> prim:= PrimitivePermutationCharacters(t);
[Character(CharacterTable("U4(2)"),

[27, 3, 7, 0, 0, 9, 0, 3, 1, 2, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0]),
Character(CharacterTable("U4(2)"),
[36, 12, 8, 0, 0, 6, 3, 0, 2, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0]),
Character(CharacterTable("U4(2)"),
[40, 8, 0, 13, 13, 4, 4, 4, 0, 0, 5, 5, 2, 2, 2, 0, 1, 1, 1, 1]),
Character(CharacterTable("U4(2)"),
[40, 16, 4, 4, 4, 1, 7, 0, 2, 0, 4, 4, 1, 1, 1, 1, 1, 1, 0, 0]),
Character(CharacterTable("U4(2)"),
[45, 13, 5, 9, 9, 6, 3, 1, 1, 0, 1, 1, 4, 4, 1, 2, 0, 0, 1, 1])]

For statement (c), we use a primitive permutation representation on 40 points that occurs in the
natural action of SU(4,2).

Example
gap> g:= SU(4,2);;
gap> orbs:= OrbitsDomain(g, NormedRowVectors(GF(4)^4), OnLines);;
gap> List(orbs, Length);
[45, 40]
gap> g:= Action(g, orbs[2], OnLines);;

First we show that for s of order 9, P(S,s) = 2/5 holds. For that, we have to consider only P(g,s),
with g in one of the classes 2A (of length 45) and 3A (of length 40); since the class 3B contains the
inverses of the elements in the class 3A, we need not test it.

Example
gap> spos:= Position(OrdersClassRepresentatives(t), 9);
17
gap> approx:= ApproxP(prim, spos);
[0, 3/5, 1/10, 17/40, 17/40, 1/8, 11/40, 1/10, 1/20, 0, 9/40, 9/40,

3/40, 3/40, 3/40, 1/40, 1/20, 1/20, 1/40, 1/40]
gap> badpos:= PositionsProperty(approx, x -> x >= 2/5);
[2, 4, 5]
gap> PowerMap(t, 2)[4];

Computations with the GAP Character Table Library 485

5
gap> OrdersClassRepresentatives(t);
[1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12]
gap> SizesConjugacyClasses(t);
[1, 45, 270, 40, 40, 240, 480, 540, 3240, 5184, 360, 360, 720, 720,

1440, 2160, 2880, 2880, 2160, 2160]

A representative g of a class of length 40 can be found as the third power of any order 9 element.
Example

gap> PowerMap(t, 3)[spos];
4
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random(g);
> until Order(s) = 9;
gap> Size(ConjugacyClass(g, s^3));
40
gap> prop:= RatioOfNongenerationTransPermGroup(g, s^3, s);
13/40

Next we examine g in the class 2A.
Example

gap> repeat x:= Random(g); until Order(x) = 12;
gap> Size(ConjugacyClass(g, x^6));
45
gap> prop:= RatioOfNongenerationTransPermGroup(g, x^6, s);
2/5

Finally, we compute that for s of order different from 9 and g in the class 2A, P(g,s) is larger than
2/5.

Example
gap> ccl:= List(ConjugacyClasses(g), Representative);;
gap> SortParallel(List(ccl, Order), ccl);
gap> List(ccl, Order);
[1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12]
gap> prop:= List(ccl, r -> RatioOfNongenerationTransPermGroup(g, x^6, r));
[1, 1, 1, 1, 1, 1, 1, 1, 1, 5/9, 1, 1, 1, 1, 1, 1, 2/5, 2/5, 7/15,

7/15]
gap> Minimum(prop);
2/5

In order to show statement (d), we have to consider triples (x1,x2,x3) with xi of prime order and
∑

3
i=1 P(xi,s)≥ 1. This means that it suffices to check x in the class 2A, y in 2A∪3A, and z in 2A∪3A∪3D.

Example
gap> approx[2]:= 2/5;;
gap> approx[4]:= 13/40;;
gap> primeord:= PositionsProperty(OrdersClassRepresentatives(t),
> IsPrimeInt);
[2, 3, 4, 5, 6, 7, 10]
gap> RemoveSet(primeord, 5);

Computations with the GAP Character Table Library 486

gap> primeord;
[2, 3, 4, 6, 7, 10]
gap> approx{ primeord };
[2/5, 1/10, 13/40, 1/8, 11/40, 0]
gap> AtlasClassNames(t){ primeord };
["2A", "2B", "3A", "3C", "3D", "5A"]
gap> triples:= Filtered(UnorderedTuples(primeord, 3),
> t -> Sum(approx{ t }) >= 1);
[[2, 2, 2], [2, 2, 4], [2, 2, 7], [2, 4, 4], [2, 4, 7]]

We use the random approach described in Section 11.3.3.
Example

gap> repeat 6E:= Random(g);
> until Order(6E) = 6 and Size(Centralizer(g, 6E)) = 18;
gap> 2A:= 6E^3;;
gap> 3A:= s^3;;
gap> 3D:= 6E^2;;
gap> RandomCheckUniformSpread(g, [2A, 2A, 2A], s, 50);
true
gap> RandomCheckUniformSpread(g, [2A, 2A, 3A], s, 50);
true
gap> RandomCheckUniformSpread(g, [3D, 2A, 2A], s, 50);
true
gap> RandomCheckUniformSpread(g, [2A, 3A, 3A], s, 50);
true
gap> RandomCheckUniformSpread(g, [3D, 3A, 2A], s, 50);
true

Statement (e) can be proved using ProbGenInfoAlmostSimple, cf. Section 11.4.4.
Example

gap> t:= CharacterTable("U4(2)");;
gap> t2:= CharacterTable("U4(2).2");;
gap> spos:= PositionsProperty(OrdersClassRepresentatives(t), x -> x = 9);;
gap> ProbGenInfoAlmostSimple(t, t2, spos);
["U4(2).2", 7/20, ["9AB"], [2]]

11.5.24 U4(3)

We show that S =U4(3) = PSU(4,3) satisfies the following.

