ERLANG

Common Test

Copyright © 2003-2023 Ericsson AB. All Rights Reserved.
Common Test 1.26

December 18, 2023

Copyright © 2003-2023 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 18, 2023

1.1 Introduction

1 Common Test User's Guide

1.1 Introduction

1.1.1 Scope

Conmmon Test isaportable application for automated testing. It is suitable for:

» Black-box testing of target systems of any type (that is, not necessarily implemented in Erlang). Thisis performed
through standard O& M interfaces (such as SNMP, HTTP, CORBA, and Telnet) and, if necessary, through user-
specific interfaces (often called test ports).

e White-box testing of Erlang/OTP programs. Thisis easily done by calling the target API functions directly from
the test case functions.

Common Test aso integrates use of the OTP cover tool in application Tools for code coverage analysis of Erlang/
OTP programs.

Conmmon Test executestest suite programs automatically, without operator interaction. Test progress and results are
printedtologsin HTML format, easily browsed with astandard web browser. Conmon Test also sends notifications
about progress and results through an OTP event manager to event handlers plugged in to the system. Thisway, users
can integrate their own programs for, for example, logging, database storing, or supervision with Cormon Test .

Common Test provides libraries with useful support functions to fill various testing needs and requirements. There
is, for example, support for flexible test declarations through test specifications. There is also support for central
configuration and control of multiple independent test sessions (to different target systems) running in parallel.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Common Test Basics

1.2.1 General

The Conmon Test framework is atool that supports implementation and automated execution of test cases to any
types of target systems. Conmon Test isthe main tool being used in al testing- and verification activities that are
part of Erlang/OTP system development and maintenance.

Test cases can be executed individually or in batches. Conmon Test also features a distributed testing mode with
central control and logging. With this feature, multiple systems can be tested independently in one common session.
Thisisuseful, for example, when running automated large-scale regression tests.

The System Under Test (SUT) can consist of one or more target nodes. Cormon Test contains ageneric test server
that, together with other test utilities, is used to perform test case execution. The tests can be started from a GUI,
from the OS shell, or from an Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang
functions) to be executed. Support modules provide functions that the test cases use to do the tests.

In a black-box testing scenario, Conmon Test -based test programs connect to the target system(s) through
standard O&M and CLI protocols. Common Test provides implementations of, and wrapper interfaces to, some
of these protocols (most of which exist as standalone components and applications in OTP). The wrappers simplify
configuration and add verbosity for logging purposes. Conmon Test is continuously extended with useful support

Ericsson AB. All Rights Reserved.: Common Test | 1

1.2 Common Test Basics

modules. However, notice that it is a straightforward task to use any Erlang/OTP component for testing purposes with
Conmon Test , without needing a Conmon Test wrapper for it. It is as simple as calling Erlang functions. A
number of target-independent interfaces are supported in Cormon Test , such as Generic Telnet and FTP. These can
be specialized or used directly for controlling instruments, traffic load generators, and so on.

Common Test isalsoavery useful tool for white-box testing Erlang code (for example, module testing), as the test
programs can call exported Erlang functionsdirectly. Thereisvery little overhead required for implementing basic test
suites and executing simple tests. For black-box testing Erlang software, Erlang RPC and standard O&M interfaces
can be used for example.

A test case can handle several connectionsto one or more target systems, instruments, and traffic generatorsin parallel
to perform the necessary actions for atest. The handling of many connectionsin parallel is one of the major strengths
of Cormon Test , thanks to the efficient support for concurrency in the Erlang runtime system, which Conmon
Test users can take great advantage of.

1.2.2 Test Suite Organization

Test suites are organized in test directories and each test suite can have a separate data directory. Typically, thesefiles
and directories are version-controlled similar to other forms of source code (possibly by aversion control system like
GIT or Subversion). However, Conrmon Test does not itself put any requirements on (or has any awareness of)
possible file and directory versions.

1.2.3 Support Libraries

Support libraries contain functions that are useful for all test suites, or for test suites in a specific functiona area or
subsystem. In addition to the general support libraries provided by the Cormon Test framework, and the various
libraries and applications provided by Erlang/OTP, there can also be a need for customized (user specific) support
libraries.

1.2.4 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual test cases. A test suiteisimplemented asan
Erlang modulenamed <sui t e_nane>_SUl TE. er | which containsanumber of test cases. A test caseisan Erlang
function that tests one or more things. The test caseisthe smallest unit that the Cormon Test test server dealswith.

