bilinear term structure
This can represent a product which
var
in the union aux
(case nauxexprs
= 0) orexprs
in the union aux
(case nauxexprs
> 0).An explicitly existing product can also be involved in implicit relations, then it will be stored as in the second case.
Definition at line 78 of file cons_nonlinear.h.
#include <cons_nonlinear.h>
Data Fields | ||
SCIP_VAR * | x | |
SCIP_VAR * | y | |
union { | ||
SCIP_CONSNONLINEAR_AUXEXPR ** exprs | ||
SCIP_VAR * var | ||
} | aux | |
int | nauxexprs | |
int | auxexprssize | |
int | nlockspos | |
int | nlocksneg | |
SCIP_Bool | existing | |
SCIP_VAR* SCIP_ConsNonlinear_BilinTerm::x |
first variable
Definition at line 80 of file cons_nonlinear.h.
SCIP_VAR* SCIP_ConsNonlinear_BilinTerm::y |
second variable
Definition at line 81 of file cons_nonlinear.h.
SCIP_CONSNONLINEAR_AUXEXPR** SCIP_ConsNonlinear_BilinTerm::exprs |
auxiliary expressions for the implicit product of x and y
Definition at line 84 of file cons_nonlinear.h.
Referenced by createSepaData().
SCIP_VAR* SCIP_ConsNonlinear_BilinTerm::var |
auxiliary variable for the explicit product of x and y
Definition at line 85 of file cons_nonlinear.h.
Referenced by createSepaData().
union { ... } SCIP_ConsNonlinear_BilinTerm::aux |
Referenced by createSepaData().
int SCIP_ConsNonlinear_BilinTerm::nauxexprs |
number of aux.exprs (0 for products without implicit relations)
Definition at line 87 of file cons_nonlinear.h.
Referenced by createSepaData().
int SCIP_ConsNonlinear_BilinTerm::auxexprssize |
size of the aux.exprs array
Definition at line 88 of file cons_nonlinear.h.
int SCIP_ConsNonlinear_BilinTerm::nlockspos |
number of positive expression locks
Definition at line 89 of file cons_nonlinear.h.
int SCIP_ConsNonlinear_BilinTerm::nlocksneg |
number of negative expression locks
Definition at line 90 of file cons_nonlinear.h.
SCIP_Bool SCIP_ConsNonlinear_BilinTerm::existing |
does the product exist explicitly in the problem?
Definition at line 91 of file cons_nonlinear.h.