(a) σ(S) = 53/153, and this value is attained exactly for σ(S,s) with s of order 7.

(b) For s ∈ S of order 7, M(S,s) consists of two nonconjugate groups of the type L3(4), one group
of the type U3(3), and four pairwise nonconjugate groups of the type A7.

(c) P(S) = 43/135, and this value is attained exactly for P(S,s) with s of order 7.

(d) The uniform spread of S is at least three, with s of order 7.

(e) The preimage of s in the matrix group SU(4,3) ∼= 4.U4(3) has order 28, the preimages of the
groups in M(S,s) have the structures 42.L3(4), 4×U3(3)∼= GU(3,3), and 4.A7 (the latter being
a central product of a cyclic group of order four and 2.A7).

Computations with the GAP Character Table Library 487

(f) P′(S.21,s) = 13/27, σ ′(S.22) = 1/3, and σ ′(S.23) = 31/162, with s of order 7 in each case.

Statement (a) follows from inspection of the primitive permutation characters, cf. Section 11.4.3.
Example

gap> t:= CharacterTable("U4(3)");;
gap> ProbGenInfoSimple(t);
["U4(3)", 53/135, 2, ["7A"], [7]]

Statement (b) can be read off from the permutation characters, and the fact that the only classes
of maximal subgroups that contain elements of order 7 consist of groups of the structures as claimed,
see [CCN+85, p. 52].

Example
gap> prim:= PrimitivePermutationCharacters(t);;
gap> spos:= Position(OrdersClassRepresentatives(t), 7);
13
gap> List(Filtered(prim, x -> x[spos] <> 0), l -> l{ [1, spos] });
[[162, 1], [162, 1], [540, 1], [1296, 1], [1296, 1],

[1296, 1], [1296, 1]]

In order to show statement (c) (which then implies statement (d)), we use a permutation represen-
tation on 112 points. It corresponds to an orbit of one-dimensional subspaces in the natural module of
Ω−(6,3)∼= S.

Example
gap> matgrp:= DerivedSubgroup(SO(-1, 6, 3));;
gap> orbs:= OrbitsDomain(matgrp, NormedRowVectors(GF(3)^6), OnLines);;
gap> List(orbs, Length);
[126, 126, 112]
gap> G:= Action(matgrp, orbs[3], OnLines);;

It is sufficient to compute P(g,s), for involutions g ∈ S.
Example

gap> approx:= ApproxP(prim, spos);
[0, 53/135, 1/10, 1/24, 1/24, 7/45, 4/45, 1/27, 1/36, 1/90, 1/216,

1/216, 7/405, 7/405, 1/270, 0, 0, 0, 0, 1/270]
gap> Filtered(approx, x -> x >= 43/135);
[53/135]
gap> OrdersClassRepresentatives(t);
[1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9, 9, 12]
gap> ResetGlobalRandomNumberGenerators();
gap> repeat g:= Random(G); until Order(g) = 2;
gap> repeat s:= Random(G);
> until Order(s) = 7;
gap> bad:= RatioOfNongenerationTransPermGroup(G, g, s);
43/135
gap> bad < 1/3;
true

Statement (e) can be shown easily with character-theoretic methods, as follows. Since SU(4,3) is
a Schur cover of S and the groups in M(S,s) are simple, only very few possibilities have to be checked.

Computations with the GAP Character Table Library 488

The Schur multiplier of U3(3) is trivial (see, e. g., [CCN+85, p. 14]), so the preimage in SU(4,3) is
a direct product of U3(3) and the centre of SU(4,3). Neither L3(4) nor its double cover 2.L3(4) can
be a subgroup of SU(4,3), so the preimage of L3(4) must be a Schur cover of L3(4), i. e., it must
have either the type 41.L3(4) or 42.L3(4) (see [CCN+85, p. 23]); only the type 42.L3(4) turns out to
be possible.

Example
gap> 4t:= CharacterTable("4.U4(3)");;
gap> Length(PossibleClassFusions(CharacterTable("L3(4)"), 4t));
0
gap> Length(PossibleClassFusions(CharacterTable("2.L3(4)"), 4t));
0
gap> Length(PossibleClassFusions(CharacterTable("4_1.L3(4)"), 4t));
0
gap> Length(PossibleClassFusions(CharacterTable("4_2.L3(4)"), 4t));
4

As for the preimage of the A7 type subgroups, we first observe that the double cover of A7 cannot
be a subgroup of the double cover of S, so the preimage of A7 in the double cover of U4(3) is a direct
product 2×A7. The group SU(4,3) does not contain A7 type subgroups, thus the A7 type subgroups
in 2.U4(3) lift to double covers of A7 in SU(4,3). This proves the claimed structure.