Setsof test cases, called test case groups, can also be defined. A test case group can have execution properties associated
with it. Execution properties specify if the test cases in the group are to be executed in random order, in parallel, or
in sequence, and if the execution of the group is to be repeated. Test case groups can also be nested (that is, a group
can, besides test cases, contain subgroups).

Besides test cases and groups, the test suite can also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state in the SUT (and/or the Cormon Test host node),
required for the tests to execute correctly. Examples of operations are: Opening a connection to the SUT, initializing
a database, running an installation script, and so on. Configuration can be performed per suite, per test case group,
and per individual test case.

The test suite module must conform to a callback interface specified by the Cormon Test test server. For details,
see section Writing Test Suites.

A test case is considered successful if it returns to the caller, no matter what the returned value is. However, a few
return values have special meaning as follows:

* {ski p, Reason} indicatesthat the test case is skipped.
e {coment, Conment } printsacomment in thelog for the test case.
« {save_config, Confi g} makesthe Conmon Test test server pass Conf i g to the next test case.

2 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Common Test Basics

A test case failure is specified as a runtime error (a crash), no matter what the reason for termination is. If you use
Erlang pattern matching effectively, you can take advantage of this property. The result is concise and readable test
case functions that ook much more like scripts than actual programs. A simple example:

session(Config) ->
{started,ServerId} = my server:start(),
{clients,[]} = my server:get clients(ServerId),
MyId = self(),
connected = my server:connect(Serverld, MyId),
{clients, [MyId]} = my server:get clients(ServerlId),
disconnected = my server:disconnect(ServerId, MyId),
{clients,[]} = my server:get clients(ServerId),
stopped = my server:stop(ServerId).

Asatest suiteruns, al information (including output to st dout) isrecorded in many different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

Theresult from each test caseisrecorded in adedicated HTML log file, created for the particul ar test run. An overview
page displays each test case represented by atable row showing total execution time, if the case was successful, failed,
or skipped, plus an optiona user comment. For a failed test case, the reason for termination is aso printed in the
comment field. The overview page has alink to each test caselog file, providing simple navigation with any standard
HTML browser.

1.2.5 External Interfaces

The Conmon Test test server requires that the test suite defines and exports the following mandatory or optional
callback functions:

all()

Returns alist of all test cases and groups in the suite. (Mandatory)
suite()

Information function used to return properties for the suite. (Optional)
groups()

For declaring test case groups. (Optional)
init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)
end_per_suite(Config)

Suite level configuration function, executed after the last test case. (Optional)
gr oup(G oupNarne)

Information function used to return properties for atest case group. (Optional)
init_per_group(G oupNane, Config)

Configuration function for a group, executed before the first test case. (Optional)
end_per _group(G oupNane, Config)

Configuration function for a group, executed after the last test case. (Optional)
init_per_testcase(Test Case, Config)

Configuration function for atestcase, executed before each test case. (Optional)

Ericsson AB. All Rights Reserved.: Common Test | 3

1.3 Getting Started

end_per _testcase(Test Case, Confi Q)

Configuration function for a testcase, executed after each test case. (Optional)
For each test case, the Conmron Test test server expects the following functions:
Testcasename()

Information function that returns alist of test case properties. (Optional)
Testcasename(Config)

The test case function.

1.3 Getting Started

1.3.1 Introduction for Newcomers

The purpose of this section is to let the newcomer get started in quickly writing and executing some first simple tests
with a"learning by example" approach. Most explanations are | eft for later sections. If you are not much into "learning
by example" and prefer more technical details, go ahead and skip to the next section.

This section demonstrates how simple it is to write a basic (yet for many module testing purposes, often sufficiently
complex) test suite and execute its test cases. This is not necessarily obvious when you read the remaining sections
in this User's Guide.

To understand what is discussed and examplified here, we recommended you to first read section Common Test
Basics.

1.3.2 Test Case Execution

Execution of test casesis handled as follows:

4 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

fest case A case A case B fesf case B faifs
refurns ok because of Reason
CT worker CT worker CT worker

crashes:
{EXIT ,Reason}

. rocess
exits normally P

« Log file ¥
@ case A ‘ "Successful”
@ case B ‘ "Failed: Reason”

Figure 3.1: Successful and Unsuccessful Test Case Execution

For each test case that Conmon Test is ordered to execute, it spawns a dedicated process on which the test case
function starts running. (In parallel to the test case process, an idle waiting timer process is started, which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process. Thisis called atimetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function returns avalue and Conmon Test logs the test case as successful.

