|
C.3 Syzygies and resolutions
Syzygies
The k-th syzygy module is defined inductively to be the module
of syzygies of the
syzygy module.
Example:
| ring R= 0,(u,v,x,y,z),dp;
ideal i=ux, vx, uy, vy;
print(syz(i));
==> -y,0, -v,0,
==> 0, -y,u, 0,
==> x, 0, 0, -v,
==> 0, x, 0, u
|
Free resolutions
where the columns of the matrix
generate
. Note that resolutions need not to be finite (i.e., of
finite length). The Hilbert Syzygy Theorem states that for
there exists a ("minimal") resolution of length not exceeding the number of
variables.
Example:
| ring R= 0,(u,v,x,y,z),dp;
ideal I = ux, vx, uy, vy;
resolution resI = mres(I,0); resI;
==> 1 4 4 1
==> R <-- R <-- R <-- R
==>
==> 0 1 2 3
==>
// The matrix A_1 is given by
print(matrix(resI[1]));
==> vy,uy,vx,ux
// We see that the columns of A_1 generate I.
// The matrix A_2 is given by
print(matrix(resI[3]));
==> u,
==> -v,
==> -x,
==> y
|
Betti numbers and regularity
The regularity of
is the smallest integer
such that
Example:
| ring R= 0,(u,v,x,y,z),dp;
ideal I = ux, vx, uy, vy;
resolution resI = mres(I,0); resI;
==> 1 4 4 1
==> R <-- R <-- R <-- R
==>
==> 0 1 2 3
==>
// the betti number:
print(betti(resI), "betti");
==> 0 1 2 3
==> ------------------------------
==> 0: 1 - - -
==> 1: - 4 4 1
==> ------------------------------
==> total: 1 4 4 1
==>
// the regularity:
regularity(resI);
==> 2
|
|