Example
gap> 2t:= CharacterTable("2.U4(3)");;
gap> Length(PossibleClassFusions(CharacterTable("2.A7"), 2t));
0
gap> Length(PossibleClassFusions(CharacterTable("A7"), 4t));
0

For statement (f), we consider automorphic extensions of S. The bound for S.23 has been computed
in Section 11.4.4. That for S.22 can be computed form the fact that the classes of maximal subgroups
of S.22 containing s of order 7 are S, one class of U3(3).2 type subgroups, and two classes of S7 type
subgroups which induce the same permutation character (see [CCN+85, p. 52]).

Example
gap> t2:= CharacterTable("U4(3).2_2");;
gap> pi1:= PossiblePermutationCharacters(CharacterTable("U3(3).2"), t2);
[Character(CharacterTable("U4(3).2_2"),

[540, 12, 54, 0, 0, 9, 8, 0, 0, 6, 0, 0, 1, 2, 0, 0, 0, 2, 0, 24,
4, 0, 0, 0, 0, 0, 0, 3, 2, 0, 4, 0, 0, 0])]

gap> pi2:= PossiblePermutationCharacters(CharacterTable("A7.2"), t2);
[Character(CharacterTable("U4(3).2_2"),

[1296, 48, 0, 27, 0, 9, 0, 4, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 216,
24, 0, 4, 0, 0, 0, 9, 0, 3, 0, 1, 0, 1, 0, 0])]

gap> prim:= Concatenation(pi1, pi2, pi2);;
gap> outer:= Difference(
> PositionsProperty(OrdersClassRepresentatives(t2), IsPrimeInt),
> ClassPositionsOfDerivedSubgroup(t2));;
gap> spos:= Position(OrdersClassRepresentatives(t2), 7);;
gap> Maximum(ApproxP(prim, spos){ outer });
1/3

Computations with the GAP Character Table Library 489

Finally, Section 11.4.4 shows that the character tables are not sufficient for what we need, so we
compute the exact proportion of nongeneration for U4(3).21 ∼= SO−(6,3).

Example
gap> matgrp:= SO(-1, 6, 3);
SO(-1,6,3)
gap> orbs:= OrbitsDomain(matgrp, NormedRowVectors(GF(3)^6), OnLines);;
gap> List(orbs, Length);
[126, 126, 112]
gap> G:= Action(matgrp, orbs[3], OnLines);;
gap> repeat s:= Random(G);
> until Order(s) = 7;
gap> repeat
> repeat 2B:= Random(G); until Order(2B) mod 2 = 0;
> 2B:= 2B^(Order(2B) / 2);
> c:= Centralizer(G, 2B);
> until Size(c) = 12096;
gap> RatioOfNongenerationTransPermGroup(G, 2B, s);
13/27
gap> repeat
> repeat 2C:= Random(G); until Order(2C) mod 2 = 0;
> 2C:= 2C^(Order(2C) / 2);
> c:= Centralizer(G, 2C);
> until Size(c) = 1440;
gap> RatioOfNongenerationTransPermGroup(G, 2C, s);
0

11.5.25 U6(3)

We show that S =U6(3) = PSU(6,3) satisfies the following.

(a) For s ∈ S of the type 1 ⊥ 5 (i. e., the preimage of s in 2.S = SU(6,3) decomposes the natural
6-dimensional module for 2.S into an orthogonal sum of two irreducible modules of the dimen-
sions 1 and 5, respectively) and of order (35 +1)/2 = 122, M(S,s) consists of one group of the
type 2×U5(3), which lifts to a subgroup of the type 4×U5(3) =GU(5,3) in 2.S. (The preimage
of s in 2.S has order 35 +1 = 244.)

(b) σ(S,s) = 353/3159.

By [MSW94], the only maximal subgroup of S that contains s is the stabilizer H ∼= 2×U5(3) of
the orthogonal decomposition. This proves statement (a).

The character table of S is currently not available in the GAP Character Table Library. We consider
the permutation action of S on the orbit of the stabilized 1-space. So M can be taken as a point stabilizer
in this action.

Example
gap> CharacterTable("U6(3)");
fail
gap> g:= SU(6,3);;
gap> orbs:= OrbitsDomain(g, NormedRowVectors(GF(9)^6), OnLines);;
gap> List(orbs, Length);
[22204, 44226]
gap> repeat x:= PseudoRandom(g); until Order(x) = 244;

Computations with the GAP Character Table Library 490

gap> List(orbs, o -> Number(o, v -> OnLines(v, x) = v));
[0, 1]
gap> g:= Action(g, orbs[2], OnLines);;
gap> M:= Stabilizer(g, 1);;

Then we compute a list of elements in M that covers the conjugacy classes of prime element order,
from which the numbers of fixed points and thus max{µ(S/M,g);g ∈M×}= σ(S,s) can be derived.
This way we avoid completely to check the S-conjugacy of elements (class representatives of Sylow
subgroups in M).

Example
gap> elms:= [];;
gap> for p in PrimeDivisors(Size(M)) do
> syl:= SylowSubgroup(M, p);
> Append(elms, Filtered(PcConjugacyClassReps(syl),
> r -> Order(r) = p));
> od;
gap> 1 - Minimum(List(elms, NrMovedPoints)) / Length(orbs[2]);
353/3159

11.5.26 U8(2)

We show that S =U8(2) = SU(8,2) satisfies the following.

(a) For s ∈ S of the type 1 ⊥ 7 (i. e., s decomposes the natural 8-dimensional module for S into
an orthogonal sum of two irreducible modules of the dimensions 1 and 7, respectively) and of
order 27 +1 = 129, M(S,s) consists of one group of the type 3×U7(2) = GU(7,2).