In scenario 2, an error is detected during test case B execution. This causesthetest case B function to generate
an exception and, as a result, the test case process exits with reason other than normal. Cormon Test logs this as
an unsuccessful (Failed) test case.

As you can understand from the illustration, Cormon Test requires a test case to generate a runtime error to
indicate failure (for example, by causing abad match error or by callingexi t / 1, preferably through the help function
ct:fail/1, 2). A successful execution isindicated by anormal return from the test case function.

1.3.3 A Simple Test Suite

Asshown in section Common Test Basics, thetest suite modul eimplements callback functions (mandatory or optional)
for various purposes, for example:

e |nit/end configuration function for the test suite

« Init/end configuration function for atest case

« Init/end configuration function for atest case group

e Testcases

Ericsson AB. All Rights Reserved.: Common Test | 5

1.3 Getting Started

The configuration functions are optional. The following example is a test suite without configuration functions,
including one simple test case, to check that module mynod exists (that is, can be successfully loaded by the code
server):

-module(mylst SUITE).
-compile(export_all).

all() ->
[mod exists].

mod exists() ->
{module,mymod} = code:load file(mymod).

If the operation fails, a bad match error occurs that terminates the test case.

1.3.4 A Test Suite with Configuration Functions

If you need to perform configuration operations to run your test, you can implement configuration functions in your
suite. The result from a configuration function is configuration data, or Conf i g. Thisis alist of key-value tuples
that get passed from the configuration function to the test cases (possibly through configuration functions on "lower
level"). The data flow looks as follows:

6 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

init per suite(InitConfig)
Ceonfig
——————» 1hit per testcocase|testocasel, Config)

Ceonfigd
@ LCestcasel (Configl)

¥
I end per testcase (testcasel,Configl)

Ceonfig
— 1N1it per testcase (testoasell, Config)

Coonfighf
——. CLEStCoasel (Confighl)

¥
end per testcase (testcasel, ConfigN)

¥

end per suite(Config)

Figure 3.2: Configuration Data Flow in a Suite

The following example shows a test suite that uses configuration functions to open and close a log file for the test
cases (an operation that is unnecessary and irrelevant to perform by each test case):

Ericsson AB. All Rights Reserved.: Common Test | 7

1.3 Getting Started

-module(check log SUITE).

-export([all/0, init per suite/1, end per suite/1]).
-export([check restart result/1l, check no errors/1]).
-define(value(Key,Config), proplists:get value(Key,Config)).

all() -> [check restart result, check no errors].

init per suite(InitConfigData) ->
[{logref,open_log()} | InitConfigData].

end per suite(ConfigData) ->
close log(?value(logref, ConfigData)).

check restart result(ConfigData) ->
TestData = read log(restart, ?value(logref, ConfigData)),
{match, Line} = search for("restart successful", TestData).
check no _errors(ConfigData) ->
TestData = read log(all, ?value(logref, ConfigData)),
case search for("error", TestData) of
{match,Line} -> ct:fail({error found in log,Line});
nomatch -> ok
end.

The test cases verify, by parsing alog file, that our SUT has performed a successful restart and that no unexpected
errors are printed.

To execute the test cases in the recent test suite, type the following on the UNIX/Linux command line (assuming that
the suite module isin the current working directory):

$ ct _run -dir

or:

$ ct run -suite check log SUITE

To use the Erlang shell to run our test, you can evaluate the following call:

1> ct:run_test([{dir, "."}]).

or.
1> ct:run_test([{suite, "check log SUITE"}]).

Theresult from running the test is printed in log filesin HTML format (stored in unique log directories on a different
level). The following illustration shows the log file structure:

8 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

.
top level log dir test run top dir test dir test case dir
TEST RUN | | |
HISTORY | | |
TEST
all runs.html SUITE
OVERVIEW
index.html
.\ index.html y.

Figure 3.3: HTML Log File Structure

1.3.5 Questions and Answers

Here follows some questions that you might have after reading this section with corresponding tips and links to the
answers:

e Question: "How and where can | specify variable datafor my tests that must not be hard-coded in the test suites
(such as hostnames, addresses, and user login data)?"

Answer: See section External Configuration Data.

* Question: "Isthere away to declare different tests and run them in one session without having to write my own
scripts? Also, can such declarations be used for regression testing?”'

Answer: See section Test Specificationsin section Running Tests and Analyzing Results.
* Question: "Can test cases and/or test runs be automatically repeated?'

Answer: Learn more about Test Case Groups and read about start flags/options in section Running Testsand in
the Reference Manual.

e Question: "Does Conmon Test execute my test casesin sequence or in parallel?"

Answer: See Test Case Groupsin section Writing Test Suites.
e Question: "What is the syntax for timetraps (mentioned earlier), and how do | set them?"

Answer: Thisisexplained in the Timetrap Time-Outs part of section Writing Test Suites.
* Question: "What functions are available for logging and printing?"'

Answer: SeeLogging in section Writing Test Suites.
* Question: "l need datafilesfor my tests. Where do | store them preferably?"

Answer: See Data and Private Directories.
e Question: "Can | start with atest suite example, please?"

Answer: Welcome!

Ericsson AB. All Rights Reserved.: Common Test | 9

1.4 Installation

Y ou probably want to get started on your own first test suites now, while at the same time digging deeper into the
Conmmon Test User's Guide and Reference Manual. There are much more to learn about the things that have been
introduced in this section. There are also many other useful featuresto learn, so please continue to the other sections
and have fun.

1.4 Installation

1.4.1 General Information

The two main interfaces for running tests with Conmmon Test are an executable program named ct _r un and the
Erlang modulect . ct _r un iscompiled for the underlying operating system (for example, Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bi n directory of Erlang/OTP. Thect interface functions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

The Common Test application isinstalled with the Erlang/OTP system. No extrainstallation step is required to start
using Cormon Test through thect _r un executable program, and/or the interface functionsin the ct module.

1.5 Writing Test Suites
1.5.1 Support for Test Suite Authors

The ct module provides the main interface for writing test cases. Thisincludes for example, the following:

* Functionsfor printing and logging

» Functionsfor reading configuration data

* Function for terminating a test case with error reason

* Function for adding commentsto the HTML overview page

For details about these functions, see modulect .

The Conmon Test application aso includes other modules named ct _<conponent >, which provide various
support, mainly simplified use of communication protocols such as RPC, SNMP, FTP, Telnet, and others.

1.5.2 Test Suites

A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
theform * _SUI TE. er | . Otherwise, the directory and auto compilation function in Conmon Test cannot locate
it (at least not by default).

It is also recommended that thect . hr | header fileisincluded in all test suite modules.

Each test suite module must export function al | / 0, which returns the list of all test case groups and test cases to
be executed in that module.

The callback functions to be implemented by the test suite are al listed in module ct_suite . They are also described
in more detail later in this User's Guide.

1.5.3 Init and End per Suite

Each test suite module can contain the optional configuration functions init_per_suite/1 and
end_per _sui t e/ 1. If theinit function is defined, so must the end function be.

Ifinit_per_suiteexists, itiscaledinitialy beforethetest cases are executed. It typically containsinitializations
common for al test casesin the suite, which are only to be performed once.i ni t _per _sui t e isrecommended for

10 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

setting up and verifying state and environment on the System Under Test (SUT) or the Conmron Test host node, or
both, sothat thetest casesin the suite executes correctly. Thefollowing areexamplesof initial configuration operations:

e Opening a connection to the SUT
e Initializing a database
e Running an installation script

end_per _sui t e iscaled as the fina stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up afteri nit _per _suite.

init_per_suiteandend _per_suit e execute on dedicated Erlang processes, just like the test cases do. The
result of these functionsis however not included in the test run statistics of successful, failed, and skipped cases.

Theargument toi ni t _per _sui t e isConfi g, that is, the same key-value list of runtime configuration data that
each test case takes asinput argument. i ni t _per _sui t e can modify this parameter with information that the test
cases need. The possibly modified Conf i g list isthe return value of the function.

Ifi nit_per_suit e fails, al test casesin thetest suite are skipped automatically (so called auto skipped), including
end_per_suite.

Notice that if i nit _per _suite and end_per _sui t e do not exist in the suite, Common Test cals dummy
functions (with the same names) instead, so that output generated by hook functions can be saved to the log files for
these dummies. For details, see Common Test Hooks.

1.5.4 Init and End per Test Case

Each test suite module can contain the optional configuration functions i nit_per testcase/2 and
end_per _testcase/ 2. If theinit function is defined, so must the end function be.

Ifinit_per_testcase exists, itiscaled before each test case in the suite. It typically contains initialization that
must be done for each test case (analogtoi ni t _per _sui t e for the site).

end_per testcase/ 2 iscaled after each test case hasfinished, enabling cleanup afteri ni t _per _t est case.

If end_per _t est case crashes, however, test results are unaffected. At the same time, this occurrence is
reported in the test execution logs.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for many, or all, test cases.