(b) σ(S,s) = 2753/10880.

By [MSW94], the only maximal subgroup of S that contains s is the stabilizer M ∼= GU(7,2) of
the orthogonal decomposition. This proves statement (a).

The character table of S is currently not available in the GAP Character Table Library. We proceed
exactly as in Section 11.5.25 in order to prove statement (b).

Example
gap> CharacterTable("U8(2)");
fail
gap> g:= SU(8,2);;
gap> orbs:= OrbitsDomain(g, NormedRowVectors(GF(4)^8), OnLines);;
gap> List(orbs, Length);
[10965, 10880]
gap> repeat x:= PseudoRandom(g); until Order(x) = 129;
gap> List(orbs, o -> Number(o, v -> OnLines(v, x) = v));
[0, 1]
gap> g:= Action(g, orbs[2], OnLines);;
gap> M:= Stabilizer(g, 1);;
gap> elms:= [];;
gap> for p in PrimeDivisors(Size(M)) do
> syl:= SylowSubgroup(M, p);
> Append(elms, Filtered(PcConjugacyClassReps(syl),
> r -> Order(r) = p));

Computations with the GAP Character Table Library 491

> od;
gap> Length(elms);
611
gap> 1 - Minimum(List(elms, NrMovedPoints)) / Length(orbs[2]);
2753/10880

References

[Ber00] Á. Bereczky. Maximal overgroups of Singer elements in classical groups. J. Algebra,
234(1):187–206, 2000. 406, 407, 410, 423, 470, 472, 476, 483

[BG] T. Breuer and R. M. Guralnick. Finite groups can be generated by a pi-subgroup and a
pi’-subgroup. arXiv:2103.17216. 292, 294, 296

[BGK08] T. Breuer, R. M. Guralnick, and W. M. Kantor. Probabilistic generation of finite simple
groups, II. J. Algebra, 320(2):443–494, 2008. 173, 365, 368, 370, 393, 396, 398, 400,
406, 408, 413, 423, 424, 425, 427, 431, 451, 468, 470, 472, 474

[BGL+10] T. Breuer, R. M. Guralnick, A. Lucchini, A. Maróti, and G. P. Nagy. Hamiltonian cycles
in the generating graphs of finite groups. Bull. London Math. Soc., 42(4):621–633, 2010.
171, 172

[BGS11] T. C. Burness, R. M. Guralnick, and J. Saxl. On base sizes for symmetric groups. Bull.
Lond. Math. Soc., 43(2):386–391, 2011. 196, 197

[BMO17] T. Breuer, G. Malle, and E. A. O’Brien. Reliability and reproducibility of Atlas informa-
tion. In M. Bhargava, R. Guralnick, G. Hiss, K. Lux, and P. H. Tiep, editors, Finite simple
groups: thirty years of the atlas and beyond, volume 694 of Contemp. Math., page 21–31.
Amer. Math. Soc., Providence, RI, 2017. 14

[BN95] T. Breuer and S. P. Norton. Improvements to the Atlas, page 297–327. Volume 11 of
London Mathematical Society Monographs. New Series [JLPW95], 1995. Appendix 2 by
T. Breuer and S. Norton, Oxford Science Publications. 78, 215, 225, 237, 329

[BP98] T. Breuer and G. Pfeiffer. Finding possible permutation characters. J. Symbolic Comput.,
26(3):343–354, 1998. 242, 245, 246, 263, 264, 407, 411

[Brea] T. Breuer. Ambiguous class fusions in the GAP character table library.
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/
manual.pdf. 481

[Breb] T. Breuer. GAP computations concerning probabilistic generation of finite simple groups.
arXiv:0710.3267. 173, 175, 177

[Brec] T. Breuer. Using table automorphisms for constructing character tables in
GAP. https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/
manual.pdf. 403

492

https://arxiv.org/abs/2103.17216
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://export.arxiv.org/abs/0710.3267
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf

Computations with the GAP Character Table Library 493

[Bre91] T. Breuer. Potenzabbildungen, Untergruppenfusionen, Tafel-Automorphismen. Diplo-
marbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 1991. 15

[Bre11] T. Breuer. Computing character tables of groups of type M.G.A. LMS J. Comput. Math.,
14:173–178, 2011. 56

[Bre24] T. Breuer. The GAP Character Table Library, Version 1.3.7.
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib, Jan 2024. GAP
package. 50, 161, 172, 177, 208, 212, 234, 238, 242, 302, 325, 351, 366

[BW75] J. L. Brenner and J. Wiegold. Two-generator groups. I. Michigan Math. J., 22:53–64,
1975. 398, 415, 416, 417, 434

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 45, 52,
54, 76, 80, 85, 86, 87, 90, 91, 92, 93, 96, 99, 106, 124, 125, 129, 130, 131, 141, 151, 158,
169, 196, 197, 208, 209, 211, 212, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226,
228, 230, 232, 234, 235, 236, 237, 242, 247, 248, 250, 251, 256, 259, 260, 261, 263, 264,
265, 267, 268, 269, 272, 276, 277, 281, 303, 307, 310, 318, 319, 320, 321, 322, 342, 368,
391, 392, 394, 395, 398, 400, 401, 402, 403, 412, 413, 415, 416, 420, 425, 434, 437, 440,
443, 446, 447, 450, 451, 453, 460, 461, 463, 464, 465, 479, 481, 484, 487, 488

[CP96] J. J. Cannon and C. Playoust. An introduction to algebraic programming in Magma.
http://www.math.usyd.edu.au:8000/u/magma, 1996. 13, 14

[Dad66] E. C. Dade. Blocks with cyclic defect groups. Ann. of Math. (2), 84:20–48, 1966. 43

[DLP23] H. Dietrich, M. Lee, and T. Popiel. The maximal subgroups of the monster.
arXiv:2304.14646, 2023. 171, 182, 184, 229, 301

[DNT13] S. Dolfi, G. Navarro, and P. H. Tiep. Finite groups whose same degree characters are
Galois conjugate. Israel J. Math., 198(1):283–331, 2013. 8, 351

[Fei82] W. Feit. The representation theory of finite groups, volume 25 of North-Holland Mathe-
matical Library. North-Holland Publishing Co., 1982. xiv+502 pp., ISBN 0-444-86155-6.
56

[Gag86] S. M. Gagola, Jr. Formal character tables. Michigan Math. J., 33(1):3–10, 1986. 10, 104

[GAP21] GAP – Groups, Algorithms, and Programming, Version 4.11.1.
https://www.gap-system.org, Mar 2021. 50, 161, 171, 208, 212, 234, 242,
302, 351, 365

[GJMS89] R. L. Griess Jr., U. Meierfrankenfeld, and Y. Segev. A uniqueness proof for the Monster.
Ann. of Math. (2), 130(3):567–602, 1989. 289

[GK00] R. M. Guralnick and W. M. Kantor. Probabilistic generation of finite simple groups. J.
Algebra, 234(2):743–792, 2000. Special issue in honor of Helmut Wielandt. 370, 474

https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib
http://www.math.usyd.edu.au:8000/u/magma
https://arxiv.org/abs/2304.14646
https://www.gap-system.org

Computations with the GAP Character Table Library 494

[GM01] S. Ganief and J. Moori. On the spread of the sporadic simple groups. Comm. Algebra,
29(8):3239–3255, 2001. 388

[GPPS99] R. Guralnick, T. Penttila, C. E. Praeger, and J. Saxl. Linear groups with orders having
certain large prime divisors. Proc. London Math. Soc., 78(1):167–214, 1999. 404, 409

[HL89] G. Hiss and K. Lux. Brauer trees of sporadic groups. Oxford Science Publications. The
Clarendon Press, Oxford University Press, New York, 1989. 40, 43

[HL94] G. Hiss and K. Lux. The 5-modular characters of the sporadic simple Fischer groups Fi22
and Fi23. Comm. Algebra, 22(9):3563–3590, 1994. With an appendix by Thomas Breuer.
58

[Hol08] D. Holt. cohomolo, computing cohomology groups and Schur multipliers, Version 1.6.
http://www.maths.warwick.ac.uk/~dfh/cohomolo, 2008. GAP package. 351

[HP89] D. F. Holt and W. Plesken. Perfect groups. Oxford Mathematical Monographs. The
Clarendon Press Oxford University Press, New York, 1989. With an appendix by W.
Hanrath, Oxford Science Publications. 10, 13, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28

[Hul05] A. Hulpke. Constructing transitive permutation groups. J. Symbolic Comput., 39(1):1–30,
2005. 413

[Hup67] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften,
Band 134. Springer-Verlag, Berlin, 1967. 192, 263

[HW04] P. E. Holmes and R. A. Wilson. PSL2(59) is a subgroup of the Monster. J. London Math.
Soc., 69(1):141–152, 2004. 347, 348, 388

[HW08] P. E. Holmes and R. A. Wilson. On subgroups of the Monster containing A5’s. J. Algebra,
319(7):2653–2667, 2008. 45, 348

[Isa76] I. M. Isaacs. Character theory of finite groups. Academic Press [Harcourt Brace Jo-
vanovich Publishers], New York, 1976. Pure and Applied Mathematics, No. 69. 56, 60,
261

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 29, 34, 38, 39, 40, 96, 351, 492

[KL90] P. Kleidman and M. Liebeck. The subgroup structure of the finite classical groups, volume
129 of London Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1990. 404, 406, 407, 409, 410, 470, 472, 474, 476, 483

[Kle87] P. B. Kleidman. The maximal subgroups of the finite 8-dimensional orthogonal groups
PΩ

+
8 (q) and of their automorphism groups. J. Algebra, 110(1):173–242, 1987. 196, 200,

465, 468

[LP10] K. Lux and H. Pahlings. Representations of groups, volume 124 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2010. A computational
approach. 56

http://www.maths.warwick.ac.uk/~dfh/cohomolo

Computations with the GAP Character Table Library 495

[LW91] S. A. Linton and R. A. Wilson. The maximal subgroups of the Fischer groups Fi24 and
Fi′24. Proc. London Math. Soc. (3), 63(1):113–164, 1991. 331

[MNP19] T. Merkwitz, L. Naughton, and G. Pfeiffer. TomLib, the gap library of tables of marks,
Version 1.2.9. https://gap-packages.github.io/tomlib, Oct 2019. GAP package.
208, 212, 234, 239, 351

[MSW94] G. Malle, J. Saxl, and T. Weigel. Generation of classical groups. Geom. Dedicata,
49(1):85–116, 1994. 411, 469, 489, 490

[Nav98] G. Navarro. Characters and blocks of finite groups, volume 250 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. 56