The second argument is the Conf i g key-value list of runtime configuration data, which has the same value as the
listreturned by i nit _per _suite.init_per_testcase/ 2 can modify this parameter or returnit "asis'. The
returnvalueof i nit _per _t est case/ 2 ispassed as parameter Conf i g to the test case itself.

The return value of end_per _t est case/ 2 isignored by the test server, with exception of the save_confi g
andfail tuple.

end_per _t est case can check if the test case was successful. (which in turn can determine how cleanup is to
be performed). This is done by reading the value tagged with t c_st at us from Conf i g. The value is one of the
following:

e ok
« {failed, Reason}

whereReason isti netrap_ti meout , information from exi t / 1, or details of aruntime error
« {ski pped, Reason}

Ericsson AB. All Rights Reserved.: Common Test | 11

1.5 Writing Test Suites

where Reason is auser-specific term

Function end_per _testcase/2 is even caled if a test case terminates because of a cal to
ct:abort_current _testcase/ 1,orafter atimetraptime-out. However,end_per _t est case then executes
on adifferent process than the test case function. In this situation, end_per _t est case cannot change the reason
for test case termination by returning { f ai | , Reason} or save datawith{save_confi g, Dat a}.

The test case is skipped in the following two cases:

e Ifinit_per _testcase crashes(caled auto skipped).
« Ifinit_per_testcase returnsatuple{ski p, Reason} (caled user skipped).

The test case can also be marked as failed without executing it by returning a tuple {f ai | , Reason} from
i nit_per_testcase.

If init_per testcase crashes, or returns {skip, Reason} or {fail, Reason}, function
end_per _testcase isnot caled.

If it isdetermined during execution of end_per _t est case that the status of a successful test caseisto be changed
tofailed, end_per _t est case canreturnthetuple{f ai | , Reason} (where Reason describeswhy thetest case
fails).

Asinit_per_testcaseandend_per _t est case executeonthesameErlang processasthetest case, printouts
from these configuration functions are included in the test caselog file.

1.5.5 Test Cases

The smallest unit that the test server is concerned with is atest case. Each test case can test many things, for example,
make several calls to the same interface function with different parameters.

The author can choose to put many or few tests into each test case. Some things to keep in mind follows:

e Many small test cases tend to result in extra, and possibly duplicated code, aswell as slow test execution because
of large overhead for initializations and cleanups. Avoid duplicated code, for example, by using common help
functions. Otherwise, the resulting suite becomes difficult to read and understand, and expensive to maintain.

» Larger test cases make it harder to tell what went wrong if it fails. Also, large portions of test code risk being
skipped when errors occur.

» Readability and maintainability suffer when test cases become too large and extensive. It is not certain that the
resulting log files reflect very well the number of tests performed.

The test case function takes one argument, Conf i g, which contains configuration information such asdat a_di r
and pri v_di r. (For details about these, see section Data and Private Directories. The value of Conf i g at thetime
of the call, isthe same asthe return valuefromi ni t _per _t est case, mentioned earlier.

Thetest case function argument Conf i g isnot to be confused with the information that can be retrieved from the
configuration files (using ct: get _confi g/ 1/ 2). The test case argument Conf i g isto be used for runtime
configuration of the test suite and the test cases, while configuration files are to contain data related to the SUT.
These two types of configuration data are handled differently.

As parameter Confi g is a list of key-value tuples, that is, a data type caled a property list, it can be
handled by the proplists module. A value can, for example, be searched for and returned with function
proplists: get val ue/ 2. Also, or dternatively, the general |i sts module contains useful functions.

12 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

Normally, the only operations performed on Confi g are insertion (adding a tuple to the head of the list) and
lookup. To look up a value in the config, propl i sts: get_val ue can be used. For example: PrivDir =
proplists:get_value(priv_dir, Config).

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what value),
it is considered successful. An exception to this rule is the return value { ski p, Reason} . If thistuple is returned,
the test caseis considered skipped and is logged as such.

If the test case returns the tuple { comrent , Comment } , the caseis considered successful and Commrent is printed
in the overview log file. Thisisequal to calling ct : comment (Comrment) .

1.5.6 Test Case Information Function

For each test case function there can be an extra function with the same name but without arguments. Thisis the test
case information function. It is expected to return a list of tagged tuples that specifies various properties regarding
the test case.