[Nor] S. P. Norton. Improvements to the ATLAS–II. http://brauer.maths.qmul.ac.uk/
Atlas/info/fullatlasmods.html. 318

[NPP84] J. Neubüser, H. Pahlings, and W. Plesken. CAS; design and use of a system for the
handling of characters of finite groups. In M. D. Atkinson, editor, Computational group
theory (Durham, 1982), page 195–247, London, 1984. Academic Press. 15

[NR14] G. Navarro and N. Rizo. Nilpotent and perfect groups with the same set of character
degrees. J. Algebra Appl., 13(8):1450061, 3, 2014. 29

[NW02] S. P. Norton and R. A. Wilson. Anatomy of the Monster. II. Proc. London Math. Soc. (3),
84(3):581–598, 2002. 349

[NW13] S. P. Norton and R. A. Wilson. A correction to the 41-structure of the Monster, a con-
struction of a new maximal subgroup L2(41) and a new Moonshine phenomenon. J. Lond.
Math. Soc. (2), 87(3):943–962, 2013. 171, 184, 208, 229, 300, 349, 350

[Ost86] T. Ostermann. Charaktertafeln von Sylownormalisatoren sporadischer einfacher Grup-
pen. Technical report, Universität Essen, Essen, 1986. 15

[Vdo00] E. P. Vdovin. Large nilpotent subgroups of finite simple groups. Algebra Log.,
39(5):526–546, 630, 2000. 234

[Wil] R. A. Wilson. ATLAS: Monster group M. http://brauer.maths.qmul.ac.uk/
Atlas/spor/M. 235, 300

[Wil93a] R. A. Wilson. More on maximal subgroups of the Baby Monster. Arch. Math. (Basel),
61(6):497–507, 1993. 332, 333

[Wil93b] R. A. Wilson. Some new subgroups of the Baby Monster. Bull. London Math. Soc.,
25(1):23–28, 1993. 335

[Wil98] R. A. Wilson. The McKay conjecture is true for the sporadic simple groups. J. Algebra,
207(1):294–305, 1998. 292

[Wil99] R. A. Wilson. The maximal subgroups of the Baby Monster. I. J. Algebra, 211(1):1–14,
1999. 224, 332, 333, 334, 335, 388

https://gap-packages.github.io/tomlib
http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html
http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html
http://brauer.maths.qmul.ac.uk/Atlas/spor/M
http://brauer.maths.qmul.ac.uk/Atlas/spor/M

Computations with the GAP Character Table Library 496

[Wil10] R. A. Wilson. New computations in the Monster. In J. Lepowsky, J. McKay, and M. P.
Tuite, editors, Moonshine: the first quarter century and beyond, volume 372 of London
Math. Soc. Lecture Note Ser., page 393–403. Cambridge Univ. Press, Cambridge, 2010.
171, 208

[WPN+22] R. A. Wilson, R. A. Parker, S. Nickerson, J. N. Bray, and T. Breuer. At-
lasRep, a GAP Interface to the Atlas of Group Representations, Version 2.1.6.
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep, Oct 2022. GAP
package. 228, 232, 312, 327, 328, 339, 351, 368

[WWT+] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nick-
erson, S. Linton, J. Bray, and R. Abbott. ATLAS of Finite Group Representations.
http://brauer.maths.qmul.ac.uk/Atlas/v3. 38, 297, 312, 327, 328, 339, 345,
351, 368, 438

https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep
http://brauer.maths.qmul.ac.uk/Atlas/v3

Index

CTblLibXpls, 1

497

	Maintenance Issues for the GAP Character Table Library
	Disproving Possible Character Tables (November 2006)
	A Perfect Pseudo Character Table (November 2006)
	An Error in the Character Table of E6(2) (March 2016)
	An Error in a Power Map of the Character Table of 2.F4(2).2 (November 2015)
	A Character Table with a Wrong Name (May 2017)

	Some finite factor groups of perfect space groups (February 2014)
	Constructing the space groups in question
	Constructing the factor groups in question
	Examples with point group A5
	Examples with point group L3(2)
	Example with point group SL2(7)
	Example with point group 23.L3(2)
	Examples with point group A6
	Examples with point group L2(8)
	Example with point group M11
	Example with point group U3(3)
	Examples with point group U4(2)
	A remark on one of the example groups

	Generality problems (December 2004/October 2015)
	Listing possible generality problems
	A generality problem concerning the group J3 (April 2015)
	A generality problem concerning the group HN (August 2022)

	Brauer Tables that can be derived from Known Tables
	Brauer Tables via Construction Information
	Liftable Brauer Characters (May 2017)

	Information about certain subgroups of the Monster group
	The Monster group does not contain subgroups of the type 2.U4(2) (August 2023)
	Perfect central extensions of L3(4) (August 2023)
	The character table of (2 O8+(3)).S4 2.B (October 2023)

	Using Table Automorphisms for Constructing Character Tables in GAP
	Overview
	Theoretical Background
	Character Table Automorphisms
	Permutation Equivalence of Character Tables
	Class Fusions
	Constructing Character Tables of Certain Isoclinic Groups
	Character Tables of Isoclinic Groups of the Structure p.G.p (October 2016)
	Isoclinic Double Covers of Almost Simple Groups
	Characters of Normal Subgroups

	The Constructions
	Character Tables of Groups of the Structure M.G.A
	Character Tables of Groups of the Structure G.S3
	Character Tables of Groups of the Structure G.22
	Character Tables of Groups of the Structure 22.G (August 2005)
	p-Modular Tables of Extensions by p-singular Automorphisms
	Character Tables of Subdirect Products of Index Two (July 2007)

	Examples for the Type M.G.A
	Character Tables of Dihedral Groups
	An M.G.A Type Example with M noncentral in M.G (May 2004)
	Atlas Tables of the Type M.G.A
	More Atlas Tables of the Type M.G.A
	The Character Tables of 42.L3(4).23 and 122.L3(4).23
	The Character Tables of 121.U4(3).22' and 122.U4(3).23' (December 2015)
	Groups of the Structures 3.U3(8).31 and 3.U3(8).6 (February 2017)
	The Character Table of (22 F4(2)):2 < B (March 2003)
	The Character Table of 2.(S3 Fi22.2) < 2.B (March 2003)
	The Character Table of (2 2.Fi22):2 < Fi24 (November 2008)
	The Character Table of S3 2.U4(3).22 2.Fi22 (September 2002)
	The Character Table of 4.HS.2 HN.2 (May 2002)
	The Character Tables of 4.A6.23, 12.A6.23, and 4.L2(25).23
	The Character Table of 4.L2(49).23 (December 2020)
	The Character Table of 4.L2(81).23 (December 2020)
	The Character Table of 9.U3(8).33 (March 2017)
	Pseudo Character Tables of the Type M.G.A (May 2004)
	Some Extra-ordinary p-Modular Tables of the Type M.G.A (September 2005)

	Examples for the Type G.S3
	Small Examples
	Atlas Tables of the Type G.S3

	Examples for the Type G.22
	The Character Table of A6.22
	Atlas Tables of the Type G.22 – Easy Cases
	The Character Table of S4(9).22 (September 2011)
	The Character Tables of Groups of the Type 2.L3(4).22 (June 2010)
	The Character Tables of Groups of the Type 6.L3(4).22 (October 2011)
	The Character Tables of Groups of the Type 2.U4(3).22 (February 2012)
	The Character Tables of Groups of the Type 41.L3(4).22 (October 2011)
	The Character Tables of Groups of the Type 42.L3(4).22 (October 2011)
	The Character Table of Aut(L2(81))
	The Character Table of O8+(3).22111

	Examples for the Type 22.G
	The Character Table of 22.Sz(8)
	Atlas Tables of the Type 22.G (September 2005)
	The Character Table of 22.O8+(3) (March 2009)
	The Character Table of the Schur Cover of L3(4) (September 2005)

	Examples of Extensions by p-singular Automorphisms
	Some p-Modular Tables of Groups of the Type M.G.A
	Some p-Modular Tables of Groups of the Type G.S3
	2-Modular Tables of Groups of the Type G.22
	The 3-Modular Table of U3(8).32

	Examples of Subdirect Products of Index Two
	Certain Dihedral Groups as Subdirect Products of Index Two
	The Character Table of (D10 HN).2 < M (June 2008)
	A Counterexample (August 2015)

	Constructing Character Tables of Central Extensions in GAP
	Coprime Central Extensions
	The Character Table Head
	The Irreducible Characters
	Ordering of Conjugacy Classes
	Compatibility with Smaller Factor Groups

	Examples
	Central Extensions of Simple Atlas Groups
	Central Extensions of Other Atlas Groups
	Compatible Central Extensions of Maximal Subgroups
	The 2B Centralizer in 3.Fi24' (January 2004)

	GAP Computations Concerning Hamiltonian Cycles in the Generating Graphs of Finite Groups
	Overview
	Theoretical Background
	Character-Theoretic Lower Bounds for Vertex Degrees
	Checking the Criteria

	GAP Functions for the Computations
	Computing Vertex Degrees from the Group
	Computing Lower Bounds for Vertex Degrees
	Evaluating the (Lower Bounds for the) Vertex Degrees

	Character-Theoretic Computations
	Sporadic Simple Groups, except the Monster
	The Monster
	Nonsimple Automorphism Groups of Sporadic Simple Groups
	Alternating and Symmetric Groups An, Sn, for 5 n 13

	Computations With Groups
	Nonabelian Simple Groups of Order up to 107
	Nonsimple Groups with Nonsolvable Socle of Order at most 106

	The Groups PSL(2,q)

	GAP Computations with O8+(5).S3 and O8+(2).S3
	Overview
	Constructing Representations of M.2 and S.2
	A Matrix Representation of the Weyl Group of Type E8
	Embedding the Weyl group of Type E8 into GO+(8,5)
	Compatible Generators of M, M.2, S, and S.2

	Constructing Representations of M.3 and S.3
	The Action of M.3 on M
	The Action of S.3 on S

	Constructing Compatible Generators of H and G
	Application: Regular Orbits of H on G/H
	Appendix: The Permutation Character (1HG)H
	Appendix: The Data File

	Solvable Subgroups of Maximal Order in Sporadic Simple Groups
	The Result
	The Approach
	Use the Table of Marks
	Use Information from the Character Table Library

	Cases where the Table of Marks is available in GAP
	Cases where the Table of Marks is not available in GAP
	G = Ru
	G = Suz
	G = ON
	G = Co2
	G = Fi22
	G = HN
	G = Ly
	G = Th
	G = Fi23
	G = Co1
	G = J4
	G = Fi24
	G = B
	G = M

	Proof of the Corollary

	Large Nilpotent Subgroups of Sporadic Simple Groups
	The Result
	The Proof
	Alternative: Use GAP's Tables of Marks