The following tags have special meaning:
timetrap

Sets the maximum time the test case is allowed to execute. If thistimeis exceeded, the test case fails with reason
timetrap_tinmeout. Noticethati nit_per_testcase and end_per _t est case areincluded in the
timetrap time. For details, see section Timetrap Time-Outs.

userdat a

Specifies any data related to the test case. This data can be retrieved at any time using the ct : user dat a/ 3
utility function.

sil ent _connecti ons
For details, see section Silent Connections.
require

Specifies configuration variables required by the test case. If the required configuration variables are not found
in any of the test system configuration files, the test case is skipped.

A required variable can also be given adefault valueto be used if thevariableisnot found in any configurationfile.
To specify adefault value, add atupleontheform { def aul t _confi g, Confi gVari abl eNane, Val ue}
to the test case information list (the position in thelist isirrelevant).

Examples:

testcasel() ->
[{require, ftp},
{default config, ftp, [{ftp, "my ftp host"},
{username, "aladdin"},
{password, "sesame"}1}}].

testcase2() ->
[{require, unix_ telnet, unix},
{require, {unix, [telnet, username, password]}},
{default config, unix, [{telnet, "my telnet host"},
{username, "aladdin"},
{password, "sesame"}1}}1.

For more information about r equi r e, see section Requiring and Reading Configuration Data in section External
Configuration Data and functionct : requi re/ 1/ 2.

Ericsson AB. All Rights Reserved.: Common Test | 13

1.5 Writing Test Suites

Specifying a default value for arequired variable can result in atest case always getting executed. This might not
be a desired behavior.

Ifti metraporrequire,orboth, isnot set specifically for aparticular test case, default values specified by function
sui t e/ 0 areused.

Tags other than the earlier mentioned are ignored by the test server.

An example of atest case information function follows:

reboot node() ->
[
{timetrap, {seconds,60}},
{require,interfaces},
{userdata,
[{description, "System Upgrade: RpuAddition Normal RebootNode"},
{fts,"http://someserver.ericsson.se/test doc4711.pdf"}]}

1.5.7 Test Suite Information Function

Functionsui t e/ 0 can, for example, beused in atest suite moduleto set adefaultt i net r ap valueandtor equi r e
external configuration data. If atest case, or agroup information function also specifies any of the information tags, it
overrides the default values set by sui t e/ 0. For details, see Test Case Information Function and Test Case Groups.

The following options can also be specified with the suite information list:

» styl esheet, see HTML Style Sheets
e userdat a, see Test Case Information Function
* silent_connections, see Silent Connections

An example of the suite information function follows:

suite() ->
[
{timetrap, {minutes,10}},
{require,global names},
{userdata, [{info, "This suite tests database transactions."}1},
{silent_connections, [telnet]},
{stylesheet,"db testing.css"}
1.

1.5.8 Test Case Groups

A test case group is a set of test cases sharing configuration functions and execution properties. Test case groups are
defined by function gr oups/ 0 that should return aterm having the following syntax:

14 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

groups() -> GroupDefs
Types:

GroupDefs = [GroupDef]

GroupDef = {GroupName,Properties,GroupsAndTestCases}

GroupName = atom()

GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase |
{testcase,TestCase, TCRepeatProps}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat until ok,N} | {repeat until fail,N}]

G oupNane is the name of the group and must be unique within the test suite module. Groups can be nested, by
including a group definition within the G- oupsAndTest Cases list of another group. Pr operti es isthelist of
execution properties for the group. The possible values are as follows:

Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat until all ok | repeat until all fail |
repeat until any ok | repeat until any fail

N = integer() | forever

Explanations:
paral | el

Conmon Test executesall test casesin the group in parallel.
sequence

The cases are executed in a sequence as described in section Sequences in section Dependencies Between Test
Cases and Suites.

shuffle
The casesin the group are executed in random order.
repeat, repeat_until _*

Orders Conmon Test to repeat execution of all the cases in the group a given number of times, or until any,
or al, casesfail or succeed.

Example:
groups() -> [{groupl, [parallel], [testla,testlb]},
{group2, [shuffle,sequence], [test2a,test2b,test2c]}].

To specify inwhich order groups are to be executed (al so with respect to test casesthat are not part of any group), add
tuples on theform { gr oup, G oupNane} totheal | / 0 list.

Example:

all() -> [testcasel, {group,groupl}, {testcase,testcase2,[{repeat,10}1}, {group,group2}].

Execution properties with agroup tupleinal | / 0: { gr oup, G- oupNane, Properti es} can aso be specified.
These properties override those specified in the group definition (see gr oups/ 0 earlier). This way, the same set of
tests can be run, but with different properties, withou