	Permutation Characters in GAP
	Some Computations with M24
	All Possible Permutation Characters of M11
	The Action of U6(2) on the Cosets of M22
	Degree 20736 Permutation Characters of U6(2)
	Degree 57572775 Permutation Characters of O8+(3)
	The Action of O7(3).2 on the Cosets of 27.S7
	The Action of O8+(3).21 on the Cosets of 27.A8
	The Action of S4(4).4 on the Cosets of 52.[25]
	The Action of Co1 on the Cosets of Involution Centralizers
	The Multiplicity Free Permutation Characters of G2(3)
	Degree 11200 Permutation Characters of O8+(2)
	A Proof of Nonexistence of a Certain Subgroup
	A Permutation Character of the Lyons group
	Identifying two subgroups of Aut(U3(5)) (October 2001)
	A Permutation Character of Aut(O8+(2)) (October 2001)
	Four Primitive Permutation Characters of the Monster Group
	The Subgroup 22.211.222.(S3 M24) (June 2009)
	The Subgroup 23.26.212.218.(L3(2) 3.S6) (September 2009)
	The Subgroup 25.210.220.(S3 L5(2)) (October 2009)
	The Subgroup 210+16.O10+(2) (November 2009)

	A permutation character of the Baby Monster (June 2012)
	A permutation character of 2.B (October 2017)
	Generation of sporadic simple groups by - and '-subgroups (December 2021)

	Ambiguous Class Fusions in the GAP Character Table Library
	Some GAP Utilities
	Fusions Determined by Factorization through Intermediate Subgroups
	Co3N5 Co3 (September 2002)
	31:15 B (March 2003)
	SuzN3 Suz (September 2002)
	F3+N5 F3+ (March 2002)

	Fusions Determined Using Commutative Diagrams Involving Smaller Subgroups
	BN7 B (March 2002)
	(A4 O8+(2).3).2 Fi24 (November 2002)
	A6 L2(8).3 Fi24 (November 2002)
	(32:D8 U4(3).22).2 B (June 2007)
	71+4:(3 2.S7) M (May 2009)
	37.O7(3):2 Fi24 (November 2010)
	2E6(2)N3C 2E6(2) (January 2019)

	Fusions Determined Using Commutative Diagrams Involving Factor Groups
	3.A7 3.Suz (December 2010)
	S6 U4(2) (September 2011)

	Fusions Determined Using Commutative Diagrams Involving Automorphic Extensions
	U3(8).31 2E6(2) (December 2010)
	L3(4).21 U6(2) (December 2010)

	Conditions Imposed by Brauer Tables
	L2(16).4 J3.2 (January 2004)
	L2(17) S8(2) (July 2004)
	L2(19) J3 (April 2003)

	Fusions Determined by Information about the Groups
	U3(3).2 Fi24 (November 2002)
	L2(13).2 Fi24 (September 2002)
	M11 B (April 2009)
	L2(11):2 B (April 2009)
	L3(3) B (April 2009)
	L2(17).2 B (March 2004)
	L2(49).23 B (June 2006)
	23.L3(2) G2(5) (January 2004)
	51+4.21+4.A5.4 B (April 2009)
	The fusion from the character table of 72:2L2(7).2 into the table of marks (January 2004)
	3 U4(2) 31.U4(3) (March 2010)
	2.34.23.S4 2.A12 (September 2011)
	127:7 L7(2) (January 2012)
	L2(59) M (May 2009)
	L2(71) M (May 2009)
	L2(41) M (April 2012)

	GAP computations needed in the proof of [Theorem 6.1 (ii)]DNT
	G/N .5-.5.5-.5.5-.5.5-.5Sz(8) and |N| = 212
	G/N .5-.5.5-.5.5-.5.5-.5M22 and |N| = 210
	G/N .5-.5.5-.5.5-.5.5-.5J2 and |N| = 212
	G/N .5-.5.5-.5.5-.5.5-.5J2 and |N| = 514
	G/N .5-.5.5-.5.5-.5.5-.5J2 and |N| = 228
	G/N .5-.5.5-.5.5-.5.5-.53D4(2) and |N| = 226
	G/N .5-.5.5-.5.5-.5.5-.53D4(2) and |N| = 325

	GAP Computations Concerning Probabilistic Generation of Finite Simple Groups
	Overview
	Prerequisites
	Theoretical Background
	Computational Criteria

	GAP Functions for the Computations
	General Utilities
	Character-Theoretic Computations
	Computations with Groups

	Character-Theoretic Computations
	Sporadic Simple Groups
	Automorphism Groups of Sporadic Simple Groups
	Other Simple Groups – Easy Cases
	Automorphism Groups of other Simple Groups – Easy Cases
	O8-(3)
	O10+(2)
	O10-(2)
	O12+(2)
	O12-(2)
	S6(4)
	 S6(5)
	S8(3)
	U4(4)
	U6(2)

	Computations using Groups
	A2m+1, 2 m 11
	A5
	A6
	A7
	Ld(q)
	 Ld(q) with prime d
	Automorphic Extensions of Ld(q)
	L3(2)
	M11
	M12
	O7(3)
	O8+(2)
	O8+(3)
	O+8(4)
	 O9(3)
	O10-(3)
	O14-(2)
	O12+(3)
	 S4(8)
	S6(2)
	S8(2)
	 S10(2)
	U4(2)
	U4(3)
	U6(3)
	U8(2)

	References
	Index

